Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Publication year range
1.
J Neurooncol ; 170(1): 53-66, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153030

ABSTRACT

PURPOSE: Stereotactic Radiosurgery (SRS) is the primary treatment for patients with limited numbers of small brain metastases. Head fixation is usually performed with framed-based (FB) fixation; however, mask-based (MB) fixation has emerged as a less invasive alternative. A comparative meta-analysis between both approaches has not been performed. METHODS: Databases were searched until August 28th, 2023, to identify studies comparing MB and FB SRS in the treatment of brain metastases. Our outcomes of interest included local tumor control (LTC), radiation necrosis (RN), mortality, and treatment time (TT). Mean difference (MD), risk ratio (RR), and hazard ratio (HR) were used for statistical comparisons. RESULTS: From 295 articles initially identified, six studies (1 clinical trial) involving 509 patients were included. LTC revealed comparable RR at 6-months (RR = 0.95[95%CI = 0.89-1.01], p = 0.12) and a marginal benefit in FB SRS at 1-year (RR = 0.87[95%CI = 0.78-0.96], p = 0.005). However, in oligometastases exclusively treated with single-fraction SRS, LTC was similar among groups (RR = 0.92 [95%CI = 0.89-1.0], p = 0.30). Similarly, in patients with oligometastases treated with single-fraction SRS, RN (HR = 1.69; 95%CI = 0.72-3.97, p = 0.22), TT (MD = -29.64; 95%CI = -80.38-21.10, p = 0.25), and mortality were similar among groups (RR = 0.62; 95%CI = 0.22-1.76, p = 0.37). CONCLUSION: Our findings suggest that FB and MB SRS, particularly oligometastases treated with single-fraction, are comparable in terms of LTC, RN, TT, and mortality. Further research is essential to draw definitive conclusions.


Subject(s)
Brain Neoplasms , Radiosurgery , Humans , Brain Neoplasms/mortality , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Radiosurgery/instrumentation , Radiosurgery/methods , Treatment Outcome
2.
Stereotact Funct Neurosurg ; 102(1): 24-32, 2024.
Article in English | MEDLINE | ID: mdl-38086347

ABSTRACT

INTRODUCTION: Recent advancements in stereotactic neurosurgical techniques have become increasingly reliant on image-based target planning. We devised a case-phantom comparative analysis to evaluate the target registration errors arising during the magnetic resonance imaging (MRI)-computed tomography (CT) image fusion process. METHODS: For subjects whose preoperative MRI and CT images both contained fiducial frame localizers, we investigated discrepancies in target coordinates derived from frame registration based on either MRI or CT. We generated a phantom target through an image fusion process, merging the framed CT images with their corresponding reference MRIs after masking their fiducial indicators. This phantom target was then compared with the original during each instance of target planning. RESULTS: In our investigative study with 26 frame registrations, a systematic error in the y-axis was observed as -0.89 ± 0.42 mm across cases using either conventional CT and/or cone-beam CT (O-arm). For the z-axis, errors varied on a case-by-case basis, recording at +0.64 ± 1.09 mm with a predominant occurrence in those merged with cone-beam CT. Collectively, these errors resulted in an average Euclidean error of 1.33 ± 0.93 mm. CONCLUSION: Our findings suggest that the accuracy of frame-based stereotactic planning is potentially compromised during MRI-CT fusion process. Practitioners should recognize this issue, underscoring a pressing need for strategies and advancements to optimize the process.


Subject(s)
Surgery, Computer-Assisted , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Imaging, Three-Dimensional/methods , Surgery, Computer-Assisted/methods , Stereotaxic Techniques , Magnetic Resonance Imaging/methods
3.
Childs Nerv Syst ; 39(9): 2493-2497, 2023 09.
Article in English | MEDLINE | ID: mdl-37526681

ABSTRACT

PURPOSE: During the last decade, there has been renewed interest in stereotactic approaches to diffuse intrinsic pontine gliomas (DIPGs) in children, due to the development of new concepts in molecular biology and management, and subsequent need for tissue sampling. Stereotactic frame-based and robot-assisted techniques are associated with reduced target error and have been incorporated into standard practice at our institution. METHODS: Four children (age 2-7 years) underwent a robot-assisted frame-based transcerebellar approach using the Leksell G frame coupled with Renishaw's neuromate® stereotactic robot. The procedures included 3 biopsies (two brainstem tumors and one cerebellar hemispheric lesion) and 1 depth electrode implantation into a low-grade tumor remnant (ganglioglioma) of the middle cerebellar peduncle causing drug-resistant epilepsy in a young girl. Targeting was based on MRI, and in one case, 18F-FET-PET was coregistered to MRI to improve sampling accuracy. The frame was applied 180° rotated compared to standard orientation, and patients were positioned prone during surgery and stereotactic preoperative CT scan. Postoperative CT scan ruled out complications and was coregistered to preoperative MRI to check the target accuracy. RESULTS: No complications occurred, and targeting was accurate in all cases. All tissue samplings provided proper histology; depth electrode EEG exploration was diagnostic and led subsequent resective surgery. CONCLUSIONS: According to our experience, the transcerebellar frame-based robotic stereotactic approach to the cerebellum and the brainstem is feasible, safe, and effective even in young children.


Subject(s)
Brain Stem Neoplasms , Robotics , Female , Humans , Child , Child, Preschool , Stereotaxic Techniques , Biopsy/methods , Brain Stem Neoplasms/pathology
4.
Br J Neurosurg ; 37(6): 1689-1692, 2023 Dec.
Article in English | MEDLINE | ID: mdl-34187266

ABSTRACT

BACKGROUND AND IMPORTANCE: Insertion of ventricular catheters into small ventricles may require image guidance. Several options exist, including ultrasound guidance, frameless, and frame-based stereotactic approaches. There is no literature on management options when conventional image guidance fails to cannulate the ventricle. The accuracy of the robotic arm is well established in functional and epilepsy surgery. We report the first case using the Neuromate® robot for the placement of a shunt ventricular catheter into the lateral ventricle after a failed attempt with a more commonly used frameless electromagnetic navigation system. CLINICAL PRESENTATION: A 30-year-old man had twice previously undergone foramen magnum decompression for a Chiari 1 malformation. He subsequently developed a significant cervical syrinx with clinical deterioration and a decision was made to place a ventriculoperitoneal shunt. As the ventricles were small, frameless electromagnetic navigation was used but the ventricle could not be cannulated. The Neuromate® robot was subsequently used to place the ventricular catheter successfully. CONCLUSION: Neuromate® robot-assisted ventricular catheter placement may be considered when difficulty is experienced with more commonly used image guidance techniques.


Subject(s)
Robotics , Male , Humans , Adult , Neuronavigation/methods , Catheterization/methods , Catheters , Ventriculoperitoneal Shunt/methods
5.
Br J Neurosurg ; 36(2): 213-216, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33423555

ABSTRACT

OBJECTIVE: We aimed to evaluate the concordance between the image-based and the tissue-based diagnosis using frame-based stereotactic biopsy. MATERIALS AND METHODS: Medical records of biopsy procedures from 2000 to 2017 were reviewed. The radiologists' preoperative reports, biopsy procedures and postoperative histopathological diagnoses were retrieved. We compared the preoperative image-based diagnosis with the final histopathological diagnosis. RESULTS: We identified 125 biopsy procedures performed in 123 patients. The concordance between image-based and histopathological diagnoses varied between 53.3% and 87.5%. The concordance of diagnosis concerning both tumor entity (i.e. cell type) and WHO grade was 54.6%. The diagnostic yield was 95.2%. There was overall morbidity of 10.4%, and a mortality rate of 0.8%. Minor complications occurred in 4.0% of the cases, while clinically significant complications occurred in 6.4% of the cases. CONCLUSIONS: There was suboptimal concordance between radiological and histopathological diagnosis. Also, there was a tendency of histopathological undergrading. We confirm that frame-based stereotactic biopsies have a high diagnostic yield and a low rate of clinically significant complications and mortality.


Subject(s)
Brain Neoplasms , Stereotaxic Techniques , Biopsy/methods , Brain/diagnostic imaging , Brain/pathology , Brain/surgery , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Humans , Morbidity , Retrospective Studies
6.
Rep Pract Oncol Radiother ; 27(1): 1-9, 2022.
Article in English | MEDLINE | ID: mdl-35402024

ABSTRACT

Stereotactic radiotherapy (SRT ) is a multi-step procedure with each step requiring extreme accuracy. Physician-dependent accuracy includes appropriate disease staging, multi-disciplinary discussion with shared decision-making, choice of morphological and functional imaging methods to identify and delineate the tumor target and organs at risk, an image-guided patient set-up, active or passive management of intra-fraction movement, clinical and instrumental follow-up. Medical physicist-dependent accuracy includes use of advanced software for treatment planning and more advanced Quality Assurance procedures than required for conventional radiotherapy. Consequently, all the professionals require appropriate training in skills for high-quality SRT. Thanks to the technological advances, SRT has moved from a "frame-based" technique, i.e. the use of stereotactic coordinates which are identified by means of rigid localization frames, to the modern "frame-less" SRT which localizes the target volume directly, or by means of anatomical surrogates or fiducial markers that have previously been placed within or near the target. This review describes all the SRT steps in depth, from target simulation and delineation procedures to treatment delivery and image-guided radiation therapy. Target movement assessment and management are also described.

7.
Stereotact Funct Neurosurg ; 99(1): 48-54, 2021.
Article in English | MEDLINE | ID: mdl-33075799

ABSTRACT

Deep brain stimulation (DBS) is a complex surgical procedure that requires detailed anatomical knowledge. In many fields of neurosurgery navigation systems are used to display anatomical structures during an operation to aid performing these surgeries. In frame-based DBS, the advantage of visualization has not yet been evaluated during the procedure itself. In this study, we added live visualization to a frame-based DBS system, using a standard navigation system and investigated its accuracy and potential use in DBS surgery. As a first step, a phantom study was conducted to investigate the accuracy of the navigation system in conjunction with a frame-based approach. As a second step, 5 DBS surgeries were performed with this combined approach. Afterwards, 3 neurosurgeons and 2 neurologists with different levels of experience evaluated the potential use of the system with a questionnaire. Moreover, the additional personnel, costs and required set up time were noted and compared to 5 consecutive standard procedures. In the phantom study, the navigation system showed an inaccuracy of 2.1 mm (mean SD 0.69 mm). In the questionnaire, a mean of 9.4/10 points was awarded for the use of the combined approach as a teaching tool, a mean of 8.4/10 for its advantage in creating a 3-dimensional (3-D) map and a mean of 8/10 points for facilitating group discussions. Especially neurosurgeons and neurologists in training found it useful to better interpret clinical results and side effects (mean 9/10 points) and neurosurgeons appreciated its use to better interpret microelectrode recordings (mean 9/10 points). A mean of 6/10 points was awarded when asked if the benefits were worth the additional efforts. Initially 2 persons, then one additional person was required to set up the system with no relevant added time or costs. Using a navigation system for live visualization during frame-based DBS surgery can improve the understanding of the complex 3-D anatomy and many aspects of the procedure itself. For now, we would regard it as an excellent teaching tool rather than a necessity to perform DBS surgeries.


Subject(s)
Deep Brain Stimulation/standards , Neuronavigation/standards , Neurosurgeons/standards , Stereotaxic Techniques/standards , Deep Brain Stimulation/methods , Electrodes, Implanted/standards , Female , Humans , Imaging, Three-Dimensional/methods , Imaging, Three-Dimensional/standards , Male , Microelectrodes/standards , Movement Disorders/diagnostic imaging , Movement Disorders/surgery , Neuronavigation/methods , Neurosurgical Procedures/methods , Neurosurgical Procedures/standards , Phantoms, Imaging/standards
8.
Br J Neurosurg ; 35(3): 319-323, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32940070

ABSTRACT

OBJECTIVE: The aim of this study was to compare the efficacy, safety, and duration of Remebot robot-assisted frameless brain biopsy with those of standard frame-based stereotactic biopsy. PATIENTS AND METHODS: A retrospective analysis of 66 patients undergoing stereotactic brain biopsy in our department from January 2015 to January 2019 was performed. We divided the patients into two groups: the frame-based group (n = 35) and the Remebot robot group (n = 31). Data on clinical characteristics, total procedure length, overall discomfort, diagnostic yield, complications, and postoperative length of hospital stay were retrospectively reviewed and compared between these two groups. RESULTS: No significant difference in diagnostic yield was detected in the two groups, with frame-based biopsy having a diagnostic yield of 91.4% and Remebot robot-assisted frameless brain biopsy having a diagnostic yield of 93.5%. The duration of the total procedure was 116.5 min for the frame-based biopsy and 80.1 min for the Remebot robot-assisted frameless brain biopsy (p < 0.001). There were no statistically significant differences in complication rate or postoperative duration of hospitalization between the two groups. The overall patient discomfort in the frame-based group was significantly greater than that in the Remebot robot group (visual analog scale score 2.7 ± 1.2 versus 1.5 ± 0.7, p = 0.001). CONCLUSIONS: Remebot robot-assisted frameless brain biopsy was as efficacious and safe as standard stereotactic frame-based biopsy. However, frameless biopsy can alleviate the suffering of the patient and reduce the total duration of the procedure. Remebot robot-assisted frameless brain biopsy is easy to use and better accepted by patients than frame-based biopsy.


Subject(s)
Robotics , Biopsy , Humans , Length of Stay , Neuronavigation , Retrospective Studies , Stereotaxic Techniques
9.
Sensors (Basel) ; 21(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34577413

ABSTRACT

At present, light curtain is a widely-used method to measure the vehicle profile size. However, it is sensitive to temperature, humidity, dust and other weather factors. In this paper, a lidar-based system with a K-frame-based algorithm is proposed for measuring vehicle profile size. The system is composed of left lidar, right lidar, front lidar, control box and industry controlling computer. Within the system, a K-frame-based methodology is investigated, which include several probable algorithm combinations. Three groups of experiments are conducted. An optimal algorithm combination, A16, is determined through the first group experiments. In the second group experiments, various types of vehicles are chosen to verify the generality and repeatability of the proposed system and methodology. The third group experiments are implemented to compare with vision-based methods and other lidar-based methods. The experimental results show that the proposed K-frame-based methodology is far more accurate than the comparative methods.

10.
Plasmid ; 108: 102477, 2020 03.
Article in English | MEDLINE | ID: mdl-31870701

ABSTRACT

OBJECTIVES: Systematic comparison of multiple plasmids remains challenging. We aimed to develop a new method for phylogenetic analysis of plasmids, open reading frame (ORF)-based binarized structure network analysis of plasmids (OSNAp). METHODS: With the OSNAp, the genetic structures of plasmids in a given plasmid group are expressed as binary sequences based on the presence or absence of ORFs regardless of their positions or directions. As a proof-of-concept, ORFs were collected from 101 complete I1 plasmid sequences, and their corresponding binary sequences were generated. A tree was generated using the neighbor-net, an algorithm for constructing phylogenetic networks based on distance between taxa, to visualize the plasmid phylogeny drawn from binary sequences. The results were compared with those of plasmid sequence types (pSTs) defined by plasmid multilocus sequence typing (pMLST). RESULTS: All I1 plasmids were placed on the phylogenetic tree constructed from the binary sequences. Most plasmids belonging to the same pSTs had Dice indices of ≥0.95 and were placed in the same OSNAp split. On the other hand, pST12 plasmids were distributed on separate splits due to differences in ORFs not used in pMLST, suggesting improved differentiation of the plasmids with OSNAp compared with pMLST. CONCLUSION: OSNAp is a novel holistic approach to assess relatedness of a population of plasmids in a given plasmid group based on nucleotide sequence data. It provides higher discrimination than pMLST, which may prove useful in tracing bacteria that harbor plasmids of shared origins.


Subject(s)
Computational Biology/methods , Open Reading Frames , Phylogeny , Plasmids/classification , Plasmids/genetics , Gene Order , Multilocus Sequence Typing
11.
J Neurooncol ; 149(2): 315-323, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32852725

ABSTRACT

PURPOSE: Stereotactic biopsies are routinely used to establish a histological diagnosis of unclear cerebral pathologies. Intraoperatively, frozen-section analysis often confirms diagnostic tissue but also exhibits methodological pitfalls. Intraoperative five-aminolevulinic acid (5-ALA)-fluorescence has been described not only in gliomas but also in other cerebral pathologies. In this study, we assessed the 5-ALA contribution to the intraoperative confirmation of diagnostic tissue in frame-based stereotactic biopsies of unclear intracerebral lesions in direct comparison with frozen-section analysis. METHODS: Patients scheduled for stereotactic biopsies of unclear intracerebral pathologies received 5-ALA preoperatively. Obtained samples were intraoperatively analyzed for the presence of 5-ALA-fluorescence. One sample was used for frozen-section and a second one for permanent histopathological analysis. The diagnostic yield of frozen-section and intraoperative 5-ALA-fluorescence was calculated. The inclusion criteria for this retrospective analysis were unclear intracerebral lesions with inconclusive imaging findings and several differential diagnoses. RESULTS: A total of 39 patients with 122 obtained specimens were included. The overall diagnostic yield was 92.3%. 5-ALA-positive samples were obtained in 74.3% (29/39) of patients and all these samples contained diagnostic tissue. 5-ALA-fluorescence confirmed diagnostic tissue with a sensitivity of 100%, a specificity of 27%, a positive predictive value (PPV) of 78%, and a negative predictive value (NPV) of 100%. A clear diagnosis could be predicted by frozen section with a sensitivity of 80%, a specificity of 100%, a PPV of 100%, and NPV of 30%; Fisher's exact test p = 0.01. CONCLUSION: The 5-ALA-fluorescence in stereotactic biopsies of unclear intracerebral pathologies exhibits a high PPV/NPV for intraoperative confirmation of diagnostic tissue and might increase the diagnostic yield of the procedure by overcoming some of the limitations of frozen-section.


Subject(s)
Brain Neoplasms/diagnosis , Fluorescence , Frozen Sections/methods , Glioma/diagnosis , Stereotaxic Techniques/instrumentation , Adult , Aged , Aged, 80 and over , Biopsy , Brain Neoplasms/surgery , Female , Follow-Up Studies , Glioma/surgery , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Young Adult
12.
Stereotact Funct Neurosurg ; 98(5): 313-318, 2020.
Article in English | MEDLINE | ID: mdl-32818947

ABSTRACT

BACKGROUND: The O-arm O2 imaging system (OAO2) is an intraoperative cone beam 3D tomogram imaging tool with a wide enough field of view to perform intraoperative fiducial registration with standard stereotactic frames. However, the OAO2 3D images (cone beam CT) provide limited tissue contrast, which may reduce the accuracy of fusion to a preoperative targeting MRI for planning awake deep brain stimulation (DBS) surgeries. Therefore, most users obtain a preoperative CT scan to use as the reference exam for computational fusion with the preoperative targeting MRI and the intraoperative OAO2 cone beam CT. OBJECTIVE: In this study, we retrospectively analyzed the discrepancy between stereotactic coordinates of deep brain targets on MRI derived from intraoperative OAO2 fiducial registration with and without the use of preoperative CT as the reference for image fusion. METHODS: Preoperative stereotactic CT/MRI and intraoperative OAO2 cone beam CT were retrospectively evaluated for 27 consecutive DBS patients, using two commercial surgical planning software packages (BrainLab Elements and Medtronic Stealth 8). The anterior commissure, posterior commissure, and left subthalamic nucleus were identified on preoperative MRI. Each patient had intraoperative fiducial registration using the OAO2 with a Leksell headframe. For each subject, the reference scan for image fusion was set as either the preoperative CT or the preoperative MRI (volumetric T1 with contrast). Computed stereotactic coordinates for each target were then compared. RESULTS: For 8 of 27 subjects, a discrepancy greater than 1.0 mm for at least one designated target was observed utilizing the Medtronic Stealth S8 planning station when a preoperative CT scan was not used. An additional 5 (5/27) had a discrepancy greater than 2 mm. The most common discrepancy was in the z axis. No coordinate discrepancies greater than 1 mm were observed utilizing BrainLab Elements. CONCLUSIONS: Caution is advised in fusing intraoperative OAO2 images directly to preoperative MRI without a preoperative CT as the reference exam for image fusion, as the specific fusion algorithm employed may unpredictably affect targeting accuracy.


Subject(s)
Deep Brain Stimulation/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Preoperative Care/methods , Stereotaxic Techniques , Tomography, X-Ray Computed/methods , Aged , Aged, 80 and over , Electrodes, Implanted , Female , Humans , Male , Middle Aged , Movement Disorders/diagnostic imaging , Movement Disorders/therapy , Retrospective Studies , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/physiology , Surgery, Computer-Assisted/methods
13.
Acta Neurochir (Wien) ; 162(10): 2527-2532, 2020 10.
Article in English | MEDLINE | ID: mdl-32458403

ABSTRACT

BACKGROUND: Stereotactic electroencephalography (SEEG) has largely become the preferred method for intracranial seizure localization in epileptic patients due to its low morbidity and minimally invasive approach. While robotic placement is gaining popularity, many centers continue to use manual frame-based and frameless methods for electrode insertion. However, it is unclear how these methods compare in regard to accuracy, precision, and safety. Here, we aim to compare frame-based insertion using a CRW frame (Integra®) and frameless insertion using the StealthStation™ S7 (Medtronic®) navigation system for common temporal SEEG targets. METHODS: We retrospectively examined electrode targets in SEEG patients that were implanted with either frame-based or frameless methods at a level 4 epilepsy center. We focused on two commonly used targets: amygdala and hippocampal head. Stealth station software was used to merge pre-operative MR with post-operative CT images for each patient, and coordinates for each electrode tip were calculated in relation to the midcommissural point. These were compared to predetermined ideal coordinates in regard to error and directional bias. RESULTS: A total of 81 SEEG electrodes were identified in 23 patients (40 amygdala and 41 hippocampal head). Eight of 45 electrodes (18%) placed with the frameless technique and 0 of 36 electrodes (0%) placed with the frame-based technique missed their target and were not clinically useful. The average Euclidean distance comparing actual to ideal electrode tip coordinates for frameless vs. frame-based techniques was 11.0 mm vs. 7.1 mm (p < 0.001) for the amygdala and 12.4 mm vs. 8.5 mm (p < 0.001) for the hippocampal head, respectively. There were no hemorrhages or clinical complications in either group. CONCLUSIONS: Based on this series, frame-based SEEG insertion is significantly more accurate and precise and results in more clinically useful electrode contacts, compared to frameless insertion using a navigation guidance system. This has important implications for centers not currently using robotic insertion.


Subject(s)
Neuronavigation/methods , Postoperative Hemorrhage/epidemiology , Adolescent , Adult , Amygdala/surgery , Electrodes, Implanted/adverse effects , Female , Hippocampus/surgery , Humans , Male , Neuronavigation/adverse effects , Neuronavigation/standards , Postoperative Hemorrhage/etiology
14.
J Appl Clin Med Phys ; 20(11): 95-103, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31587520

ABSTRACT

OBJECT: The purpose of this study was to compare two methods of stereotactic localization in Gamma Knife treatment planning: cone beam computed tomography (CBCT) or fiducial. While the fiducial method is the traditional method of localization, CBCT is now available for use with the Gamma Knife Icon. This study seeks to determine whether a difference exists between the two methods and then whether one is better than the other regarding accuracy and workflow optimization. METHODS: Cone beam computed tomography was used to define stereotactic space around the Elekta Film Pinprick phantom and then treated with film in place. The same phantom was offset known amounts from center and then imaged with CBCT and registered with the reference CBCT image to determine if measured offsets matched those known. Ten frameless and 10 frame-based magnetic resonance imaging (MRI) to CBCT patient fusions were retrospectively evaluated using the TG-132 TRE method. The stereotactic coordinates defined by CBCT and traditional fiducials were compared on the Elekta 8 cm Ball phantom, an anthropomorphic phantom, and actual patient data. Offsets were introduced to the anthropomorphic phantom in the stereotactic frame and CBCT's ability to detect those offsets was determined. RESULTS: Cone beam computed tomography defines stereotactic space well within the established limits of the mechanical alignment system. The CBCT to CBCT registration can detect offsets accurately to within 0.1 mm and 0.5°. In all cases, some disagreement existed between fiducial localization and that of CBCT which in some cases was small, but also was as high as 0.43 mm in the phantom domain and as much as 1.54 mm in actual patients. CONCLUSION: Cone beam computed tomography demonstrates consistent accuracy in defining stereotactic space. Since both localization methods do not agree with each other consistently, the more reliable method must be identified. Cone beam computed tomography can accurately determine offsets occurring within stereotactic space that would be nondiscernible utilizing the fiducial method and seems to be more reliable. Using CBCT localization offers the opportunity to streamline workflow both from a patient and clinic perspective and also shows patient position immediately prior to treatment.


Subject(s)
Cone-Beam Computed Tomography/methods , Magnetic Resonance Imaging/methods , Neoplasms/radiotherapy , Phantoms, Imaging , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Neoplasms/diagnostic imaging , Organs at Risk/radiation effects , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Workflow
15.
J Appl Clin Med Phys ; 20(8): 21-28, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31328368

ABSTRACT

Single-isocenter volumetric modulated arc therapy (VMAT) technique can provide stereotactic radiosurgery (SRS) treatment with improved delivery efficiency for treating multiple metastases. Nevertheless, planning is time consuming and verification of frame-based SRS setup, especially at noncoplanar angles, can be challenging. We report on a single-isocenter VMAT technique with a special focus on improving treatment workflow and delivery verification to exploit the minimized patient motion of the frame-based SRS. We developed protocols for preplanning and verification for VMAT and evaluated them for ten patient cases. Preplans based on MRI were used to generate comparable treatment plans using CT taken on the day of treatment after frame placement. Target positioning accuracy was evaluated by stereoscopic in-room kV imaging. Dosimetric accuracy of the noncoplanar plan delivery was validated using measurement-guided 3D dose reconstruction as well as film-based end-to-end test with a Rando phantom. Average absolute differences of homogeneity indices, conformity indices, and V12Gy between MR preplans and CT-based plans were within 5%. In-room imaging positioning accuracy of 0.4 mm was verified to be independent of the distance to the isocenter. For treatment verification, average local and global passing rates of the 3D gamma (1 mm, 3%) were 86% and 99%, respectively. D99 values were matched within 5% for individual target structures (>0.5 cc). Additional film analysis confirmed dosimetric accuracy for small targets that had large verification errors in the 3D dose reconstruction. Our results suggest that the advantages of frame-based SRS and noncoplanar single-isocenter VMAT technique can be combined for efficient and accurate treatment of patients with multiple metastases.


Subject(s)
Brain Neoplasms/secondary , Brain Neoplasms/surgery , Magnetic Resonance Imaging/methods , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed/methods , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Organs at Risk/radiation effects , Prognosis , Radiotherapy Dosage
16.
Sensors (Basel) ; 20(1)2019 Dec 22.
Article in English | MEDLINE | ID: mdl-31877903

ABSTRACT

In this paper, a multi-frame based homography estimation method is proposed for video stitching in static camera environments. A homography that is robust against spatio-temporally induced noise can be estimated by intervals, using feature points extracted during a predetermined time interval. The feature point with the largest blob response in each quantized location bin, a representative feature point, is used for matching a pair of video sequences. After matching representative feature points from each camera, the homography for the interval is estimated by random sample consensus (RANSAC) on the matched representative feature points, with their chances of being sampled proportional to their numbers of occurrences in the interval. The performance of the proposed method is compared with that of the per-frame method by investigating alignment distortion and stitching scores for daytime and noisy video sequence pairs. It is shown that alignment distortion in overlapping regions is reduced and the stitching score is improved by the proposed method. The proposed method can be used for panoramic video stitching with static video cameras and for panoramic image stitching with less alignment distortion.

17.
Stereotact Funct Neurosurg ; 96(5): 327-334, 2018.
Article in English | MEDLINE | ID: mdl-30481770

ABSTRACT

BACKGROUND/AIMS: Technological advancements had a serious impact on the evolution of robotic systems in stereotactic neurosurgery over the last three decades and may turn robot-assisted stereotactic neurosurgery into a sophisticated alternative to purely mechanical guiding devices. OBJECTIVES: To compare robot-assisted and conventional frame-based deep brain stimulation (DBS) surgery with regard to accuracy, precision, reliability, duration of surgery, intraoperative imaging quality, safety and maintenance using a standardized setup. METHODS: Retrospective evaluation of 80 consecutive patients was performed who underwent DBS surgery using either a frame-based mechanical stereotactic guiding device (n = 40) or a stereotactic robot (ROSA Brain, MedTech, Montpellier, France) (n = 40). RESULTS: The mean accuracy of robot-assisted and conventional lead implantation was 0.76 mm (SD: 0.37 mm, range: 0.17-1.52 mm) and 1.11 mm (SD: 0.59 mm, range: 0.10-2.90 mm), respectively. We observed a statistically significant difference in accuracy (p < 0.001) when comparing lateral deviations between both modalities. Furthermore, a statistical significance was observed when investigating the proportion of values exceeding 2.00 mm between both groups (p = 0.013). In 8.75% (n = 7) of conventionally implanted leads, lateral deviations were greater than 2.0 mm. With a maximum value of 1.52 mm, this threshold was never reached during robot-guided DBS. The mean duration of DBS surgery could be reduced significantly (p < 0.001) when comparing robot-guided DBS (mean: 325.1 ± 81.6 min) to conventional lead implantation (mean: 394.8 ± 66.6 min). CONCLUSIONS: Robot-assisted DBS was shown to be superior to conventional lead implantation with respect to accuracy, precision and operation time. Improved quality control, continuous intraoperative monitoring and less manual adjustment likely contribute to the robotic system's reliability allowing high accuracy during lead implantation despite limited experience. Hence, robot-assisted lead implantation can be considered an appropriate and reliable alternative to purely mechanical devices.


Subject(s)
Brain/diagnostic imaging , Brain/surgery , Deep Brain Stimulation/methods , Neurosurgical Procedures/methods , Robotic Surgical Procedures/methods , Stereotaxic Techniques , Adult , Aged , Female , Humans , Imaging, Three-Dimensional/methods , Male , Middle Aged , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/surgery , Reproducibility of Results , Retrospective Studies , Stereotaxic Techniques/instrumentation
18.
Neurosurg Focus ; 45(3): E7, 2018 09.
Article in English | MEDLINE | ID: mdl-30173607

ABSTRACT

Stereoelectroencephalography (SEEG) is an intracranial diagnostic measure that has grown in popularity in the United States as outcomes data have demonstrated its benefits and safety. The main uses of SEEG include 1) exploration of deep cortical/sulcal structures; 2) bilateral recordings; and 3) 3D mapping of epileptogenic zones. While SEEG has gradually been accepted for treatment in adults, there is less consensus on its utility in children. In this literature review, the authors seek to describe the current state of SEEG with a focus on the more recent technology-enabled surgical techniques and demonstrate its efficacy in the pediatric epilepsy population.


Subject(s)
Electroencephalography/methods , Epilepsy/diagnosis , Epilepsy/physiopathology , Stereotaxic Techniques , Child , Electrodes, Implanted/trends , Electroencephalography/trends , Epilepsy/surgery , Humans , Stereotaxic Techniques/trends
19.
J Appl Clin Med Phys ; 19(2): 111-120, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29363282

ABSTRACT

PURPOSE: Noninvasive frameless systems are increasingly being utilized for head immobilization in stereotactic radiosurgery (SRS). Knowing the head positioning reproducibility of frameless systems and their respective ability to limit intrafractional head motion is important in order to safely perform SRS. The purpose of this study was to evaluate and compare the intrafractional head motion of an invasive frame and a series of frameless systems for single fraction SRS and fractionated/hypofractionated stereotactic radiotherapy (FSRT/HF-SRT). METHODS: The noninvasive PinPoint system was used on 15 HF-SRT and 21 SRS patients. Intrafractional motion for these patients was compared to 15 SRS patients immobilized with Cosman-Roberts-Wells (CRW) frame, and a FSRT population that respectively included 23, 32, and 15 patients immobilized using Gill-Thomas-Cosman (GTC) frame, Uniframe, and Orfit. All HF-SRT and FSRT patients were treated using intensity-modulated radiation therapy on a linear accelerator equipped with cone-beam CT (CBCT) and a robotic couch. SRS patients were treated using gantry-mounted stereotactic cones. The CBCT image-guidance protocol included initial setup, pretreatment and post-treatment verification images. The residual error determined from the post-treatment CBCT was used as a surrogate for intrafractional head motion during treatment. RESULTS: The mean intrafractional motion over all fractions with PinPoint was 0.62 ± 0.33 mm and 0.45 ± 0.33 mm, respectively, for the HF-SRT and SRS cohort of patients (P-value = 0.266). For CRW, GTC, Orfit, and Uniframe, the mean intrafractional motions were 0.30 ± 0.21 mm, 0.54 ± 0.76 mm, 0.73 ± 0.49 mm, and 0.76 ± 0.51 mm, respectively. For CRW, PinPoint, GTC, Orfit, and Uniframe, intrafractional motion exceeded 1.5 mm in 0%, 0%, 5%, 6%, and 8% of all fractions treated, respectively. CONCLUSIONS: The noninvasive PinPoint system and the invasive CRW frame stringently limit cranial intrafractional motion, while the latter provides superior immobilization. Based on the results of this study, our clinical practice for malignant tumors has evolved to apply an invasive CRW frame only for metastases in eloquent locations to minimize normal tissue exposure.


Subject(s)
Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Cone-Beam Computed Tomography/methods , Immobilization/instrumentation , Patient Positioning , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Motion , Prognosis , Radiotherapy Dosage , Radiotherapy, Image-Guided/methods
20.
Sensors (Basel) ; 18(4)2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29649150

ABSTRACT

The micro-electro-mechanical-system (MEMS) inertial measurement unit (IMU) has been widely used in the field of inertial navigation due to its small size, low cost, and light weight, but aligning MEMS IMUs remains a challenge for researchers. MEMS IMUs have been conventionally aligned on a static base, requiring other sensors, such as magnetometers or satellites, to provide auxiliary information, which limits its application range to some extent. Therefore, improving the alignment accuracy of MEMS IMU as much as possible under swing conditions is of considerable value. This paper proposes an alignment method based on the rotation modulation technique (RMT), which is completely self-aligned, unlike the existing alignment techniques. The effect of the inertial sensor errors is mitigated by rotating the IMU. Then, inertial frame-based alignment using the rotation modulation technique (RMT-IFBA) achieved coarse alignment on the swing base. The strong tracking filter (STF) further improved the alignment accuracy. The performance of the proposed method was validated with a physical experiment, and the results of the alignment showed that the standard deviations of pitch, roll, and heading angle were 0.0140 ° , 0.0097 ° , and 0.91 ° , respectively, which verified the practicality and efficacy of the proposed method for the self-alignment of the MEMS IMU on a swing base.

SELECTION OF CITATIONS
SEARCH DETAIL