Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurosci ; 44(22)2024 May 29.
Article in English | MEDLINE | ID: mdl-38527807

ABSTRACT

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.


Subject(s)
Brain , Nerve Net , Humans , Male , Female , Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging , Attention/physiology , Young Adult , Default Mode Network/physiology , Default Mode Network/diagnostic imaging , Memory, Long-Term/physiology , Brain Mapping/methods , Parietal Lobe/physiology , Memory, Short-Term/physiology
2.
J Neurosci ; 44(31)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38839303

ABSTRACT

Complex auditory scenes pose a challenge to attentive listening, rendering listeners slower and more uncertain in their perceptual decisions. How can we explain such behaviors from the dynamics of cortical networks that pertain to the control of listening behavior? We here follow up on the hypothesis that human adaptive perception in challenging listening situations is supported by modular reconfiguration of auditory-control networks in a sample of N = 40 participants (13 males) who underwent resting-state and task functional magnetic resonance imaging (fMRI). Individual titration of a spatial selective auditory attention task maintained an average accuracy of ∼70% but yielded considerable interindividual differences in listeners' response speed and reported confidence in their own perceptual decisions. Whole-brain network modularity increased from rest to task by reconfiguring auditory, cinguloopercular, and dorsal attention networks. Specifically, interconnectivity between the auditory network and cinguloopercular network decreased during the task relative to the resting state. Additionally, interconnectivity between the dorsal attention network and cinguloopercular network increased. These interconnectivity dynamics were predictive of individual differences in response confidence, the degree of which was more pronounced after incorrect judgments. Our findings uncover the behavioral relevance of functional cross talk between auditory and attentional-control networks during metacognitive assessment of one's own perception in challenging listening situations and suggest two functionally dissociable cortical networked systems that shape the considerable metacognitive differences between individuals in adaptive listening behavior.


Subject(s)
Attention , Auditory Perception , Magnetic Resonance Imaging , Nerve Net , Humans , Male , Female , Adult , Auditory Perception/physiology , Nerve Net/physiology , Nerve Net/diagnostic imaging , Attention/physiology , Young Adult , Metacognition/physiology , Brain/physiology , Brain/diagnostic imaging , Acoustic Stimulation/methods , Brain Mapping
3.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38300180

ABSTRACT

Psychophysical observations indicate that the spatial profile of visuospatial attention includes a central enhancement around the attentional focus, encircled by a narrow zone of reduced excitability in the immediate surround. This inhibitory ring optimally amplifies relevant target information, likely stemming from top-down frontoparietal recurrent activity modulating early visual cortex activations. However, the mechanisms through which neural suppression gives rise to the surrounding attenuation and any potential hemispheric specialization remain unclear. We used transcranial magnetic stimulation to evaluate the role of two regions of the dorsal attention network in the center-surround profile: the frontal eye field and the intraparietal sulcus. Participants performed a psychophysical task that mapped the entire spatial attentional profile, while transcranial magnetic stimulation was delivered either to intraparietal sulcus or frontal eye field on the right (Experiment 1) and left (Experiment 2) hemisphere. Results showed that stimulation of right frontal eye field and right intraparietal sulcus significantly changed the center-surround profile, by widening the inhibitory ring around the attentional focus. The stimulation on the left frontal eye field, but not left intraparietal sulcus, induced a general decrease in performance but did not alter the center-surround profile. Results point to a pivotal role of the right dorsal attention network in orchestrating inhibitory spatial mechanisms required to limit interference by surrounding distractors.


Subject(s)
Functional Laterality , Transcranial Magnetic Stimulation , Humans , Functional Laterality/physiology , Parietal Lobe/physiology , Frontal Lobe/physiology , Photic Stimulation/methods , Magnetic Resonance Imaging , Brain Mapping
4.
J Neurosci Res ; 102(1)2024 01.
Article in English | MEDLINE | ID: mdl-38284840

ABSTRACT

The trajectory of voxel-mirrored homotopic connectivity (VMHC) after medical treatment in obsessive-compulsive disorder (OCD) and its value in prediction of treatment response remains unclear. This study aimed to investigate the pathophysiological mechanism of OCD, as well as biomarkers for prediction of pharmacological efficacy. Medication-free patients with OCD and healthy controls (HCs) underwent magnetic resonance imaging. The patients were scanned again after a 4-week treatment with paroxetine. The acquired data were subjected to VMHC, support vector regression (SVR), and correlation analyses. Compared with HCs (36 subjects), patients with OCD (34 subjects after excluding two subjects with excessive head movement) exhibited significantly lower VMHC in the bilateral superior parietal lobule (SPL), postcentral gyrus, and calcarine cortex, and VMHC in the postcentral gyrus was positively correlated with cognitive function. After treatment, the patients showed increased VMHC in the bilateral posterior cingulate cortex/precuneus (PCC/PCu) with the improvement of symptoms. SVR results showed that VMHC in the postcentral gyrus at baseline could aid to predict a change in the scores of OCD scales. This study revealed that SPL, postcentral gyrus, and calcarine cortex participate in the pathophysiological mechanism of OCD while PCC/PCu participate in the pharmacological mechanism. VMHC in the postcentral gyrus is a potential predictive biomarker of the treatment effects in OCD.


Subject(s)
Obsessive-Compulsive Disorder , Parietal Lobe , Humans , Parietal Lobe/diagnostic imaging , Somatosensory Cortex , Cognition , Gyrus Cinguli , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/drug therapy
5.
Cereb Cortex ; 33(11): 7237-7249, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36897061

ABSTRACT

Musically trained individuals have been found to outperform untrained peers in various tasks for executive functions. Here, we present longitudinal behavioral results and cross-sectional, event-related potential (ERP), and fMRI results on the maturation of executive functions in musically trained and untrained children and adolescents. The results indicate that in school-age, the musically trained children performed faster in a test for set shifting, but by late adolescence, these group differences had virtually disappeared. However, in the fMRI experiment, the musically trained adolescents showed less activity in frontal, parietal, and occipital areas of the dorsal attention network and the cerebellum during the set-shifting task than untrained peers. Also, the P3b responses of musically trained participants to incongruent target stimuli in a task for set shifting showed a more posterior scalp distribution than control group participants' responses. Together these results suggest that the musician advantage in executive functions is more pronounced at an earlier age than in late adolescence. However, it is still reflected as more efficient recruitment of neural resources in set-shifting tasks, and distinct scalp topography of ERPs related to updating and working memory after childhood.


Subject(s)
Executive Function , Magnetic Resonance Imaging , Child , Humans , Adolescent , Young Adult , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Executive Function/physiology , Memory, Short-Term/physiology , Electroencephalography
6.
Neuroimage ; 284: 120433, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37939891

ABSTRACT

Literature suggests that attention is a critical cognitive process for pain perception and modulation and may play an important role in placebo and nocebo effects. Here, we investigated how repeated transcranial direct current stimulation (tDCS) applied at the dorsolateral prefrontal cortex (DLPFC) for three consecutive days can modulate the brain functional connectivity (FC) of two networks involved in cognitive control: the frontoparietal network (FPN) and dorsal attention network (DAN), and its association with placebo and nocebo effects. 81 healthy subjects were randomized to three groups: anodal, cathodal, and sham tDCS. Resting state fMRI scans were acquired pre- and post- tDCS on the first and third day of tDCS. An Independent Component Analysis (ICA) was performed to identify the FPN and DAN. ANCOVA was applied for group analysis. Compared to sham tDCS, 1) both cathodal and anodal tDCS increased the FC between the DAN and right parietal operculum; cathodal tDCS also increased the FC between the DAN and right postcentral gyrus; 2) anodal tDCS led to an increased FC between the FPN and right parietal operculum, while cathodal tDCS was associated with increased FC between the FPN and left superior parietal lobule/precuneus; 3) the FC increase between the DAN and right parietal operculum was significantly correlated to the placebo analgesia effect in the cathodal group. Our findings suggest that both repeated cathodal and anodal tDCS could modulate the FC of two important cognitive brain networks (DAN and FPN), which may modulate placebo / nocebo effects.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Nocebo Effect , Prefrontal Cortex/physiology , Brain , Pain
7.
Hum Brain Mapp ; 44(17): 5749-5769, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37683097

ABSTRACT

Attention deficit is a critical symptom that impairs social functioning in adolescents with major depressive disorder (MDD). In this study, we aimed to explore the dynamic neural network activity associated with attention deficits and its relationship with clinical outcomes in adolescents with MDD. We included 188 adolescents with MDD and 94 healthy controls. By combining psychophysics, resting-state electroencephalography (EEG), and functional magnetic resonance imaging (fMRI) techniques, we aimed to identify dynamic network features through the investigation of EEG microstate characteristics and related temporal network features in adolescents with MDD. At baseline, microstate analysis revealed that the occurrence of Microstate C in the patient group was lower than that in healthy controls, whereas the duration and coverage of Microstate D increased in the MDD group. Mediation analysis revealed that the probability of transition from Microstate C to D mediated anhedonia and attention deficits in the MDD group. fMRI results showed that the temporal variability of the dorsal attention network (DAN) was significantly weaker in patients with MDD than in healthy controls. Importantly, the temporal variability of DAN mediated the relationship between anhedonia and attention deficits in the patient group. After acute-stage treatment, the response prediction group (RP) showed improvement in Microstates C and D compared to the nonresponse prediction group (NRP). For resting-state fMRI data, the temporal variability of DAN was significantly higher in the RP group than in the NRP group. Overall, this study enriches our understanding of the neural mechanisms underlying attention deficits in patients with MDD and provides novel clinical biomarkers.


Subject(s)
Depressive Disorder, Major , Humans , Adolescent , Depressive Disorder, Major/diagnostic imaging , Anhedonia , Electroencephalography , Magnetic Resonance Imaging , Neural Networks, Computer , Brain/physiology
8.
Hum Brain Mapp ; 44(17): 6245-6257, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37837649

ABSTRACT

Rumination is closely linked to the onset and maintenance of major depressive disorder (MDD). Prior neuroimaging studies have identified the association between self-reported rumination trait and the functional coupling among a network of brain regions using resting-state functional magnetic resonance imaging (MRI). However, little is known about the underlying neural circuitry mechanism during active rumination in MDD. Degree centrality (DC) is a simple metric to denote network integration, which is critical for higher-order psychological processes such as rumination. During an MRI scan, individuals with MDD (N = 45) and healthy controls (HC, N = 46) completed a rumination state task. We examined the interaction effect between the group (MDD vs. HC) and condition (rumination vs. distraction) on vertex-wise DC. We further characterized the identified brain region's functional involvement with Neurosynth and BrainMap. Network-wise seed-based functional connectivity (FC) analysis was also conducted for the identified region of interest. Finally, exploratory correlation analysis was conducted between the identified region of interest's network FCs and self-reported in-scanner affect levels. We found that a left superior frontal gyrus (SFG) region, generally overlapped with the frontal eye field, showed a significant interaction effect. Further analysis revealed its involvement with executive functions. FCs between this region, the frontoparietal, and the dorsal attention network (DAN) also showed significant interaction effects. Furthermore, its FC to DAN during distraction showed a marginally significant negative association with in-scanner affect level at the baseline. Our results implicated an essential role of the left SFG in the rumination's underlying neural circuitry mechanism in MDD and provided novel evidence for the conceptualization of rumination in terms of impaired executive control.


Subject(s)
Depressive Disorder, Major , Humans , Brain/diagnostic imaging , Prefrontal Cortex , Executive Function , Frontal Lobe , Magnetic Resonance Imaging , Brain Mapping
9.
Hum Brain Mapp ; 44(8): 3271-3282, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36999674

ABSTRACT

Adolescents who are clinically recovered from concussion continue to show subtle motor impairment on neurophysiological and behavioral measures. However, there is limited information on brain-behavior relationships of persistent motor impairment following clinical recovery from concussion. We examined the relationship between subtle motor performance and functional connectivity of the brain in adolescents with a history of concussion, status post-symptom resolution, and subjective return to baseline. Participants included 27 adolescents who were clinically recovered from concussion and 29 never-concussed, typically developing controls (10-17 years); all participants were examined using the Physical and Neurologic Examination of Subtle Signs (PANESS). Functional connectivity between the default mode network (DMN) or dorsal attention network (DAN) and regions of interest within the motor network was assessed using resting-state functional magnetic resonance imaging (rsfMRI). Compared to controls, adolescents clinically recovered from concussion showed greater subtle motor deficits as evaluated by the PANESS and increased connectivity between the DMN and left lateral premotor cortex. DMN to left lateral premotor cortex connectivity was significantly correlated with the total PANESS score, with more atypical connectivity associated with more motor abnormalities. This suggests that altered functional connectivity of the brain may underlie subtle motor deficits in adolescents who have clinically recovered from concussion. More investigation is required to understand the persistence and longer-term clinical relevance of altered functional connectivity and associated subtle motor deficits to inform whether functional connectivity may serve as an important biomarker related to longer-term outcomes after clinical recovery from concussion.


Subject(s)
Brain Concussion , Magnetic Resonance Imaging , Humans , Adolescent , Magnetic Resonance Imaging/methods , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping/methods
10.
Hum Brain Mapp ; 44(6): 2129-2141, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36602295

ABSTRACT

Discourse comprehension involves the construction of a mental representation of the situation model as well as a continuous update of this representation. This mental update is cognitively demanding and likely engages the multiple-demand network. However, there is little evidence for the involvement of the multiple-demand network during situation updating. In this study, we used fMRI to test whether situation updating based on the change of spatial location activated the multiple-demand network. In a discourse comprehension task, readers read two-sentence discourses in which the second sentence either continues or introduces a shift of the spatial location information presented in the first sentence. Compared to situation continuation, situation updating reliably activated the right superior parietal lobule. This area is a part of the multiple-demand network as defined by a digit N-back localizer task and locates within the dorsal attention network as defined in the previous study by Yeo et al. in 2011. Our results provide evidence for the reliable involvement of a specific area of the multiple-demand network in situation updating during high-level discourse processing.


Subject(s)
Comprehension , Language , Humans , Reading , Magnetic Resonance Imaging
11.
J Neurosci ; 41(26): 5699-5710, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34021043

ABSTRACT

α Oscillations in sensory cortex, under frontal control, desynchronize during attentive preparation. Here, in a selective attention study with simultaneous EEG in humans of either sex, we first demonstrate that diminished anticipatory α synchrony between the mid-frontal region of the dorsal attention network and ventral visual sensory cortex [frontal-sensory synchrony (FSS)] significantly correlates with greater task performance. Then, in a double-blind, randomized controlled study in healthy adults, we implement closed-loop neurofeedback (NF) of the anticipatory α FSS signal over 10 d of training. We refer to this closed-loop experimental approach of rapid NF integrated within a cognitive task as cognitive NF (cNF). We show that cNF results in significant trial-by-trial modulation of the anticipatory α FSS measure during training, concomitant plasticity of stimulus-evoked α/θ responses, as well as transfer of benefits to response time (RT) improvements on a standard test of sustained attention. In a third study, we implement cNF training in children with attention deficit hyperactivity disorder (ADHD), replicating trial-by-trial modulation of the anticipatory α FSS signal as well as significant improvement of sustained attention RTs. These first findings demonstrate the basic mechanisms and translational utility of rapid cognitive-task-integrated NF.SIGNIFICANCE STATEMENT When humans prepare to attend to incoming sensory information, neural oscillations in the α band (8-14 Hz) undergo desynchronization under the control of prefrontal cortex. Here, in an attention study with electroencephalography, we first show that frontal-sensory synchrony (FSS) of α oscillations during attentive preparation significantly correlates with task performance. Then, in a randomized controlled study in healthy adults, we show that neurofeedback (NF) training of this α FSS signal within the attention task is feasible. We show that this rapid cognitive NF (cNF) approach engenders plasticity of stimulus-evoked neural responses, and improves performance on a standard test of sustained attention. In a final study, we implement cNF in children with attention deficit hyperactivity disorder (ADHD), replicating the improvement of sustained attention found in adults.


Subject(s)
Alpha Rhythm/physiology , Attention Deficit Disorder with Hyperactivity , Attention/physiology , Cerebral Cortex/physiology , Neurofeedback/methods , Adult , Attention Deficit Disorder with Hyperactivity/physiopathology , Child , Double-Blind Method , Female , Goals , Humans , Male , Neurofeedback/physiology , Neuronal Plasticity/physiology , Reaction Time/physiology
12.
Neuroimage ; 264: 119714, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36309331

ABSTRACT

BACKGROUND: Transcranial magnetic stimulation (TMS) is a widely used technique for the noninvasive assessment and manipulation of brain activity and behavior. Although extensively used for research and clinical purposes, recent studies have questioned the reliability of TMS findings because of the high inter-individual variability that has been observed. OBJECTIVE: In this study, we compared the efficacy and reliability of different targeting scenarios on the TMS-evoked response. METHODS: 24 subjects underwent a single pulse stimulation protocol over two parietal nodes belonging to the Dorsal Attention (DAN) and Default Mode (DMN) Networks respectively. Across visits, the stimulated target for both networks was chosen either based on group-derived networks' maps or personalized network topography based on individual anatomy and functional profile. All stimulation visits were conducted twice, one month apart, during concomitant electroencephalography recording. RESULTS: At the network level, we did not observe significant differences in the TMS-evoked response between targeting conditions. However, reliable patterns of activity were observed- for both networks tested- following the individualized targeting approach. When the same analyses were carried out at the electrode space level, evidence of reliable patterns was observed following the individualized stimulation of the DAN, but not of the DMN. CONCLUSIONS: Our findings suggest that individualization of stimulation sites might ensure reliability of the evoked TMS-response across visits. Furthermore, individualized stimulation sites appear to be of foremost importance in highly variable, high order task-positive networks, such as the DAN.


Subject(s)
Electroencephalography , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Reproducibility of Results , Attention/physiology
13.
Neuroimage ; 254: 119078, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35276366

ABSTRACT

Recent neuroimaging evidence suggests that there might be an anterior-posterior functional differentiation of the hippocampus along the long-axis. The HERNET (hippocampal encoding/retrieval and network) model proposed an encoding/retrieval dichotomy with the anterior hippocampus more connected to the dorsal attention network (DAN) during memory encoding, and the posterior portions more connected to the default mode network (DMN) during retrieval. Evidence both for and against the HERNET model has been reported. In this study, we test the validity of the HERNET model non-invasively in humans by computing functional connectivity (FC) in layer-specific cortico-hippocampal microcircuits. This was achieved by acquiring sub-millimeter functional magnetic resonance imaging (fMRI) data during encoding/retrieval tasks at 7T. Specifically, FC between infra-granular output layers of DAN with hippocampus during encoding and FC between supra-granular input layers of DMN with hippocampus during retrieval were computed to test the predictions of the HERNET model. Our results support some predictions of the HERNET model including anterior-posterior gradient along the long axis of the hippocampus. While preferential relationships between the entire hippocampus and DAN/DMN during encoding/retrieval, respectively, were observed as predicted, anterior-posterior specificity in these network relationships could not be confirmed. The strength and clarity of evidence for/against the HERNET model were superior with layer-specific data compared to conventional volume data.


Subject(s)
Brain Mapping , Hippocampus , Brain Mapping/methods , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Temporal Lobe
14.
Neuroimage ; 229: 117698, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33385561

ABSTRACT

Information processing in the brain is mediated by structural white matter pathways and is highly dependent on topological brain properties. Here we combined transcranial magnetic stimulation (TMS) with high-density electroencephalography (EEG) and Diffusion Weighted Imaging (DWI), specifically looking at macroscale connectivity to understand whether regional, network-level or whole-brain structural properties are more responsible for stimulus propagation. Neuronavigated TMS pulses were delivered over two individually defined nodes of the default mode (DMN) and dorsal attention (DAN) networks in a group of healthy subjects, with test-retest reliability assessed 1-month apart. TMS-evoked activity was predicted by the modularity and structural integrity of the stimulated network rather than the targeted region(s) or the whole-brain connectivity, suggesting network-level structural connectivity as more relevant than local and global brain properties in shaping TMS signal propagation. The importance of network structural connectome was unveiled only by evoked activity, but not resting-state data. Future clinicals interventions might enhance target engagement by adopting DWI-guided, network-focused TMS.


Subject(s)
Brain/physiology , Connectome/methods , Default Mode Network/physiology , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Transcranial Magnetic Stimulation/methods , Adult , Brain/diagnostic imaging , Default Mode Network/diagnostic imaging , Electroencephalography/methods , Female , Forecasting , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Young Adult
15.
Neuroimage ; 244: 118616, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34582947

ABSTRACT

As we move in the environment, attention shifts to novel objects of interest based on either their sensory salience or behavioral value (reorienting). This study measures with magnetoencephalography (MEG) different properties (amplitude, onset-to-peak duration) of event-related desynchronization/synchronization (ERD/ERS) of oscillatory activity during a visuospatial attention task designed to separate activity related to reorienting vs. maintaining attention to the same location, controlling for target detection and response processes. The oscillatory activity was measured both in fMRI-defined regions of interest (ROIs) of the dorsal attention (DAN) and visual (VIS) networks, previously defined as task-relevant in the same subjects, or whole-brain in a pre-defined set of cortical ROIs encompassing the main brain networks. Reorienting attention (shift cues) as compared to maintaining attention (stay cues) produced a temporal sequence of ERD/ERS modulations at multiple frequencies in specific anatomical regions/networks. An early (∼330 ms), stronger, transient theta ERS occurred in task-relevant (DAN, VIS) and control networks (VAN, CON, FPN), possibly reflecting an alert/reset signal in response to the cue. A more sustained, behaviorally relevant, low-beta band ERD peaking ∼450 ms following shift cues (∼410 for stay cues) localized in frontal and parietal regions of the DAN. This modulation is consistent with a control signal re-routing information across visual hemifields. Contralateral vs. ipsilateral shift cues produced in occipital visual regions a stronger, sustained alpha ERD (peak ∼470 ms) and a longer, transient high beta/gamma ERS (peak ∼490 ms) related to preparatory visual modulations in advance of target occurrence. This is the first description of a cascade of oscillatory processes during attentional reorienting in specific anatomical regions and networks. Among these processes, a behaviorally relevant beta desynchronization in the FEF is likely associated with the control of attention shifts.


Subject(s)
Attention/physiology , Brain/physiology , Adult , Cues , Female , Humans , Magnetoencephalography , Male , Occipital Lobe/physiology , Parietal Lobe/physiology , Young Adult
16.
Neuroimage ; 232: 117868, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33647500

ABSTRACT

Studies have indicated that the dorsal attention network (DAN) and the ventral attention network (VAN) functionally interact via several fronto-parietal connector hubs. However, the anatomical connectivity profiles of these connector hubs, and the coupling between the anatomical and functional connectivities of them, are still unknown. In the present study, we found that functional connector hubs anatomically bridged the DAN and VAN based on multimodal magnetic resonance imaging data from the Human Connectome Project (HCP) Consortium and an independent Chinese cohort. The three hubs had unique anatomical connectivity patterns with the attention sub-networks. For each connector hub, the pattern of anatomical connectivity resembled the functional one. Finally, the strength of the anatomical connectivity of these connector hubs was positively associated with the functional connectivity at the group- and individual-levels. Our findings help to better understand the anatomical mechanisms underlying the functional interactions between the DAN and the VAN.


Subject(s)
Brain/diagnostic imaging , Connectome/methods , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Adolescent , Adult , Brain/anatomy & histology , Brain/physiology , China/epidemiology , Cohort Studies , Databases, Factual , Female , Humans , Male , Nerve Net/anatomy & histology , Nerve Net/physiology , Young Adult
17.
Neuroimage ; 236: 118069, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33878383

ABSTRACT

Visual shape completion recovers object shape, size, and number from spatially segregated edges. Despite being extensively investigated, the process's underlying brain regions, networks, and functional connections are still not well understood. To shed light on the topic, we scanned (fMRI) healthy adults during rest and during a task in which they discriminated pac-man configurations that formed or failed to form completed shapes (illusory and fragmented condition, respectively). Task activation differences (illusory-fragmented), resting-state functional connectivity, and multivariate patterns were identified on the cortical surface using 360 predefined parcels and 12 functional networks composed of such parcels. Brain activity flow mapping (ActFlow) was used to evaluate the likely involvement of resting-state connections for shape completion. We identified 36 differentially-active parcels including a posterior temporal region, PH, whose activity was consistent across 95% of observers. Significant task regions primarily occupied the secondary visual network but also incorporated the frontoparietal, dorsal attention, default mode, and cingulo-opercular networks. Each parcel's task activation difference could be modeled via its resting-state connections with the remaining parcels (r=.62, p<10-9), suggesting that such connections undergird shape completion. Functional connections from the dorsal attention network were key in modelling task activation differences in the secondary visual network. Dorsal attention and frontoparietal connections could also model activations in the remaining networks. Taken together, these results suggest that shape completion relies upon a sparsely distributed but densely interconnected network coalition that is centered in the secondary visual network, coordinated by the dorsal attention network, and inclusive of at least three other networks.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Connectome/methods , Form Perception/physiology , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Pattern Recognition, Visual/physiology , Adult , Female , Humans , Male , Middle Aged , Young Adult
18.
Eur J Neurosci ; 54(7): 6633-6645, 2021 10.
Article in English | MEDLINE | ID: mdl-34479401

ABSTRACT

Freezing of gait (FOG) is a common and complex manifestation of Parkinson's disease (PD) and is associated with impairment of attention. The purpose of this study was to evaluate the functional network connectivity (FNc) changes between the dorsal attention network (DAN) and the other seven intrinsic networks relevant to attention, visual-spatial, executive and motor functions in PD with or without FOG. Forty-three idiopathic PD patients (21 with FOG [FOG+] versus 22 without FOG [FOG-]) and 18 healthy controls (HC) were recruited in this study. The data-driven independent component analysis (ICA) method was used to extract and analyze the above-mentioned resting-state networks (RSNs). Compared with FOG-, FOG+ displayed decreased positive connectivity between the DAN and medial visual network (mVN) and sensory-motor network (SMN) and increased negative connectivity between the DAN and default mode network (DMN). The within-network connectivity in the SMN and visual networks were decreased, whereas the connectivity within DMN was increased significantly in FOG+. Correlation analysis showed that the clock drawing test (CDT) scores were positively correlated with the functional connectivity of mVN (r = 0.573, p = 0.008) and lateral visual network (lVN) (r = 0.510, p = 0.022), the Timed Up and Go Test (TUG) duration were negatively correlated with the connectivity of SMN (r = -0.629, p = 0.003), and the Frontal Assessment Battery (FAB) scores were negatively correlated with the connectivity of DMN in FOG+. Functional connectivity was changed in multiple intra-networks in patients with FOG. Inordinate inter-network connectivity between the DAN and other intrinsic networks may partly contribute to the mechanism of freezing.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Brain Mapping , Gait , Gait Disorders, Neurologic/etiology , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Postural Balance , Time and Motion Studies
19.
Hum Brain Mapp ; 42(14): 4580-4596, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34219304

ABSTRACT

The importance of (inherited) genetic impact in reading development is well established. De novo mutation is another important contributor that is recently gathering interest as a major liability of neurodevelopmental disorders, but has been neglected in reading research to date. Paternal age at childbirth (PatAGE) is known as the most prominent risk factor for de novo mutation, which has been repeatedly shown by molecular genetic studies. As one of the first efforts, we performed a preliminary investigation of the relationship between PatAGE, offspring's reading, and brain structure in a longitudinal neuroimaging study following 51 children from kindergarten through third grade. The results showed that greater PatAGE was significantly associated with worse reading, explaining an additional 9.5% of the variance after controlling for a number of confounds-including familial factors and cognitive-linguistic reading precursors. Moreover, this effect was mediated by volumetric maturation of the left posterior thalamus from ages 5 to 8. Complementary analyses indicated the PatAGE-related thalamic region was most likely located in the pulvinar nuclei and related to the dorsal attention network by using brain atlases, public datasets, and offspring's diffusion imaging data. Altogether, these findings provide novel insights into neurocognitive mechanisms underlying the PatAGE effect on reading acquisition during its earliest phase and suggest promising areas of future research.


Subject(s)
Dyslexia , Nerve Net , Paternal Age , Reading , Thalamus , Child , Child, Preschool , Cross-Sectional Studies , Dyslexia/diagnostic imaging , Dyslexia/etiology , Dyslexia/pathology , Dyslexia/physiopathology , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Nerve Net/anatomy & histology , Nerve Net/diagnostic imaging , Nerve Net/growth & development , Pulvinar/anatomy & histology , Pulvinar/diagnostic imaging , Pulvinar/growth & development , Thalamus/anatomy & histology , Thalamus/diagnostic imaging , Thalamus/growth & development
20.
Hum Brain Mapp ; 42(6): 1699-1713, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33347695

ABSTRACT

Detection of unexpected, yet relevant events is essential in daily life. fMRI studies have revealed the involvement of the ventral attention network (VAN), including the temporo-parietal junction (TPJ), in such process. In this MEG study with 34 participants (17 women), we used a bimodal (visual/auditory) attention task to determine the neuronal dynamics associated with suppression of the activity of the VAN during top-down attention and its recruitment when information from the unattended sensory modality is involuntarily integrated. We observed an anticipatory power increase of alpha/beta oscillations (12-20 Hz, previously associated with functional inhibition) in the VAN following a cue indicating the modality to attend. Stronger VAN power increases were associated with better task performance, suggesting that the VAN suppression prevents shifting attention to distractors. Moreover, the TPJ was synchronized with the frontal eye field in that frequency band, indicating that the dorsal attention network (DAN) might participate in such suppression. Furthermore, we found a 12-20 Hz power decrease and enhanced synchronization, in both the VAN and DAN, when information between sensory modalities was congruent, suggesting an involvement of these networks when attention is involuntarily enhanced due to multisensory integration. Our results show that effective multimodal attentional allocation includes the modulation of the VAN and DAN through upper-alpha/beta oscillations. Altogether these results indicate that the suppressing role of alpha/beta oscillations might operate beyond sensory regions.


Subject(s)
Attention/physiology , Brain Mapping , Brain Waves/physiology , Cerebral Cortex/physiology , Magnetoencephalography , Nerve Net/physiology , Pattern Recognition, Visual/physiology , Speech Perception/physiology , Adult , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL