Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell ; 174(6): 1507-1521.e16, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100183

ABSTRACT

The hetero-oligomeric chaperonin of eukarya, TRiC, is required to fold the cytoskeletal protein actin. The simpler bacterial chaperonin system, GroEL/GroES, is unable to mediate actin folding. Here, we use spectroscopic and structural techniques to determine how TRiC promotes the conformational progression of actin to the native state. We find that actin fails to fold spontaneously even in the absence of aggregation but populates a kinetically trapped, conformationally dynamic state. Binding of this frustrated intermediate to TRiC specifies an extended topology of actin with native-like secondary structure. In contrast, GroEL stabilizes bound actin in an unfolded state. ATP binding to TRiC effects an asymmetric conformational change in the chaperonin ring. This step induces the partial release of actin, priming it for folding upon complete release into the chaperonin cavity, mediated by ATP hydrolysis. Our results reveal how the unique features of TRiC direct the folding pathway of an obligate eukaryotic substrate.


Subject(s)
Actins/metabolism , Chaperonin 10/metabolism , Chaperonin 60/metabolism , Actins/chemistry , Adenosine Triphosphate/metabolism , Animals , Cattle , Chaperonin 10/chemistry , Chaperonin 60/chemistry , Cryoelectron Microscopy , Deoxyribonuclease I/chemistry , Deoxyribonuclease I/metabolism , Deuterium Exchange Measurement , Humans , Protein Binding , Protein Folding , Protein Structure, Tertiary
2.
Cell ; 172(3): 605-617.e11, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29336887

ABSTRACT

The bacterial chaperonin GroEL and its cofactor, GroES, form a nano-cage for a single molecule of substrate protein (SP) to fold in isolation. GroEL and GroES undergo an ATP-regulated interaction cycle to close and open the folding cage. GroEL consists of two heptameric rings stacked back to back. Here, we show that GroEL undergoes transient ring separation, resulting in ring exchange between complexes. Ring separation occurs upon ATP-binding to the trans ring of the asymmetric GroEL:7ADP:GroES complex in the presence or absence of SP and is a consequence of inter-ring negative allostery. We find that a GroEL mutant unable to perform ring separation is folding active but populates symmetric GroEL:GroES2 complexes, where both GroEL rings function simultaneously rather than sequentially. As a consequence, SP binding and release from the folding chamber is inefficient, and E. coli growth is impaired. We suggest that transient ring separation is an integral part of the chaperonin mechanism.


Subject(s)
Chaperonin 60/metabolism , Adenosine Triphosphate/metabolism , Animals , Chaperonin 10/metabolism , Chaperonin 60/chemistry , Chaperonin 60/genetics , Mutation , Protein Binding
3.
Proc Natl Acad Sci U S A ; 117(44): 27124-27131, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33087563

ABSTRACT

Liquid-liquid phase separation, driven by multivalent macromolecular interactions, causes formation of membraneless compartments, which are biomolecular condensates containing concentrated macromolecules. These condensates are essential in diverse cellular processes. Formation and dynamics of micrometer-scale phase-separated condensates are examined routinely. However, limited by commonly used methods which cannot capture small-sized free-diffusing condensates, the transition process from miscible individual molecules to micrometer-scale condensates is mostly unknown. Herein, with a dual-color fluorescence cross-correlation spectroscopy (dcFCCS) method, we captured formation of nanoscale condensates beyond the detection limit of conventional fluorescence microscopy. In addition, dcFCCS is able to quantify size and growth rate of condensates as well as molecular stoichiometry and binding affinity of client molecules within condensates. The critical concentration to form nanoscale condensates, identified by our experimental measurements and Monte Carlo simulations, is at least several fold lower than the detection limit of conventional fluorescence microscopy. Our results emphasize that, in addition to micrometer-scale condensates, nanoscale condensates are likely to play important roles in various cellular processes and dcFCCS is a simple and powerful quantitative tool to examine them in detail.

4.
Int J Mol Sci ; 22(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208525

ABSTRACT

Ribonucleic acid (RNA) plays an important role in many cellular processes. Thus, visualizing and quantifying the molecular dynamics of RNA directly in living cells is essential to uncovering their role in RNA metabolism. Among the wide variety of fluorescent probes available for RNA visualization, exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probes are useful because of their low fluorescence background. In this study, we apply fluorescence correlation methods to ECHO probes targeting the poly(A) tail of mRNA. In this way, we demonstrate not only the visualization but also the quantification of the interaction between the probe and the target, as well as of the change in the fluorescence brightness and the diffusion coefficient caused by the binding. In particular, the uptake of ECHO probes to detect mRNA is demonstrated in HeLa cells. These results are expected to provide new insights that help us better understand the metabolism of intracellular mRNA.


Subject(s)
Fluorescent Dyes , Nucleic Acid Hybridization/methods , Oligonucleotide Probes , Poly A , RNA, Messenger/genetics , HeLa Cells , Humans , Sensitivity and Specificity , Spectrometry, Fluorescence
5.
Methods Mol Biol ; 2551: 379-394, 2023.
Article in English | MEDLINE | ID: mdl-36310216

ABSTRACT

Amyloid protein aggregation is widely involved in a number of neurodegenerative diseases for which novel therapeutic and diagnostic strategies are still needed. Owing to the complex and heterogeneous nature of the aggregated species responsible for toxicity in these disorders, a detailed characterization of the interaction of molecules of interest with the amyloid aggregates is a challenging endeavor. Here, we present the experimental and analytical steps of a protocol which combines dual-color fluorescence cross-correlation spectroscopy and dual-color single-particle fluorescence spectroscopy to quantify the binding affinity and stoichiometry of an inhibitor of α-synuclein amyloid aggregation. This approach allows studying the interaction in detail and through two independent analytical methods, thus yielding a remarkably robust tool that could be extended to investigating the interaction of molecules of interest to other pathogenic protein aggregates as well as multi-ligand/multi-receptor complexes.


Subject(s)
Neurodegenerative Diseases , Protein Aggregates , Humans , Spectrometry, Fluorescence , alpha-Synuclein/metabolism , Amyloid/chemistry , Single Molecule Imaging , Neurodegenerative Diseases/metabolism
6.
Biophys Rep ; 8(1): 29-41, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-37287688

ABSTRACT

Liquid-liquid phase separation (LLPS) causes the formation of membraneless condensates, which play important roles in diverse cellular processes. Currently, optical microscopy is the most commonly used method to visualize micron-scale phase-separated condensates. Because the optical spatial resolution is restricted by the diffraction limit (~200 nm), dynamic formation processes from individual biomolecules to micron-scale condensates are still mostly unknown. Herein, we provide a detailed protocol applying dual-color fluorescence cross-correlation spectroscopy (dcFCCS) to detect and quantify condensates at the nanoscale, including their size, growth rate, molecular stoichiometry, and the binding affinity of client molecules within condensates. We expect that the quantitative dcFCCS method can be widely applied to investigate many other important phase separation systems.

7.
Biophys Chem ; 184: 37-43, 2013 Dec 31.
Article in English | MEDLINE | ID: mdl-24050929

ABSTRACT

Proteoliposomes represent nanoscale assemblies of indispensable value for studying membrane proteins in general and membrane transporters in particular. Since no universal protocol exists, conditions for proteoliposome formation must be determined on a case-by-case basis. This process will be significantly expedited if the size and composition of the assemblies can be analyzed in a single step using only microliters of sample. Here we show that dual-color fluorescence cross-correlation spectroscopy (FCCS) is of great value for optimizing the reconstitution process, because it distinguishes micelles, liposomes and aggregates in heterogeneous mixtures and permits direct monitoring of the co-localization of proteins and lipids in the diffusing assemblies. As proof-of-principle, liposomes containing the functional multidrug resistance transporter NorA from Staphylococcus aureus were prepared, demonstrating that FCCS is an excellent tool to guide the development of reconstitution protocols.


Subject(s)
Bacterial Proteins/chemistry , Color , Liposomes/chemistry , Multidrug Resistance-Associated Proteins/chemistry , Bacterial Proteins/genetics , Green Fluorescent Proteins/chemistry , Multidrug Resistance-Associated Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL