Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.938
Filter
Add more filters

Publication year range
1.
Immunity ; 56(11): 2472-2491, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37967530

ABSTRACT

Immune responses to antigens, including innocuous, self, tumor, microbial, and vaccine antigens, differ between males and females. The quest to uncover the mechanisms for biological sex differences in the immune system has intensified, with considerable literature pointing toward sex hormonal influences on immune cell function. Sex steroids, including estrogens, androgens, and progestins, have profound effects on immune function. As such, drastic changes in sex steroid concentrations that occur with aging (e.g., after puberty or during the menopause transition) or pregnancy impact immune responses and the pathogenesis of immune-related diseases. The effect of sex steroids on immunity involves both the concentration of the ligand and the density and distribution of genomic and nongenomic receptors that serve as transcriptional regulators of immune cellular responses to affect autoimmunity, allergy, infectious diseases, cancers, and responses to vaccines. The next frontier will be harnessing these effects of sex steroids to improve therapeutic outcomes.


Subject(s)
Gonadal Steroid Hormones , Neoplasms , Pregnancy , Female , Male , Humans , Estrogens/pharmacology , Estrogens/physiology , Progestins , Androgens/pharmacology , Steroids , Immunity , Sex Characteristics
2.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38494419

ABSTRACT

Alterations to the resting-state default mode network (rsDMN) are early indicators of memory decline and Alzheimer's disease (AD). Brain regions shared by the rsDMN and memory circuitry are highly sexually dimorphic. However, data are limited regarding the impact of sex and reproductive status on rsDMN connectivity and memory circuitry and function. In the current investigation, rsDMN connectivity was assessed in 180 early midlife adults aged 45 to 55 by sex and reproductive status (87 women; 93 men). Associations between left and right hippocampal connectivity of rsDMN and verbal memory encoding circuitry were examined using linear mixed models, controlled for age and parental socioeconomic status, testing interactions by sex and reproductive status. Relative to men, women exhibited greater rsDMN connectivity between the left and right hippocampus. In relation to rsDMN-memory encoding connectivity, sex differences were revealed across the menopausal transition, such that only postmenopausal women exhibited loss of the ability to decrease rsDMN left-right hippocampal connectivity during memory encoding associated with poorer memory performance. Results demonstrate that sex and reproductive status play an important role in aging of the rsDMN and interactions with memory circuitry/function. This suggests the critical importance of sex and reproductive status when studying early midlife indicators of memory decline and AD risk.


Subject(s)
Aging , Default Mode Network , Female , Humans , Male , Brain/diagnostic imaging , Memory Disorders , Menopause , Middle Aged
3.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38517173

ABSTRACT

OBJECTIVES: Observational studies link elevated plasma homocysteine (Hcy) with vascular disease. Our aim was to assess the gender difference in the association between the plasma tHcy level and brain atrophy and identify the possible influencer. We employed Mendelian randomization (MR) to explore the causal relationship between plasma tHcy level, estradiol level, and brain atrophy. METHODS: A total of 687 patients with brain atrophy were included, and gender-specific subgroup analyses in association between tHcy and brain atrophy are conducted. From genome-wide association studies, we selected genetic variants (P < 5 × 10-8) for the plasma tHcy level and estradiol level. We investigated the degree of brain atrophy (including gray matter volume and total brain volume) in the UK biobank (n = 7,916). The inverse variance-weighted and several sensitivity MR regression analyses were carried out. RESULTS: The plasma tHcy level was significantly associated with brain atrophy for females, but not for males. An MR study showed that there was little evidence of the causal link between elevated plasma tHcy and brain atrophy. On the other hand, we found evidence to support causality for genetically decreased estradiol with higher risk of brain atrophy. Furthermore, genetic predisposition to elevated plasma tHcy was associated with a lower estradiol level. CONCLUSIONS: The influence of estradiol on the association between tHcy and brain atrophy deserves further investigation.


Subject(s)
Genome-Wide Association Study , Neurodegenerative Diseases , Male , Female , Humans , Mendelian Randomization Analysis , Brain/diagnostic imaging , Brain/pathology , Neurodegenerative Diseases/pathology , Atrophy/pathology , Estradiol
4.
Semin Cell Dev Biol ; 126: 56-65, 2022 06.
Article in English | MEDLINE | ID: mdl-33975754

ABSTRACT

Circadian rhythms are ~24 h cycles of behavior and physiology that are generated by a network of molecular clocks located in nearly every tissue in the body. In mammals, the circadian system is organized hierarchically such that the suprachiasmatic nucleus (SCN) is the main circadian clock that receives light information from the eye and entrains to the light-dark cycle. The SCN then coordinates the timing of tissue clocks so internal rhythms are aligned with environmental cycles. Estrogens interact with the circadian system to regulate biological processes. At the molecular level, estrogens and circadian genes interact to regulate gene expression and cell biology. Estrogens also regulate circadian behavior across the estrous cycle. The timing of ovulation during the estrous cycle requires coincident estrogen and SCN signals. Studies using circadian gene reporter mice have also elucidated estrogen regulation of peripheral tissue clocks and metabolic rhythms. This review synthesizes current understanding of the interplay between estrogens and the circadian system, with a focus on female rodents, in regulating molecular, physiological, and behavioral processes.


Subject(s)
Circadian Clocks , Estrogens , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Estrogens/metabolism , Female , Mammals , Mice , Photoperiod , Suprachiasmatic Nucleus
5.
J Biol Chem ; 299(11): 105316, 2023 11.
Article in English | MEDLINE | ID: mdl-37797697

ABSTRACT

Lack of estradiol production by granulosa cells blocks follicle development, causes failure of estrous initiation, and results in an inability to ovulate. The ubiquitin-proteasome system plays a critical role in maintaining protein homeostasis and stability of the estrous cycle, but knowledge of deubiquitination enzyme function in estradiol synthesis is limited. Here, we observe that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is more significant in estrous sows and high litter-size sows than in nonestrous sows and low-yielding sows. Overexpression of UCHL1 promotes estradiol synthesis in granulosa cells, and interference with UCHL1 has the opposite effect. UCHL1 binds, deubiquitinates, and stabilizes voltage-dependent anion channel 2 (VDAC2), promoting the synthesis of the estradiol precursor pregnenolone. Cysteine 90 (C90) of UCHL1 is necessary for its deubiquitination activity, and Lys45 and Lys64 in VDAC2 are essential for its ubiquitination and degradation. In vivo, compared with WT and sh-NC-AAV groups, the estrus cycle of female mice is disturbed, estradiol level is decreased, and the number of antral follicles is decreased after the injection of sh-UCHL1-AAV into ovarian tissue. These findings suggest that UCHL1 promotes estradiol synthesis by stabilizing VDAC2 and identify UCHL1 as a candidate gene affecting reproductive performance.


Subject(s)
Estradiol , Ubiquitin Thiolesterase , Voltage-Dependent Anion Channel 2 , Animals , Female , Mice , Granulosa Cells/metabolism , Ovarian Follicle/metabolism , Swine , Ubiquitin Thiolesterase/metabolism , Voltage-Dependent Anion Channel 2/metabolism , Sus scrofa
6.
J Cell Biochem ; 125(7): e30610, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38860517

ABSTRACT

17ß-estradiol is a hormone that plays a vital role in human physiology. It acts through estrogen receptors, specifically estrogen receptor α and estrogen receptor ß, and its action is determined by the pulsatile secretion in the bloodstream. 17ß-estradiol affects cell proliferation, and dysregulation of 17ß-estradiol:estrogen receptor α signaling contribute to the development of breast cancer. Previous research on 17ß-estradiol:estrogen receptor α signaling has primarily used two-dimensional cell cultures, which do not fully recapitulate the complexity of tumors that exist in a three-dimensional environment and do not consider the pulsatile nature of this hormone. To address these limitations, we studied 17ß-estradiol:estrogen receptor α signaling in cell proliferation using both two-dimensional and three-dimensional breast cancer cell culture models under continuous and pulsatile stimulation conditions. Results revealed that breast cancer cells grown in an alginate-based three-dimensional matrix exhibited similar responsiveness to 17ß-estradiol compared with cells grown in conventional two-dimensional culture plates. 17ß-estradiol induced the expression of proteins containing estrogen response element in the three-dimensional model. The efficacy of the antiestrogen drugs fulvestrant (ICI182,280) and 4OH-tamoxifen was also demonstrated in the three-dimensional model. These results support the use of the three-dimensional culture model for studying tumor response to drugs and provide a more realistic microenvironment for such studies. Furthermore, the study revealed that a brief 5-min exposure to 17ß-estradiol triggered a physiological response comparable with continuous hormone exposure, suggesting that the cellular response to 17ß-estradiol is more important than the continuous presence of the hormone. In conclusion, the study demonstrates that the alginate-based three-dimensional culture model is suitable for studying the effects of 17ß-estradiol and antiestrogen drugs on breast cancer cells, offering a more realistic representation of tumor-microenvironment interactions. The results also highlight the importance of considering the physiological importance of the temporal dynamics in studying 17ß-estradiol signaling and cellular responses.


Subject(s)
Cell Proliferation , Estradiol , Estrogen Receptor alpha , Signal Transduction , Humans , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Cell Proliferation/drug effects , Signal Transduction/drug effects , Female , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , MCF-7 Cells , Cell Culture Techniques, Three Dimensional/methods , Cell Culture Techniques/methods , Fulvestrant/pharmacology
7.
Am J Physiol Endocrinol Metab ; 326(5): E588-E601, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38477875

ABSTRACT

In rodents, loss of estradiol (E2) reduces brown adipose tissue (BAT) metabolic activity. Whether E2 impacts BAT activity in women is not known. BAT oxidative metabolism was measured in premenopausal (n = 27; 35 ± 9 yr; body mass index = 26.0 ± 5.3 kg/m2) and postmenopausal (n = 25; 51 ± 8 yr; body mass index = 28.0 ± 5.0 kg/m2) women at room temperature and during acute cold exposure using [11C]acetate with positron emission tomography coupled with computed tomograph. BAT glucose uptake was also measured during acute cold exposure using 2-deoxy-2-[18F]fluoro-d-glucose. To isolate the effects of ovarian hormones from biological aging, measurements were repeated in a subset of premenopausal women (n = 8; 40 ± 4 yr; BMI = 28.0 ± 7.2 kg/m2) after 6 mo of gonadotropin-releasing hormone agonist therapy to suppress ovarian hormones. At room temperature, there was no difference in BAT oxidative metabolism between premenopausal (0.56 ± 0.31 min-1) and postmenopausal women (0.63 ± 0.28 min-1). During cold exposure, BAT oxidative metabolism (1.28 ± 0.85 vs. 0.91 ± 0.63 min-1, P = 0.03) and net BAT glucose uptake (84.4 ± 82.5 vs. 29.7 ± 31.4 nmol·g-1·min-1, P < 0.01) were higher in premenopausal than postmenopausal women. In premenopausal women who underwent gonadotropin-releasing hormone agonist, cold-stimulated BAT oxidative metabolism was reduced to a similar level (from 1.36 ± 0.66 min-1 to 0.91 ± 0.41 min-1) to that observed in postmenopausal women (0.91 ± 0.63 min-1). These results provide the first evidence in humans that reproductive hormones are associated with BAT oxidative metabolism and suggest that BAT may be a target to attenuate age-related reduction in energy expenditure and maintain metabolic health in postmenopausal women.NEW & NOTEWORTHY In rodents, loss of estrogen reduces brown adipose tissue (BAT) activity. Whether this is true in humans is not known. We found that BAT oxidative metabolism and glucose uptake were lower in postmenopausal compared to premenopausal women. In premenopausal women who underwent ovarian suppression to reduce circulating estrogen, BAT oxidative metabolism was reduced to postmenopausal levels. Thus the loss of ovarian function in women leads to a reduction in BAT metabolic activity independent of age.


Subject(s)
Adipose Tissue, Brown , Fluorodeoxyglucose F18 , Humans , Female , Adipose Tissue, Brown/metabolism , Fluorodeoxyglucose F18/metabolism , Energy Metabolism , Glucose/metabolism , Positron-Emission Tomography , Estrogens/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Cold Temperature , Thermogenesis
8.
Am J Physiol Endocrinol Metab ; 327(1): E121-E133, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38775726

ABSTRACT

Oral contraceptive pills, of all types, are used by approximately 151 million women worldwide; however, a clear understanding of the concentrations of endogenous and exogenous hormones across a 28-day combination monophasic oral contraceptive pill pack is not well described. In our study of 14 female participants taking various combination monophasic oral contraceptive pills, we found significant fluctuations in endogenous and exogenous hormone levels throughout the pill cycle. Our analysis revealed significantly greater levels of ethinyl estradiol on the 20th and 21st days of active pill ingestion, compared with days 1-2 (active) and days 27-28 (inactive pill ingestion). Conversely, estradiol concentrations decreased during active pill consumption, while progestin and progesterone levels remained stable. During the 7 days of inactive pill ingestion, estradiol levels rose sharply and were significantly higher at days 27-28 compared with the mid and late active phase time points, while ethinyl estradiol declined and progestin did not change. These findings challenge the previous assumption that endogenous and exogenous hormones are stable throughout the 28-day pill cycle.NEW & NOTEWORTHY The results from this study have wide-ranging implications for research and treatment in women's health including considerations in research design and interpretation for studies including women taking oral contraceptives, the potential for more precise and personalized methods of dosing to reduce unwanted side effects and adverse events, and the potential treatment of a variety of disorders ranging from musculoskeletal to neurological with exogenous hormones.


Subject(s)
Contraceptives, Oral, Combined , Estradiol , Ethinyl Estradiol , Menstrual Cycle , Progesterone , Tandem Mass Spectrometry , Humans , Female , Adult , Contraceptives, Oral, Combined/administration & dosage , Tandem Mass Spectrometry/methods , Ethinyl Estradiol/administration & dosage , Ethinyl Estradiol/blood , Progesterone/blood , Menstrual Cycle/drug effects , Menstrual Cycle/blood , Young Adult , Estradiol/blood , Chromatography, Liquid/methods , Progestins/blood , Progestins/administration & dosage , Contraceptives, Oral, Hormonal/administration & dosage
9.
Curr Issues Mol Biol ; 46(6): 5701-5711, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38921012

ABSTRACT

Toxoplasmosis is an infection caused by the parasite Toxoplasma gondii. One-third of the world's population has come into contact with this parasite. In Mexico, the prevalence is between 15% and 50% in the general population and 34.9% in women with high-risk pregnancies. In pregnancy, the highest incidence of infection occurs in the third trimester and fetal damage is inversely proportional to gestational age. Maternal hormones play a fundamental role in the immune response. There are very few studies, with controversial results, on the levels of increased hormones and their relationship to the kinetics of T. gondii infections during pregnancy. The aim was to determine the serum levels of 17-ß estradiol, prolactin, and progesterone, and their association with anti-T. gondii antibodies' kinetics in pregnancy. Fifty-two pregnant patients were studied. A questionnaire with sociodemographic and clinical aspects was used. Afterward, 10 mL of venous blood was collected by venipuncture every trimester. The concentrations of 17-ß estradiol, progesterone, and prolactin were measured, using the ELISA method. In addition, anti-Toxoplasma IgG and IgM antibodies were also determined in the first, second, and third trimester. The prevalence of anti-Toxoplasma IgG antibodies was 26.92% in the first and second trimester and 32.7% in the third trimester. In seropositive women, 17-ß estradiol increased in the second and third trimesters of pregnancy. Progesterone increased significantly p < 0.039 in the third trimester in these women, while prolactin increased in the second trimester with a statistical significance of p < 0.021. In addition, 17-ß estradiol, progesterone, and prolactin are associated with T. gondii infection during pregnancy. New studies are necessary to clarify the specific mechanisms of immune response related to these hormones during pregnancy.

10.
Front Neuroendocrinol ; 70: 101068, 2023 07.
Article in English | MEDLINE | ID: mdl-37061205

ABSTRACT

Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.


Subject(s)
Cardiovascular Diseases , Estrogens , Humans , Brain , Menopause/psychology , Cognition , Cardiovascular Diseases/drug therapy
11.
Front Neuroendocrinol ; 68: 101043, 2023 01.
Article in English | MEDLINE | ID: mdl-36356909

ABSTRACT

Sex steroid hormones like estradiol (E2) and progesterone (P4) guide the sexual organization and activation of the developing brain and control female reproductive behavior throughout the lifecycle; importantly, these hormones modulate functional activity of not just the endocrine system, but most of the nervous system including the brain reward system. The effects of E2 and P4 can be seen in the processing of and memory for rewarding stimuli and in the development of compulsive reward-seeking behaviors like those seen in substance use disorders. Women are at increased risk of developing substance use disorders; however, the origins of this sex difference are not well understood and therapeutic interventions targeting ovarian hormones have produced conflicting results. This article reviews the contribution of the E2 and P4 in females to functional modulation of the brain reward system, their possible roles in origins of addiction vulnerability, and the development and treatment of compulsive reward-seeking behaviors.


Subject(s)
Estradiol , Progesterone , Female , Humans , Male , Progesterone/pharmacology , Estradiol/pharmacology , Gonadal Steroid Hormones , Learning , Reward
12.
Front Neuroendocrinol ; 68: 101041, 2023 01.
Article in English | MEDLINE | ID: mdl-36244525

ABSTRACT

Combined oral contraceptives (containing synthetic forms of estradiol and progestins) are one of the most commonly used drugs among females. However, their effects on the gut-brain axis have not been investigated to a great extent despite clear evidence that suggest bi-directional interactions between the gut microbiome and endogenous sex hormones. Moreover, oral contraceptives are prescribed during adolescence, a critical period of development during which several brain structures and systems, such as hypothalamic-pituitary-gonadal axis, undergo maturation. Considering that oral contraceptives could impact the developing adolescent brain and that these effects may be mediated by the gut-brain axis, further research investigating the effects of oral contraceptives on the gut-brain axis is imperative. This article briefly reviews evidence from animal and human studies on the effects of combined oral contraceptives on the brain and the gut microbiota particularly during adolescence.


Subject(s)
Contraceptives, Oral, Combined , Ethinyl Estradiol , Female , Adolescent , Humans , Contraceptives, Oral, Combined/pharmacology , Ethinyl Estradiol/pharmacology , Mental Health , Brain-Gut Axis , Gonadal Steroid Hormones
13.
Front Neuroendocrinol ; 68: 101040, 2023 01.
Article in English | MEDLINE | ID: mdl-36243109

ABSTRACT

Millions of women around the world use combined oral contraceptives (OCs), yet surprisingly little is known about their central nervous system (CNS) effects. This article provides a short overview of the basic pharmacology of OCs, emphasizing features that may be relevant to understanding their effects in the CNS. Historical and recent findings from studies of cognitive function, mood, and negative affect (depressive changes under OC use) are then reviewed. We also present data from an archival dataset from our own laboratory in which we explore dysphoric changes in women using four generations of contraceptive progestins. Current data in the field are consistent with a modest effect of OC use on CNS variables, but conclusions based on current findings must be made very cautiously because of multiple methodological issues in many published studies to date, and inconsistencies in the findings. Directions for future research over the next 10 years are suggested. (150 words).


Subject(s)
Contraceptives, Oral, Combined , Progestins , Female , Humans , Contraceptives, Oral, Combined/pharmacology , Central Nervous System
14.
Am J Physiol Heart Circ Physiol ; 327(2): H340-H348, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38578239

ABSTRACT

Gender-affirming estrogen therapy (GAET) is commonly used for feminization in transgender and nonbinary (TNB) individuals, yet the optimal rate of change (ROC) in estradiol levels for cardiovascular health is unclear. We examined the association between serum estradiol levels and cardiovascular-related mortality, adverse events, and risk factors in TNB adults using GAET. Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE, and Web of Science were systematically searched (inception-April 2023) for original articles reporting serum estradiol levels and cardiovascular-related mortality, adverse events, and risk factors in TNB adults using GAET. Data extraction was completed in duplicate following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Stratified random effect meta-analyses using serum estradiol ROC (serum estradiolbaseline - serum estradiolfollow-up/study duration) was used to assess longitudinal studies (low, 0 < ROC ≤ 1 pg/mL/mo; moderate, 1 < ROC ≤ 3 pg/mL/mo; high, ROC ≥ 3 pg/mL/mo). Thirty-five studies (13 cross-sectional, 19 cohort, and 3 trials) were included. Two studies collectively reported 50 cardiovascular-related deaths, and four collectively reported 23 adverse cardiovascular events. Nineteen studies reporting cardiovascular risk factors were meta-analyzed by ROC stratum (low = 5; moderate = 6; high = 8), demonstrating an association between moderate [0.40, 95% confidence interval (CI): 0.22, 0.59 kg/m2, I2 = 28.2%] and high (0.46, 95% CI: 0.15, 0.78 kg/m2; I2 = 0.0%) serum estradiol ROC and increased body mass index. High (-6.67, 95% CI: -10.65, -2.68 mg/dL; I2 = 0.0%) serum estradiol ROC was associated with decreased low-density lipoproteins. Low (-7.05, 95% CI: -10.40, -3.70 mmHg; I2 = 0.0%) and moderate (-3.69, 95% CI: -4.93, -2.45 mmHg; I2 = 0.0%) serum estradiol ROCs were associated with decreases in systolic blood pressure. In TNB adults using GAET, serum estradiol ROC may influence cardiovascular risk factors, which may have implications for clinical cardiovascular outcomes.NEW & NOTEWORTHY In this systematic review and meta-analysis of 35 studies involving 7,745 participants, high rates of serum estradiol change were associated with small increases in body mass index. Moderate to high rates of change were associated with decreases in low-density lipoprotein. Low rates of change were associated with small decreases in systolic blood pressure. Rate of serum estradiol change in adults using gender-affirming estrogen therapy may influence cardiovascular risk factors, though further research is warranted.


Subject(s)
Cardiovascular Diseases , Estradiol , Transgender Persons , Adult , Female , Humans , Male , Middle Aged , Biomarkers/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/mortality , Cardiovascular Diseases/prevention & control , Estradiol/blood , Estrogen Replacement Therapy/adverse effects , Estrogens/adverse effects , Estrogens/blood , Heart Disease Risk Factors , Risk Assessment , Risk Factors , Sex Reassignment Procedures/adverse effects
15.
Breast Cancer Res Treat ; 206(2): 215-226, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38780887

ABSTRACT

PURPOSE: Vaginal oestrogens can be used to treat genitourinary symptoms in women with early breast cancer. Studies evaluating vaginal oestrogens have commonly measured serum oestrogen levels as a surrogate marker of safety, but methods vary. We sought to summarise the data on serum oestrogen measurement in women with breast cancer using vaginal oestrogens to better understand the methods, levels and reliability. METHODS: We searched Medline, Embase, CENTRAL, SCOPUS and CINAHL from inception to October 2023 for clinical studies where serum oestrogen was measured in women with a history of early breast cancer using vaginal oestrogens. Studies with a reported testing methodology were included. RESULTS: Nine studies met the inclusion criteria for this systematic review. Methods used to measure oestradiol and oestriol in selected studies included mass spectrometry and immunoassays; several studies used more than one with variable concordance. Mass spectrometry detected oestradiol levels down to a lower limit between 1.0 pg/mL and 3.0 pg/mL. Immunoassays such as ELISA (enzyme-linked immunosorbent assay), ECLIA (enhanced chemiluminiscence immunoassay) and RIA (radioimmunoassay) had lower detection limits ranging between 0.8 pg/mL and 10 pg/mL. Studies were heterogeneous in testing techniques used, timing of testing, and the population including with subsequent varying results in the effect on oestrogens reported. CONCLUSIONS: Adopting consistent and standardised methods of measuring oestrogens in clinical trials involving women with early breast cancer on vaginal oestrogens is critical. Serum oestrogens are used as a surrogate marker of safety in this population, and good-quality data are necessary to enable clinicians and patients to feel confident in prescribing and taking vaginal oestrogens. Mass spectrometry, although more expensive, gives more reliable results when dealing with very low levels of oestrogens often found in women on aromatase inhibitors, compared to immunoassays.


Subject(s)
Breast Neoplasms , Cancer Survivors , Estrogens , Female , Humans , Administration, Intravaginal , Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Estradiol/blood , Estriol/blood , Estrogens/blood , Vagina
16.
Breast Cancer Res Treat ; 205(1): 61-73, 2024 May.
Article in English | MEDLINE | ID: mdl-38280052

ABSTRACT

PURPOSE: Aromatase inhibitor (AI) therapy reduces risk of recurrence and death for postmenopausal women with breast cancer (BC); however, AI-induced arthralgia (AIIA) can lead to discontinuation of treatment. Curcumin, a bioactive polyphenolic substance, may help ameliorate inflammation-related conditions including osteoarthritis and pain. METHODS: We conducted a multisite randomized placebo-controlled, double-blind pilot trial (Alliance A22_Pilot9) to evaluate the effects of nanoemulsion curcumin (NEC, 200 mg/day) in postmenopausal women experiencing AIIA for ≥ 3 months. The primary objective was to determine the feasibility of using Functional Assessment of Cancer Treatment-Endocrine Symptoms (FACT-ES) to detect changes from 0 (T0) to 3 months (T3) of NEC treatment in AI-induced symptoms and well-being; secondary objectives included evaluation of changes in Disabilities of the Shoulder, Arm, and Hand (DASH), Brief Pain Inventory-short form (BPI-SF), grip strength, and biomarkers at T0 and T3. RESULTS: Forty-two patients were randomized to NEC or placebo; 34 women completed the 3-month study. Patient-reported outcome measures (PROMs: FACT-ES, DASH, BPI-SF) and biospecimens were collected at T0-T3 in > 80% of participants. Adherence was ≥ 90% for both arms. PROMs and grip strength did not differ significantly by treatment arm. Plasma curcumin was detected only in NEC arm participants. Serum estradiol and estrone levels were below detection or low on study agent. Gastrointestinal adverse effects were commonly reported in both arms. CONCLUSION: NEC versus placebo in a multisite randomized trial is feasible and well-tolerated. Additional studies with larger sample size are needed to further evaluate the efficacy and safety of NEC in treatment of AIIA. CLINICALTRIALS: gov Identifier: NCT03865992, first posted March 7, 2019.


Subject(s)
Aromatase Inhibitors , Breast Neoplasms , Curcumin , Humans , Female , Curcumin/therapeutic use , Curcumin/administration & dosage , Aromatase Inhibitors/adverse effects , Aromatase Inhibitors/administration & dosage , Pilot Projects , Middle Aged , Aged , Breast Neoplasms/drug therapy , Double-Blind Method , Emulsions , Treatment Outcome , Postmenopause , Arthralgia/chemically induced , Arthralgia/drug therapy
17.
J Neurosci Res ; 102(3): e25306, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468573

ABSTRACT

Finasteride is used in female-pattern hair loss, hirsutism, and polycystic ovarian syndrome. It inhibits 5α-reductase, which is an important enzyme in the biosynthesis of neurosteroids. The effects of finasteride treatment on mental health in female patients as well as the effects of repeated/chronic finasteride administration in female rodents are still unknown. Accordingly, in our study, we administered finasteride (10, 30, or 100 mg/Kg, s.c.) for 6 days in female rats and evaluated behavior, plasma steroid levels, and synaptic plasticity. Depression-like behavior was evaluated using forced swim test (FST) and splash test. Anxiety-like behavior was evaluated using novelty-suppressed feeding task (NSFT), elevated plus maze (EPM), open field test (OFT), and light-dark test (LDT). Plasma steroid levels were assessed using ELISA and synaptic plasticity by field potential recordings. We observed that finasteride decreased total immobility duration in FST, indicating antidepressant-like effect and decreased the latency to first bite in NSFT, showing anxiolytic-like effect. We also found a significant increase in plasma estradiol and a significant decrease in plasma corticosterone level. Furthermore, field potential recordings showed that finasteride increased hippocampal long-term potentiation. These results indicate that repeated finasteride administration in female rats may have antidepressant- and anxiolytic-like effect, which might be mediated by enhanced estradiol levels or decreased corticosterone levels. Further studies are required to validate the molecular mechanisms underlying the effects of finasteride in female rats. Understanding the mechanisms will help us in developing novel neurosteroid-based therapeutics in the treatment of neuropsychiatric disorders in women.


Subject(s)
Anti-Anxiety Agents , Finasteride , Humans , Rats , Female , Animals , Finasteride/adverse effects , Anti-Anxiety Agents/pharmacology , Corticosterone , Depression/drug therapy , Steroids , Estradiol , Antidepressive Agents/pharmacology , Neuronal Plasticity
18.
Planta ; 259(5): 119, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594473

ABSTRACT

MAIN CONCLUSION: S. plumbizincicola genetic transformation was optimized using a self-excision molecular-assisted transformation system by integrating the SpGRF4/SpGIF1 gene with XVE and Cre/loxP. Sedum plumbizincicola, despite being an excellent hyperaccumulator of cadmium and zinc with significant potential for soil pollution phytoremediation on farmland, has nonetheless trailed behind other major model plants in genetic transformation technology. In this study, different explants and SpGRF4-SpGIF1 genes were used to optimize the genetic transformation of S. plumbizincicola. We found that petiole and stem segments had higher genetic transformation efficiency than cluster buds. Overexpression of SpGRF4-SpGIF1 could significantly improve the genetic transformation efficiency and shorten the period of obtaining regenerated buds. However, molecular assistance with overexpression of SpGRF4-SpGIF1 leads to abnormal morphology, resulting in plant tissue enlargement and abnormal growth. Therefore, we combined SpGRF4-SpGIF1 with XVE and Cre/loxP to obtain DNA autocleavage transgenic plants induced by estradiol, thereby ensuring normal growth in transgenic plants. This study optimized the S. plumbizincicola genetic transformation system, improved the efficiency of genetic transformation, and established a self-excision molecular-assisted transformation system. This work also established the basis for studying S. plumbizincicola gene function, and for S. plumbizincicola breeding and germplasm innovation.


Subject(s)
Sedum , Soil Pollutants , Plant Breeding , Cadmium , Biodegradation, Environmental , Transformation, Genetic , Soil
19.
Clin Endocrinol (Oxf) ; 101(1): 42-50, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38446525

ABSTRACT

OBJECTIVE: Human choriogonadotrophin (hCG) treatment of gonadotrophin-deficient infertile men uses hCG of urinary (uhCG) or recombinant (rhCG) origin, but these treatments have not been compared nor are there studies defining rhCG dosing in men. DESIGN: hCG products were studied in randomized cross-over single-dose studies of standard (Study 1, 1500 IU and 62.5 µg, respectively) or high (Study 2, 5000 IU and 250 µg) dose and a multi-dose population pharmacology study of hCG use. PARTICIPANTS: Eight (Study 1) and seven (Study 2) volunteers in cross-over and 52 gonadotrophin-deficient men in the multi-dose study MEASUREMENTS: In cross-over studies, serum testosterone (T), dihydrotestosterone (DHT) and estradiol by liquid chromatography-mass spectrometry (LCMS) and serum hCG, LH, FSH, SHBG and T (observational study) by immunoassays. RESULTS: After standard and high-dose injection, serum hCG and testosterone responses had similar timing and peak concentrations except for a mildly lower early (<48 h) serum testosterone with uhCG. In the multi-dosing study, both hCGs had similar pharmacokinetics (pooled half-life 5.8 days, p < .001), while serum testosterone concentrations were stable after injection and did not differ between hCG products. Bench testing verified that 20% of pens from 4/10 individuals were used inappropriately. CONCLUSIONS: Although hCG pharmacokinetics are not formally bioequivalent, the similar pharmacodynamic effects on serum testosterone indicate that at the doses tested both hCGs provide comparable clinical effects. The starting dose of rhCG for treating gonadotrophin-deficient men should be 62.5 µg (6 clicks) of the rhCG pen.


Subject(s)
Chorionic Gonadotropin , Cross-Over Studies , Recombinant Proteins , Testosterone , Humans , Male , Chorionic Gonadotropin/administration & dosage , Chorionic Gonadotropin/urine , Testosterone/blood , Testosterone/administration & dosage , Testosterone/urine , Adult , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacokinetics , Luteinizing Hormone/blood , Luteinizing Hormone/urine , Dihydrotestosterone/blood , Dihydrotestosterone/urine , Estradiol/blood , Dose-Response Relationship, Drug , Follicle Stimulating Hormone/blood , Follicle Stimulating Hormone/urine , Young Adult , Middle Aged , Infertility, Male/drug therapy , Infertility, Male/urine , Infertility, Male/blood , Sex Hormone-Binding Globulin/analysis
20.
Hum Reprod ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008826

ABSTRACT

STUDY QUESTION: Does luteal estradiol (E2) pretreatment give a similar number of retrieved oocytes compared to no-pretreatment in advanced-aged women stimulated with corifollitropin alfa in an antagonist protocol? SUMMARY ANSWER: Programming antagonist cycles with luteal E2 gave similar number of retrieved oocytes compared to no-pretreatment in women aged 38-42 years. WHAT IS KNOWN ALREADY: Programming antagonist cycles with luteal E2 pretreatment is a valuable tool to organize the IVF procedure better and is safe without any known impact on cycle outcome. However, variable effects were observed on the number of retrieved oocytes depending on the treated population. In advanced-age women, recruitable follicles tend to decrease in number and to be more heterogeneous in size but it remains unclear if estradiol pretreatment could change the oocyte yield through its negative feed-back effect on FSH intercycle rise. STUDY DESIGN, SIZE, DURATION: This non-blinded randomized controlled non-inferiority trial was conducted between 2016 and 2022 with centrally computerized randomization and concealed allocation. Participants were 324 women aged 38-42 years undergoing IVF treatment. The primary endpoint was the total number of retrieved oocytes. Statistical analysis was performed with one-sided alpha risk of 2.5% and 95% confidence interval (CI) with the non-inferiority of E2 pretreatment proved by a P value <0.025 and a lower delta margin of the CI within two oocytes compared to no pretreatment. Secondary endpoints were duration and total dosage of recombinant FSH, cancellation rate, percentage of oocyte pick-up (OPU) on working days, total number of metaphase II oocytes and obtained embryos, fresh transfer live birth rate, and cumulative live birth rate. PARTICIPANTS/MATERIALS, SETTING, METHODS: This multicentric study enrolled women with regular cycles, weight >50 kg and body mass index <32, IVF cycle 1-2. According to randomization, micronized estradiol 2 mg twice a day was started on days 20-24 and continued until Wednesday beyond the onset of menses followed by administration of corifollitropin alfa on Friday, i.e. stimulation (S)1 or from D1-3 of a natural cycle in unpretreated patients. GnRH antagonist was started at S6 and additional FSH at S8. MAIN RESULTS AND THE ROLE OF CHANCE: Basal characteristics were similar in patients randomized in E2 pretreated (n = 164) and non-pretreated (n = 160) groups (intended to treat (ITT) population). A total of 291 patients started treatment (per protocol (PP) population), 147 in E2 pretreated group with a mean number [SD] of pre-treatment days 9.8 [2.6] and 144 in the non-pretreated group. Despite advanced age, oocyte yields ranged from 0 to 29 in both groups with a median number of 6 retrieved oocytes in accordance with a mean anti-Müllerian hormone (AMH) level above 1.2 ng/ml. We demonstrated the non-inferiority of E2 pretreatment with a mean difference of -0.1 oocyte 95% CI [-1.5; 1.3] P = 0.004 in the PP population and a mean difference of -0.44 oocyte [-1.84; 0.97] P = 0.014 in the ITT population. Oocyte retrieval was more often on working days in E2 pretreated patients (91.9 versus 74.2%, P < 0.001). In patients reaching OPU, the duration of stimulation was statistically significantly longer (11.7 [1.7] versus 10.8 [1.8] days, P < 0.001) and the extra FSH dosage in addition to corifollitropin alfa was statistically significantly higher (1040 [548] versus 778 [504] IU, P < 0.001) in E2 pretreated than non-pretreated patients. We did not observe any significant differences in the number of retrieved oocytes (8.4 [6.1] versus 9.1 [6.0]), in the number of Metaphase 2 oocytes (7 [5.5] versus 7.3 [5.2]) nor in the number of obtained embryos (5 [4.6] versus 5.2 [4.2]) in E2 pretreated patients compared to non-pretreated patients. The live birth rate after fresh transfer (16.2% versus 18.5%, respectively), and the cumulative live birth rate per patient (17.7% versus 22.9%, respectively) were similar in both groups. Among the PP population, 31.6% of patients fulfilled the criteria for group 4 of Poseïdon classification (AMH <1.2 ng/ml and/or antral follicle count <5). In this sub-group of patients, we observed in contrast a statistically higher number of retrieved oocytes in E2 pretreated patients compared to non-pretreated (5.1 [3.8] versus 3.4 [2.7], respectively, the mean difference of +1.7 oocyte [0.2; 3.2] P = 0.022) but without significant difference in the cumulative live birth rate per patient (15.7% versus 7.3%, respectively). LIMITATIONS, REASONS FOR CAUTION: Our stimulated women older than 38 years obtained a wide range of collected oocytes suggesting very different stages of ovarian aging in both groups. E2 pretreatment is more likely to increase oocyte yield at the stage of ovarian aging characterized by asynchrony of a reduced follicular cohort. Another limitation is the sample size in sub-group analysis of patients with AMH <1.2 ng/ml. Finally, the absence of placebo for pretreatment could also introduce possible bias. WIDER IMPLICATIONS OF THE FINDINGS: Programming antagonist cycles with luteal E2 pretreatment seems a useful tool in advanced age women to better schedule oocyte retrievals on working days. However, the potential benefit of the number of collected oocytes remains to be demonstrated in a larger population displaying the characteristics of decreased ovarian reserve encountered in Poseïdon classification. STUDY FUNDING/COMPETING INTEREST(S): Research grant from (MSD) Organon, France. I.C., S.D., B.B., X.M., S.G., and C.J. have no conflict of interest with this study. I.C.D. declares fees as speaker from Merck KGaA, Gedeon Richter, MSD (Organon, France), Ferring, Theramex, and IBSA and participation on advisory board from Merck KGaA. I.C.D. also declares consulting fees, and travel and meeting support from Merck KGaA. N.M. declares grants paid to their institution from MSD (Organon, France); consulting fees from MSD (Organon, France), Ferring, and Merck KGaA; honoraria from Merck KGaA, General Electrics, Genevrier (IBSA Pharma), and Theramex; support for travel and meetings from Theramex, Merck KGaG, and Gedeon Richter; and equipment paid to their institution from Goodlife Pharma. N.C. declares grants from IBSA Pharma, Merck KGaA, Ferring, and Gedeon Richter; support for travel and meetings from IBSA Pharma, Merck KGaG, MSD (Organon, France), Gedeon Richter, and Theramex; and participation on advisory board from Merck KGaA. A.G.L. declares fees as speaker from Merck KGaA, Gedeon Richter, MSD (Organon, France), Ferring, Theramex, and IBSA. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT02884245. TRIAL REGISTRATION DATE: 29 August 2016. DATE OF FIRST PATIENT'S ENROLMENT: 4 November 2016.

SELECTION OF CITATIONS
SEARCH DETAIL