Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Publication year range
1.
Annu Rev Cell Dev Biol ; 30: 255-89, 2014.
Article in English | MEDLINE | ID: mdl-25288114

ABSTRACT

In the 1980s, exosomes were described as vesicles of endosomal origin secreted from reticulocytes. Interest increased around these extracellular vesicles, as they appeared to participate in several cellular processes. Exosomes bear proteins, lipids, and RNAs, mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions. Only recently, scientists acknowledged the difficulty of separating exosomes from other types of extracellular vesicles, which precludes a clear attribution of a particular function to the different types of secreted vesicles. To shed light into this complex but expanding field of science, this review focuses on the definition of exosomes and other secreted extracellular vesicles. Their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.


Subject(s)
Cell Communication/physiology , Cell-Derived Microparticles/physiology , Transport Vesicles/physiology , Animals , B-Lymphocytes/metabolism , Biological Transport , Centrifugation, Density Gradient , Cytological Techniques , Endosomes/physiology , Endosomes/ultrastructure , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Exosomes/physiology , Extracellular Fluid/metabolism , Humans , Membrane Fusion , Membrane Lipids/physiology , Membrane Proteins/physiology , MicroRNAs/metabolism , Neoplasms/metabolism , Prokaryotic Cells/metabolism , Prokaryotic Cells/ultrastructure , RNA, Messenger/metabolism , Reticulocytes/metabolism , SNARE Proteins/physiology , rab GTP-Binding Proteins/physiology
2.
Annu Rev Physiol ; 84: 631-654, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34724435

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a complex, heterogeneous, smoking-related disease of significant global impact. The complex biology of COPD is ultimately driven by a few interrelated processes, including proteolytic tissue remodeling, innate immune inflammation, derangements of the host-pathogen response, aberrant cellular phenotype switching, and cellular senescence, among others. Each of these processes are engendered and perpetuated by cells modulating their environment or each other. Extracellular vesicles (EVs) are powerful effectors that allow cells to perform a diverse array of functions on both adjacent and distant tissues, and their pleiotropic nature is only beginning to be appreciated. As such, EVs are candidates to play major roles in these fundamental mechanisms of disease behind COPD. Furthermore, some such roles for EVs are already established, and EVs are implicated in significant aspects of COPD pathogenesis. Here, we discuss known and potential ways that EVs modulate the environment of their originating cells to contribute to the processes that underlie COPD.


Subject(s)
Exosomes , Extracellular Vesicles , Pulmonary Disease, Chronic Obstructive , Cellular Senescence , Humans , Inflammation
3.
Proc Natl Acad Sci U S A ; 119(31): e2206098119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35878031

ABSTRACT

Cilia are sensory and secretory organelles that both receive information from the environment and transmit signals. Cilia-derived vesicles (ectosomes), formed by outward budding of the ciliary membrane, carry enzymes and other bioactive products; this process represents an ancient mode of regulated secretion. Peptidergic intercellular communication controls a wide range of physiological and behavioral responses and occurs throughout eukaryotes. The Chlamydomonas reinhardtii genome encodes what appear to be numerous prepropeptides and enzymes homologous to those used to convert metazoan prepropeptides into bioactive peptide products. Since C. reinhardtii, a green alga, lack the dense core vesicles in which metazoan peptides are processed and stored, we explored the hypothesis that propeptide processing and secretion occur through the regulated release of ciliary ectosomes. A synthetic peptide (GATI-amide) that could be generated from a 91-kDa peptide precursor (proGATI) serves as a chemotactic modulator, attracting minus gametes while repelling plus gametes. Here we dissect the processing pathway that leads to formation of an amidated peptidergic sexual signal specifically on the ciliary ectosomes of plus gametes. Unlike metazoan propeptides, modeling studies identified stable domains in proGATI. Mass spectrometric analysis of a potential prohormone convertase and the amidated proGATI-derived products found in cilia and mating ectosomes link endoproteolytic cleavage to ectosome entry. Extensive posttranslational modification of proGATI confers stability to its amidated product. Analysis of this pathway affords insight into the evolution of peptidergic signaling; this will facilitate studies of the secretory functions of metazoan cilia.


Subject(s)
Cell-Derived Microparticles , Chlamydomonas reinhardtii , Cilia , Peptides , Animals , Cell Communication , Cell-Derived Microparticles/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Cilia/metabolism , Peptides/metabolism
4.
J Cell Sci ; 135(19)2022 10 01.
Article in English | MEDLINE | ID: mdl-36222105

ABSTRACT

Cilia sense and transduce sensory stimuli, homeostatic cues and developmental signals by orchestrating signaling reactions. Extracellular vesicles (EVs) that bud from the ciliary membrane have well-studied roles in the disposal of excess ciliary material, most dramatically exemplified by the shedding of micrometer-sized blocks by photoreceptors. Shedding of EVs by cilia also affords cells with a powerful means to shorten cilia. Finally, cilium-derived EVs may enable cell-cell communication in a variety of organisms, ranging from single-cell parasites and algae to nematodes and vertebrates. Mechanistic understanding of EV shedding by cilia is an active area of study, and future progress may open the door to testing the function of ciliary EV shedding in physiological contexts. In this Cell Science at a Glance and the accompanying poster, we discuss the molecular mechanisms that drive the shedding of ciliary material into the extracellular space, the consequences of shedding for the donor cell and the possible roles that ciliary EVs may have in cell non-autonomous contexts.


Subject(s)
Cilia , Extracellular Vesicles , Animals , Cell Communication , Cilia/physiology , Cytoplasmic Vesicles , Signal Transduction
5.
Immunol Invest ; 53(1): 10-25, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38348776

ABSTRACT

Extracellular vesicles (EVs) are membrane-bound structures released by cells and have become significant players in immune system functioning, primarily by facilitating cell-to-cell communication. Immune cells like neutrophils and dendritic cells release EVs containing bioactive molecules that modulate chemotaxis, activate immune cells, and induce inflammation. EVs also contribute to antigen presentation, lymphocyte activation, and immune tolerance. Moreover, EVs play pivotal roles in antimicrobial host defense. They deliver microbial antigens to antigen-presenting cells (APCs), triggering immune responses, or act as decoys to neutralize virulence factors and toxins. This review discusses host and microbial EVs' multifaceted roles in innate and adaptive immunity, highlighting their involvement in immune cell development, antigen presentation, and antimicrobial responses.


Subject(s)
Anti-Infective Agents , Exosomes , Extracellular Vesicles , Antigen-Presenting Cells , Adaptive Immunity , Antigen Presentation
6.
Mol Ther ; 31(5): 1225-1230, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36698310

ABSTRACT

Extracellular vesicles (EVs) are esteemed as a promising delivery vehicle for various genetic therapeutics. They are relatively inert, non-immunogenic, biodegradable, and biocompatible. At least in rodents, they can even transit challenging bodily hurdles such as the blood-brain barrier. Constitutively shed by all cells and with the potential to interact specifically with neighboring and distant targets, EVs can be engineered to carry and deliver therapeutic molecules such as proteins and RNAs. EVs are thus emerging as an elegant in vivo gene therapy vector. Deeper understanding of basic EV biology-including cellular production, EV loading, systemic distribution, and cell delivery-is still needed for effective harnessing of these endogenous cellular nanoparticles as next-generation nanodelivery tools. However, even a perfect EV product will be challenging to produce at clinical scale. In this regard, we propose that vector transduction technologies can be used to convert cells either ex vivo or directly in vivo into EV factories for stable, safe modulation of gene expression and function. Here, we extrapolate from the current EV state of the art to a bright potential future using EVs to treat genetic diseases that are refractory to current therapeutics.


Subject(s)
Extracellular Vesicles , Nanoparticles , Extracellular Vesicles/metabolism , RNA/metabolism , Proteins/metabolism , Genetic Therapy
7.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000479

ABSTRACT

It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings.


Subject(s)
Biomarkers , Central Nervous System Diseases , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/therapy , Central Nervous System Diseases/diagnosis , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/diagnosis
8.
Int J Mol Sci ; 25(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39273424

ABSTRACT

Communication between natural killer cells (NK cells) and monocytes/macrophages may play an important role in immunomodulation and regulation of inflammatory processes. The aim of this research was to investigate the impact of NK cell-derived large extracellular vesicles on monocyte function because this field is understudied. We studied how NK-cell derived large extracellular vesicles impact on THP-1 cells characteristics after coculturing: phenotype, functions were observed with flow cytometry. In this study, we demonstrated the ability of large extracellular vesicles produced by NK cells to integrate into the membranes of THP-1 cells and influence the viability, phenotype, and functional characteristics of the cells. The results obtained demonstrate the ability of large extracellular vesicles to act as an additional component in the immunomodulatory activity of NK cells in relation to monocytes.


Subject(s)
Extracellular Vesicles , Killer Cells, Natural , Monocytes , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Monocytes/immunology , Monocytes/metabolism , Monocytes/cytology , THP-1 Cells , Coculture Techniques , Cell Communication/immunology , Cell Survival , Macrophages/immunology , Macrophages/metabolism
9.
J Infect Dis ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38079216

ABSTRACT

INTRODUCTION: Brain tissue-derived extracellular vesicles (bdEVs) act locally in the central nervous system (CNS) and may indicate molecular mechanisms in HIV CNS pathology. Using brain homogenate (BH) and bdEVs from a simian immunodeficiency virus (SIV) model of HIV disease, we identified RNA networks in SIV infection and neuroinflammation. METHODS: Postmortem occipital cortex samples were obtained from uninfected controls and SIV-infected subjects (acute and chronic phases with or without CNS pathology (SIV encephalitis). bdEVs were separated and characterized per international consensus guidelines. RNAs from bdEVs and BH were sequenced and qPCR-amplified to detect levels of small RNAs (sRNAs, including microRNAs (miRNAs)) and longer RNAs including messenger RNAs (mRNAs) and circular RNAs (circRNAs). RESULTS: Dysregulated RNAs in BH and bdEVs were identified in acute and chronic infection with pathology groups, including mRNAs, miRNAs, and circRNAs. Most dysregulated mRNAs in bdEVs reflected dysregulation in source BH. These mRNAs are disproportionately involved in inflammation and immune responses. Based on target prediction, several circRNAs that were differentially abundant in source tissue might be responsible for specific differences in sRNA levels in bdEVs during SIV infection. CONCLUSIONS: RNA profiling of bdEVs and source tissues reveals potential regulatory networks in SIV infection and SIV-related CNS pathology.

10.
Semin Cancer Biol ; 87: 196-213, 2022 12.
Article in English | MEDLINE | ID: mdl-36371024

ABSTRACT

Cancer progression impacts and exploits the vascular system in several highly consequential ways. Among different types of vascular cells, blood cells and mediators that are engaged in these processes, endothelial cells are at the centre of the underlying circuitry, as crucial constituents of angiogenesis, angiocrine stimulation, non-angiogenic vascular growth, interactions with the coagulation system and other responses. Tumour-vascular interactions involve soluble factors, extracellular matrix molecules, cell-cell contacts, as well as extracellular vesicles (EVs) carrying assemblies of molecular effectors. Oncogenic mutations and transforming changes in the cancer cell genome, epigenome and signalling circuitry exert important and often cancer-specific influences upon pathways of tumour-vascular interactions, including the biogenesis, content, and biological activity of EVs and responses of cancer cells to them. Notably, EVs may carry and transfer bioactive, oncogenic macromolecules (oncoproteins, RNA, DNA) between tumour and vascular cells and thereby elicit unique functional changes and forms of vascular growth and remodeling. Cancer EVs influence the state of the vasculature both locally and systemically, as exemplified by cancer-associated thrombosis. EV-mediated communication pathways represent attractive targets for therapies aiming at modulation of the tumour-vascular interface (beyond angiogenesis) and could also be exploited for diagnostic purposes in cancer.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Endothelial Cells , Extracellular Vesicles/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Oncogenes , Neovascularization, Pathologic/metabolism
11.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108446

ABSTRACT

Extracellular vesicles (EVs) are membrane vesicles released into the extracellular milieu by cells of various origins. They contain different biological cargoes, protecting them from degradation by environmental factors. There is an opinion that EVs have a number of advantages over synthetic carriers, creating new opportunities for drug delivery. In this review, we discuss the ability of EVs to function as carriers for therapeutic nucleic acids (tNAs), challenges associated with the use of such carriers in vivo, and various strategies for tNA loading into EVs.


Subject(s)
Exosomes , Extracellular Vesicles , Extracellular Vesicles/metabolism , Drug Delivery Systems , Cell Communication , Exosomes/metabolism
12.
Biochem Biophys Res Commun ; 622: 30-36, 2022 09 24.
Article in English | MEDLINE | ID: mdl-35843091

ABSTRACT

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) with the Bi3+ liquid metal ion gun was used to investigate the content of lipids and amino acids (AAs) in extracellular vesicles (EVs). We induced metabolic changes in human pancreatic ß-cells by stimulation with high glucose concentrations (35 mM) and tested the hypothesis of hyperglycemia (HG) has a detrimental effect on lipids and AAs in released EV subpopulations: ectosomes and exosomes. As a result of HG treatment, selected fatty acids (FAs) such as arachidonic, myristic and palmitic acids, changed their abundance in ectosomes and exosomes. Also, intensities of the characteristic peaks for cholesterol (m/z 95.09; 147.07; 161.11; 369.45) along with the molecular ion m/z 386.37 [C27H46O+] under HG conditions, both for ectosomes and exosomes, have changed significantly. Comparative analysis of HG EVs and normoglycemic (NG) ones showed statistically significant differences in the signal intensities of four AAs: valine (m/z 72.08 and 83.05), isoleucine (m/z 86.10), phenylalanine (m/z 120.08 and 132.05) and tyrosine (m/z 107.05 and 136.09). We confirmed that ToF-SIMS is a useful technique to study selected AAs and lipid profiles in various EV subpopulations. Our study is the first demonstration of changes in FAs and AAs in exosomes and ectosomes derived from ß-cells under the influence of HG.


Subject(s)
Cell-Derived Microparticles , Extracellular Vesicles , Hyperglycemia , Amino Acids , Fatty Acids , Humans , Spectrometry, Mass, Secondary Ion/methods
13.
Subcell Biochem ; 97: 3-18, 2021.
Article in English | MEDLINE | ID: mdl-33779911

ABSTRACT

Since the discovery that extracellular vesicles (EVs) mediate intercellular communication, there is an exponential increase in the interest on EVs, especially in pathological settings. EVs are membranous vesicles that are secreted by various cell types and the release of EVs is conserved in every prokaryotic and eukaryotic organism tested to date. These vesicles were initially thought to be garbage disposal vehicles and subsequent studies over the past 4 decades have attributed several functional roles to EVs, some of which are critical for homeostasis. The molecular cargo of nucleic acids, proteins, lipids and metabolites packaged in EVs often mirror the host cells phenotypic status. EVs can be taken up by recipient cells and upon uptake, EVs through its molecular cargo, can induce a cascade of signal transduction events in recipient cells. EVs are categorised into several subtypes depending on their biogenesis and secretion. Due to several subtypes, differing sizes within a subtype and varying cargo, EVs are heterogenous in nature and the biophysical and biochemical properties of EVs often overlap between EV subtypes. Hence, it is important to be cautious when selecting the method of EV isolation and characterisation. This chapter provides a brief introduction to EVs and their subtypes.


Subject(s)
Extracellular Vesicles , Biological Transport , Extracellular Vesicles/metabolism , Lipids , Proteins/metabolism , Signal Transduction
14.
Int J Mol Sci ; 23(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36430846

ABSTRACT

Bladder cancer is a malignancy that remains a therapeutic challenge and requires the identification of new biomarkers and mechanisms of progression. Several studies showed that extracellular vesicles promote angiogenesis, migration and metastasis, and inhibit apoptosis in bladder cancer. This effect may depend on their glycosylation status. Thus, the aim of this study was to compare glycosylation profiles of T-24 urothelial bladder cancer cells, HCV-29 normal ureter epithelial cells, and ectosomes released by both cell lines using lectin blotting and flow cytometry. Ectosomes displayed distinct total and surface glycosylation profiles with abundance of ß-1,6-branched glycans and sialilated structures. Then, it was investigated whether the glycosylation status of the T-24 and HCV-29 cells is responsible for the effect exerted by ectosomes on the proliferation and migration of recipient cells. Stronger proproliferative and promigratory activity of T-24-derived ectosomes was observed in comparison to ectosomes from HCV-29 cells. When ectosomes were isolated from DMJ-treated cells, the aforementioned effects were diminished, suggesting that glycans carried by ectosomes were involved in modulation of recipient cell function. HCV-29- and T-24-derived ectosomes also increased the viability and motility of endothelial HUVEC cells and Hs27 fibroblasts. This supports the hypothesis that ectosomes can modulate the function of various cells present in the tumor microenvironment.


Subject(s)
Cell-Derived Microparticles , Hepatitis C , Urinary Bladder Neoplasms , Humans , Cell-Derived Microparticles/metabolism , Urinary Bladder Neoplasms/metabolism , Lectins/metabolism , Epithelial Cells , Polysaccharides/metabolism , Hepatitis C/metabolism , Tumor Microenvironment
15.
Int J Mol Sci ; 23(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35806411

ABSTRACT

Extracellular vesicles (EV) derived from stem cells have become an effective complement to the use in cell therapy of stem cells themselves, which has led to an explosion of research into the mechanisms of vesicle formation and their action. There is evidence demonstrating the presence of mitochondrial components in EV, but a definitive conclusion about whether EV contains fully functional mitochondria has not yet been made. In this study, two EV fractions derived from mesenchymal stromal stem cells (MSC) and separated by their size were examined. Flow cytometry revealed the presence of mitochondrial lipid components capable of interacting with mitochondrial dyes MitoTracker Green and 10-nonylacridine orange; however, the EV response to the probe for mitochondrial membrane potential was negative. Detailed analysis revealed components from all mitochondria compartments, including house-keeping mitochondria proteins and DNA as well as energy-related proteins such as membrane-localized proteins of complexes I, IV, and V, and soluble proteins from the Krebs cycle. When assessing the functional activity of mitochondria, high variability in oxygen consumption was noted, which was only partially attributed to mitochondrial respiratory activity. Our findings demonstrate that the EV contain all parts of mitochondria; however, their independent functionality inside EV has not been confirmed, which may be due either to the absence of necessary cofactors and/or the EV formation process and, probably the methodology of obtaining EV.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Extracellular Vesicles/metabolism , Flow Cytometry , Mesenchymal Stem Cells/metabolism , Mitochondria
16.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202855

ABSTRACT

Protein content of extracellular vesicles (EVs) can modulate different processes during carcinogenesis. Novel proteomic strategies have been applied several times to profile proteins present in exosomes released by urothelial bladder cancer (UBC) cells. However, similar studies have not been conducted so far on another population of EVs, i.e., ectosomes. In the present study we used a shotgun nanoLC-MS/MS proteomic approach to investigate the protein content of ectosomes released in vitro by T-24 UBC cells and HCV-29 normal ureter epithelial cells. In addition, cancer-promoting effects exerted by UBC-derived ectosomes on non-invasive cells in terms of cell proliferation and migratory properties were assessed. In total, 1158 proteins were identified in T-24-derived ectosomes, while HCV-29-derived ectosomes contained a lower number of 259 identified proteins. Qualitative analysis revealed 938 proteins present uniquely in T-24-derived ectosomes, suggesting their potential applications in bladder cancer management as diagnostic and prognostic biomarkers. In addition, T-24-derived ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of the identified cancer-promoting molecules. The present study provided a focused identification of biologically relevant proteins in UBC-derived ectosomes, confirming their role in UBC development and progression, and their applicability for further biomarker-oriented studies in preclinical or clinical settings.


Subject(s)
Exosomes/metabolism , Proteome , Proteomics , Urinary Bladder Neoplasms/metabolism , Biomarkers, Tumor , Carcinoma, Transitional Cell/metabolism , Case-Control Studies , Cell Line, Tumor , Cell-Derived Microparticles/metabolism , Chromatography, Liquid , Computational Biology/methods , Disease Progression , Extracellular Vesicles/metabolism , Humans , Proteomics/methods , Tandem Mass Spectrometry
17.
Int J Mol Sci ; 22(3)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572657

ABSTRACT

Extracellular vesicles (EVs), such as exosomes, are newly recognized fundamental, universally produced natural nanoparticles of life that are seemingly involved in all biologic processes and clinical diseases. Due to their universal involvements, understanding the nature and also the potential therapeutic uses of these nanovesicles requires innovative experimental approaches in virtually every field. Of the EV group, exosome nanovesicles and larger companion micro vesicles can mediate completely new biologic and clinical processes dependent on the intercellular transfer of proteins and most importantly selected RNAs, particularly miRNAs between donor and targeted cells to elicit epigenetic alterations inducing functional cellular changes. These recipient acceptor cells are nearby (paracrine transfers) or far away after distribution via the circulation (endocrine transfers). The major properties of such vesicles seem to have been conserved over eons, suggesting that they may have ancient evolutionary origins arising perhaps even before cells in the primordial soup from which life evolved. Their potential ancient evolutionary attributes may be responsible for the ability of some modern-day exosomes to withstand unusually harsh conditions, perhaps due to unique membrane lipid compositions. This is exemplified by ability of the maternal milk exosomes to survive passing the neonatal acid/enzyme rich stomach. It is postulated that this resistance also applies to their durable presence in phagolysosomes, thus suggesting a unique intracellular release of their contained miRNAs. A major discussed issue is the generally poorly realized superiority of these naturally evolved nanovesicles for therapies when compared to human-engineered artificial nanoparticles, e.g., for the treatment of diseases like cancers.


Subject(s)
Cell- and Tissue-Based Therapy , Exosomes/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/genetics , Neoplasms/therapy , Humans , Nanoparticles/therapeutic use
18.
Semin Cancer Biol ; 59: 251-265, 2019 12.
Article in English | MEDLINE | ID: mdl-31386906

ABSTRACT

Melanoma cells produce a variety of extracellular vesicle (EV) types including shedding vesicles and exosomes (EXOs). These EVs are defined by their mechanism of cellular production. To date, the majority of EV investigations has centered around melanoma EXOs or small EVs (sEVs). Natural melanoma sEVs mediate pro-tumor processes including angiogenesis, immune regulation and modification of tissue microenvironments. A thorough examination of these processes reveals that they are interdependent. They work in concert to support tumor growth and survival. Pro-tumor functions attributed to melanoma cells are reproduced by melanoma sEVs. This ensures a certain degree of redundancy within the melanoma pathogenic process. It also allows for rapid adaptation of melanoma cells to changing microenvironments, anti-tumor immune responses, and therapeutic challenges. Further, as a result of their composition and inherent ability to engage the immune system, natural melanoma EVs possess excellent biomarker potential and might be used therapeutically as tumor vaccines.


Subject(s)
Extracellular Vesicles/metabolism , Melanoma/metabolism , Animals , Biomarkers , Blood Coagulation , Cell-Derived Microparticles/metabolism , Cell-Free Nucleic Acids , Chemical Fractionation , Exosomes/metabolism , Humans , Immunomodulation , Melanoma/etiology , Melanoma/pathology , Neovascularization, Pathologic/metabolism , Tumor Microenvironment
19.
Tohoku J Exp Med ; 251(4): 313-326, 2020 08.
Article in English | MEDLINE | ID: mdl-32779621

ABSTRACT

The lungs are the organs that work for gas exchange. The basic structure of the lungs is an alveolus, which consists of various types of parenchymal cells and bone marrow-derived cells. Therefore, because the lungs consist of various types of cells with various functions, communication among the different types of the cells should play important roles for the homeostasis and response to disease pathogens. In the past decades, researchers have focused on cytokines or adhesion molecules to reveal the intercellular communication for understanding the homeostasis and pathogenesis in the lungs. Recent investigations have revealed that an extracellular vesicle can move among cells for transferring substances including microRNAs in the vesicles as an intercellular messenger. MicroRNAs and extracellular vesicles are therefore attracting increasing attention from both translational and clinical researchers because these emerging intercellular communication tools seem to be useful for further understanding of the disease pathogenesis as well as the biomarkers for diagnosis and prognosis of the diseases including cancer and inflammatory diseases. This review article is an attempt to review studies about microRNAs and extracellular vesicles in terms of their roles in normal conditions and refractory diseases of the lungs such as idiopathic pulmonary fibrosis and acute respiratory distress syndrome including our recent study about pulmonary microvascular endothelial microparticles particles as the biomarker for diagnosis and prognosis of acute respiratory distress syndrome. This review also addresses the possibility of microRNAs and extracellular vesicles as new clinical tools for the diagnosis or treatment for these refractory respiratory diseases.


Subject(s)
Extracellular Vesicles/metabolism , Idiopathic Pulmonary Fibrosis/genetics , MicroRNAs/genetics , Respiratory Distress Syndrome/genetics , Cell-Derived Microparticles/pathology , Endothelial Cells/metabolism , Humans , MicroRNAs/metabolism
20.
Parasitol Res ; 119(7): 2005-2023, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32394001

ABSTRACT

The focus of this review is a group of structures/organelles collectively known as extracellular vesicles (EVs) that are secreted by most, if not all, cells, varying from mammalian cells to protozoa and even bacteria. They vary in size: some are small (100-200 nm) and others are larger (> 200 nm). In protozoa, however, most of them are small or medium in size (200-400 nm). These include vesicles from different origins. We briefly review the biogenesis of this distinct group that includes (a) exosome, which originates from the multivesicular bodies, an important component of the endocytic pathway; (b) ectosome, formed from a budding process that takes place in the plasma membrane of the cells; (c) vesicles released from the cell surface following a process of patching and capping of ligand/receptor complexes; (d) other processes where tubules secreted by the parasite subsequently originate exosome-like structures. Here, special emphasis is given to EVs secreted by parasitic protozoa such as Leishmania, Trypanosoma, Plasmodium, Toxoplasma, Cryptosporidium, Trichomonas, and Giardia. Most of them have been characterized as exosomes that were isolated using several approaches and characterized by electron microscopy, proteomic analysis, and RNA sequencing. The results obtained show clearly that they present several proteins and different types of RNAs. From the functional point of view, it is now clear that the secreted exosomes can be incorporated by the parasite itself as well as by mammalian cells with which they interact. As a consequence, there is interference both with the parasite (induction of differentiation, changes in infectivity, etc.) and with the host cell. Therefore, the EVs constitute a new system of transference of signals among cells. On the other hand, there are suggestions that exosomes may constitute potential biotechnology tools and are important players of what has been designated as nanobiotechnology. They may constitute an important delivery system for gene therapy and molecular-displaying cell regulation capabilities when incorporated into other cells and even by interfering with the exosomal membrane during its biogenesis, targeting the vesicles via specific ligands to different cell types. These vesicles may reach the bloodstream, overflow through intercellular junctions, and even pass through the central nervous system blood barrier. There is evidence that it is possible to interfere with the composition of the exosomes by interfering with multivesicular body biogenesis.


Subject(s)
Cell Membrane/metabolism , Eukaryota/metabolism , Extracellular Vesicles/metabolism , Host-Parasite Interactions/physiology , Protozoan Proteins/metabolism , Animals , Biological Transport , Exosomes/metabolism , Extracellular Vesicles/physiology , Humans , Microscopy, Electron , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL