Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 82(12): 2298-2314, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35714587

ABSTRACT

Faithful DNA replication is critical for the maintenance of genomic integrity. Although DNA replication machinery is highly accurate, the process of DNA replication is constantly challenged by DNA damage and other intrinsic and extrinsic stresses throughout the genome. A variety of cellular stresses interfering with DNA replication, which are collectively termed replication stress, pose a threat to genomic stability in both normal and cancer cells. To cope with replication stress and maintain genomic stability, cells have evolved a complex network of cellular responses to alleviate and tolerate replication problems. This review will focus on the major sources of replication stress, the impacts of replication stress in cells, and the assays to detect replication stress, offering an overview of the hallmarks of DNA replication stress.


Subject(s)
DNA Replication , Genomic Instability , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , DNA Repair , Humans
2.
Cell Mol Life Sci ; 81(1): 123, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459149

ABSTRACT

Maintaining genomic stability is a prerequisite for proliferating NPCs to ensure genetic fidelity. Though histone arginine methylation has been shown to play important roles in safeguarding genomic stability, the underlying mechanism during brain development is not fully understood. Protein arginine N-methyltransferase 5 (PRMT5) is a type II protein arginine methyltransferase that plays a role in transcriptional regulation. Here, we identify PRMT5 as a key regulator of DNA repair in response to double-strand breaks (DSBs) during NPC proliferation. Prmt5F/F; Emx1-Cre (cKO-Emx1) mice show a distinctive microcephaly phenotype, with partial loss of the dorsal medial cerebral cortex and complete loss of the corpus callosum and hippocampus. This phenotype is resulted from DSBs accumulation in the medial dorsal cortex followed by cell apoptosis. Both RNA sequencing and in vitro DNA repair analyses reveal that PRMT5 is required for DNA homologous recombination (HR) repair. PRMT5 specifically catalyzes H3R2me2s in proliferating NPCs in the developing mouse brain to enhance HR-related gene expression during DNA repair. Finally, overexpression of BRCA1 significantly rescues DSBs accumulation and cell apoptosis in PRMT5-deficient NSCs. Taken together, our results show that PRMT5 maintains genomic stability by regulating histone arginine methylation in proliferating NPCs.


Subject(s)
Neural Stem Cells , Recombinational DNA Repair , Animals , Mice , Arginine/metabolism , DNA Repair , Genomic Instability , Genomics , Histones/genetics , Histones/metabolism , Neural Stem Cells/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
3.
Cell Mol Biol Lett ; 29(1): 29, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431560

ABSTRACT

Malignant melanoma remains the most lethal form of skin cancer, exhibiting poor prognosis after forming distant metastasis. Owing to their potential tumor-suppressive properties by regulating oncogenes and tumor suppressor genes, microRNAs are important player in melanoma development and progression. We defined the loss of miR-101-3p expression in melanoma cells compared with melanocytes and melanoblast-related cells as an early event in tumor development and aimed to understand the tumor suppressive role of miR-101-3p and its regulation of important cellular processes. Reexpression of miR-101-3p resulted in inhibition of proliferation, increase in DNA damage, and induction of apoptosis. We further determined the nuclear structure protein Lamin B1, which influences nuclear processes and heterochromatin structure, ATRX, CASP3, and PARP as an important direct target of miR-101-3p. RNA sequencing and differential gene expression analysis after miR-101-3p reexpression supported our findings and the importance of loss of mir-101-3p for melanoma progression. The validated functional effects are related to genomic instability, as recent studies suggest miRNAs plays a key role in mediating this cellular process. Therefore, we concluded that miR-101-3p reexpression increases the genomic instability, leading to irreversible DNA damage, which leads to apoptosis induction. Our findings suggest that the loss of miR-101-3p in melanoma serves as an early event in melanoma progression by influencing the genomic integrity to maintain the increased bioenergetic demand.


Subject(s)
Melanoma , MicroRNAs , Skin Neoplasms , Humans , Melanoma/genetics , MicroRNAs/metabolism , Skin Neoplasms/genetics , Apoptosis/genetics , Genomics , Genomic Instability , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
4.
Mol Ecol ; 32(2): 369-380, 2023 01.
Article in English | MEDLINE | ID: mdl-36320186

ABSTRACT

Transposable elements (TEs) are mobile genetic sequences, which can cause the accumulation of genomic damage in the lifetime of an organism. The regulation of TEs, for instance via the piRNA-pathway, is an important mechanism to protect the integrity of genomes, especially in the germ-line where mutations can be transmitted to offspring. In eusocial insects, soma and germ-line are divided among worker and reproductive castes, so one may expect caste-specific differences in TE regulation to exist. To test this, we compared whole-genome levels of repeat element transcription in the fat body of female workers, kings and five different queen stages of the higher termite, Macrotermes natalensis. In this species, queens can live over 20 years, maintaining near maximum reproductive output, while sterile workers only live weeks. We found a strong, positive correlation between TE expression and the expression of neighbouring genes in all castes. However, we found substantially higher TE activity in workers than in reproductives. Furthermore, TE expression did not increase with age in queens, despite a sevenfold increase in overall gene expression, due to a significant upregulation of the piRNA-pathway in 20-year-old queens. Our results suggest a caste- and age-specific regulation of the piRNA-pathway has evolved in higher termites that is analogous to germ-line-specific activity in solitary organisms. In the fat body of these termite queens, an important metabolic tissue for maintaining their extreme longevity and reproductive output, an efficient regulation of TEs likely protects genome integrity, thus further promoting reproductive fitness even at high age.


Subject(s)
Isoptera , Animals , Female , Isoptera/genetics , Insecta , Fertility , Reproduction/genetics , Longevity
5.
Mol Ther ; 29(8): 2535-2553, 2021 08 04.
Article in English | MEDLINE | ID: mdl-33831558

ABSTRACT

Cellular therapies based on induced pluripotent stem cells (iPSCs) come out of age and an increasing number of clinical trials applying iPSC-based transplants are ongoing or in preparation. Recent studies, however, demonstrated a high number of small-scale mutations in iPSCs. Although the mutational load in iPSCs seems to be largely derived from their parental cells, it is still unknown whether reprogramming may enrich for individual mutations that could lead to loss of functionality and tumor formation from iPSC derivatives. 30 hiPSC lines were analyzed by whole exome sequencing. High accuracy amplicon sequencing showed that all analyzed small-scale variants pre-existed in their parental cells and that individual mutations present in small subpopulations of parental cells become enriched among hiPSC clones during reprogramming. Among those, putatively actionable driver mutations affect genes related to cell-cycle control, cell death, and pluripotency and may confer a selective advantage during reprogramming. Finally, a short hairpin RNA (shRNA)-based experimental approach was applied to provide additional evidence for the individual impact of such genes on the reprogramming efficiency. In conclusion, we show that enriched mutations in curated onco- and tumor suppressor genes may account for an increased tumor risk and impact the clinical value of patient-derived hiPSCs.


Subject(s)
Clone Cells/cytology , Exome Sequencing/methods , Induced Pluripotent Stem Cells/cytology , Mutation , Neoplasms/genetics , Aged , Cell Cycle , Cell Death , Cell Differentiation , Cell Line , Cells, Cultured , Cellular Reprogramming , Clone Cells/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Induced Pluripotent Stem Cells/chemistry , Neoplasms/pathology
6.
Molecules ; 27(10)2022 May 15.
Article in English | MEDLINE | ID: mdl-35630636

ABSTRACT

Excess reactive oxygen species production and free radical formation can lead to oxidative stress that can damage cells, tissues, and organs. Cellular oxidative stress is defined as the imbalance between ROS production and antioxidants. This imbalance can lead to malfunction or structure modification of major cellular molecules such as lipids, proteins, and DNAs. During oxidative stress conditions, DNA and protein structure modifications can lead to various diseases. Various antioxidant-specific gene expression and signal transduction pathways are activated during oxidative stress to maintain homeostasis and to protect organs from oxidative injury and damage. The liver is more vulnerable to oxidative conditions than other organs. Antioxidants, antioxidant-specific enzymes, and the regulation of the antioxidant responsive element (ARE) genes can act against chronic oxidative stress in the liver. ARE-mediated genes can act as the target site for averting/preventing liver diseases caused by oxidative stress. Identification of these ARE genes as markers will enable the early detection of liver diseases caused by oxidative conditions and help develop new therapeutic interventions. This literature review is focused on antioxidant-specific gene expression upon oxidative stress, the factors responsible for hepatic oxidative stress, liver response to redox signaling, oxidative stress and redox signaling in various liver diseases, and future aspects.


Subject(s)
Antioxidants , Liver Diseases , Antioxidants/metabolism , Genomics , Humans , Liver Diseases/drug therapy , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
7.
J Cell Physiol ; 236(8): 5664-5675, 2021 08.
Article in English | MEDLINE | ID: mdl-33432587

ABSTRACT

Warsaw breakage syndrome (WABS), is caused by biallelic mutations of DDX11, a gene coding a DNA helicase. We have recently reported two affected sisters, compound heterozygous for a missense (p.Leu836Pro) and a frameshift (p.Lys303Glufs*22) variant. By investigating the pathogenic mechanism, we demonstrate the inability of the DDX11 p.Leu836Pro mutant to unwind forked DNA substrates, while retaining DNA binding activity. We observed the accumulation of patient-derived cells at the G2/M phase and increased chromosomal fragmentation after mitomycin C treatment. The phenotype partially overlaps with features of the Fanconi anemia cells, which shows not only genomic instability but also defective mitochondria. This prompted us to examine mitochondrial functionality in WABS cells and revealed an altered aerobic metabolism. This opens the door to the further elucidation of the molecular and cellular basis of an impaired mitochondrial phenotype and sheds light on this fundamental process in cell physiology and the pathogenesis of these diseases.


Subject(s)
DNA Helicases/genetics , Fanconi Anemia/genetics , Genomic Instability/genetics , Kearns-Sayre Syndrome/metabolism , Mitochondrial Myopathies/metabolism , Abnormalities, Multiple/genetics , DEAD-box RNA Helicases/genetics , DNA Helicases/metabolism , Fanconi Anemia/metabolism , Genomics , Humans , Kearns-Sayre Syndrome/genetics , Mitochondrial Myopathies/genetics , Mutation/genetics
8.
Biochem J ; 477(18): 3567-3582, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32886094

ABSTRACT

Recombination activating genes (RAGs), consisting of RAG1 and RAG2 have ability to perform spatially and temporally regulated DNA recombination in a sequence specific manner. Besides, RAGs also cleave at non-B DNA structures and are thought to contribute towards genomic rearrangements and cancer. The nonamer binding domain of RAG1 binds to the nonamer sequence of the signal sequence during V(D)J recombination. However, deletion of NBD did not affect RAG cleavage on non-B DNA structures. In the present study, we investigated the involvement of other RAG domains when RAGs act as a structure-specific nuclease. Studies using purified central domain (CD) and C-terminal domain (CTD) of the RAG1 showed that CD of RAG1 exhibited high affinity and specific binding to heteroduplex DNA, which was irrespective of the sequence of single-stranded DNA, unlike CTD which showed minimal binding. Furthermore, we show that ZnC2 of RAG1 is crucial for its binding to DNA structures as deletion and point mutations abrogated the binding of CD to heteroduplex DNA. Our results also provide evidence that unlike RAG cleavage on RSS, central domain of RAG1 is sufficient to cleave heteroduplex DNA harbouring pyrimidines, but not purines. Finally, we show that a point mutation in the DDE catalytic motif is sufficient to block the cleavage of CD on heteroduplex DNA. Therefore, in the present study we demonstrate that the while ZnC2 module in central domain of RAG1 is required for binding to non-B DNA structures, active site amino acids are important for RAGs to function as a structure-specific nuclease.


Subject(s)
Homeodomain Proteins/chemistry , Nucleic Acid Heteroduplexes/chemistry , Amino Acid Motifs , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleic Acid Heteroduplexes/genetics , Nucleic Acid Heteroduplexes/metabolism , Protein Domains , Structure-Activity Relationship , V(D)J Recombination
9.
Int J Mol Sci ; 22(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34638668

ABSTRACT

Genomic studies have identified some of the most relevant genetic players in Neuroendocrine Neoplasm (NEN) tumorigenesis. However, we are still far from being able to draw a model that encompasses their heterogeneity, elucidates the different biological effects consequent to the identified molecular events, or incorporates extensive knowledge of molecular biomarkers and therapeutic targets. Here, we reviewed recent insights in NEN tumorigenesis from selected basic research studies on animal models, highlighting novel players in the intergenic cooperation and peculiar mechanisms including splicing dysregulation, chromatin stability, or cell dedifferentiation. Furthermore, models of tumorigenesis based on composite interactions other than a linear progression of events are proposed, exemplified by the involvement in NEN tumorigenesis of genes regulating complex functions, such as MEN1 or DAXX. Although limited by interspecies differences, animal models have proved helpful for the more in-depth study of every facet of tumorigenesis, showing that the identification of driver mutations is only one of the many necessary steps and that other mechanisms are worth investigating.


Subject(s)
Carcinogenesis/genetics , Neuroendocrine Tumors/genetics , Animals , Biomarkers, Tumor/genetics , Carcinogenesis/pathology , Cell Dedifferentiation/genetics , Chromatin/genetics , Humans , Mutation/genetics , Neuroendocrine Tumors/pathology
10.
Genes Cells ; 24(5): 377-389, 2019 May.
Article in English | MEDLINE | ID: mdl-30929290

ABSTRACT

In Caenorhabditis elegans, germline cells remain transcriptionally silenced during embryogenesis. The transcriptional silencing is achieved by two different mechanisms: One is the inhibition of RNA polymerase II in P2-P4 cells at the establishment stage, and another is chromatin-based silencing in two primordial germ cells (PGCs) at the maintenance stage; however, the molecular mechanism underlying chromatin-based silencing is less understood. We investigated the role of the chromodomain protein MRG-1, which is an essential maternal factor for germline development, in transcriptional silencing in PGCs. PGCs lacking maternal MRG-1 showed increased levels of two histone modifications (H3K4me2 and H4K16ac), which are epigenetic markers for active transcription, and precocious activation of germline promoters. Loss of MES-4, a H3K36 methyltransferase, also caused similar derepression of the germline genes in PGCs, suggesting that both MRG-1 and MES-4 function in chromatin-based silencing in PGCs. In addition, the mrg-1 null mutant showed abnormal chromosome structures and a decrease in homologous recombinase RAD-51 foci in PGCs, but the mes-4 null mutant did not show such phenotypes. Taken together, we propose that MRG-1 has two distinct functions: chromatin-based transcriptional silencing and preserving genomic integrity at the maintenance stage of PGCs.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Chromatin/genetics , Gene Expression Regulation, Developmental , Gene Silencing , Germ Cells/metabolism , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Chromatin/metabolism , Genomic Instability , Germ Cells/cytology , Histone Code , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
11.
J Virol ; 94(1)2019 12 12.
Article in English | MEDLINE | ID: mdl-31597776

ABSTRACT

The major obstacle to more-definitive treatment for HIV infection is the early establishment of virus that persists despite long-term combination antiretroviral therapy (cART) and can cause recrudescent viremia if cART is interrupted. Previous studies of HIV DNA that persists despite cART indicated that only a small fraction of persistent viral sequences was intact. Experimental simian immunodeficiency virus (SIV) infections of nonhuman primates (NHPs) are essential models for testing interventions designed to reduce the viral reservoir. We studied the viral genomic integrity of virus that persists during cART under conditions typical of many NHP reservoir studies, specifically with cART started within 1 year postinfection and continued for at least 9 months. The fraction of persistent DNA in SIV-infected NHPs starting cART during acute or chronic infection was assessed with a multiamplicon, real-time PCR assay designed to analyze locations that are regularly spaced across the viral genome to maximize coverage (collectively referred to as "tile assay") combined with near-full-length (nFL) single-genome sequencing. The tile assay is used to rapidly screen for major deletions, with nFL sequence analysis used to identify additional potentially inactivating mutations. Peripheral blood mononuclear cells (PBMC) from animals started on cART within 1 month of infection, sampled at least 9 months after cART initiation, contained at least 80% intact genomes, whereas those from animals started on cART 1 year postinfection and treated for 1 year contained intact genomes only 47% of the time. The most common defect identified was large deletions, with the remaining defects caused by APOBEC-mediated mutations, frameshift mutations, and inactivating point mutations. Overall, this approach can be used to assess the intactness of persistent viral DNA in NHPs.IMPORTANCE Molecularly defining the viral reservoir that persists despite antiretroviral therapy and that can lead to rebound viremia if antiviral therapy is removed is critical for testing interventions aimed at reducing this reservoir. In HIV infection in humans with delayed treatment initiation and extended treatment duration, persistent viral DNA has been shown to be dominated by nonfunctional genomes. Using multiple real-time PCR assays across the genome combined with near-full-genome sequencing, we defined SIV genetic integrity after 9 to 18 months of combination antiretroviral therapy in rhesus macaques starting therapy within 1 year of infection. In the animals starting therapy within a month of infection, the vast majority of persistent DNA was intact and presumptively functional. Starting therapy within 1 year increased the nonintact fraction of persistent viral DNA. The approach described here allows rapid screening of viral intactness and is a valuable tool for assessing the efficacy of novel reservoir-reducing interventions.


Subject(s)
Anti-Retroviral Agents/pharmacology , Genome, Viral/drug effects , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/genetics , Viremia/drug therapy , Animals , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , DNA, Viral/antagonists & inhibitors , DNA, Viral/genetics , DNA, Viral/metabolism , Emtricitabine/pharmacology , Genomics/methods , Macaca mulatta , Mutation , RNA, Viral/antagonists & inhibitors , RNA, Viral/genetics , RNA, Viral/metabolism , Raltegravir Potassium/pharmacology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity , Tenofovir/pharmacology , Viral Load/drug effects , Viremia/immunology , Virus Replication/drug effects , Whole Genome Sequencing
12.
J Reprod Dev ; 66(5): 411-419, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-32378528

ABSTRACT

Maintaining genomic integrity in mammalian early embryos, which are deficient in DNA damage repair, is critical for normal preimplantation and subsequent development. Abnormalities in DNA damage repair in preimplantation embryos can cause not only developmental arrest, but also diseases such as congenital disorders and cancers. Histone H4 lysine 20 monomethylation (H4K20me1) is involved in DNA damage repair and regulation of gene expression. However, little is known about the role of H4K20me1 during mouse preimplantation development. In this study, we revealed that H4K20me1 mediated by SETD8 is involved in maintaining genomic integrity. H4K20me1 was present throughout preimplantation development. In addition, reduction in the level of H4K20me1 by inhibition of SETD8 activity or a dominant-negative mutant of histone H4 resulted in developmental arrest at the S/G2 phase and excessive accumulation of DNA double-strand breaks. Together, our results suggest that H4K20me1, a type of epigenetic modification, is associated with the maintenance of genomic integrity and is essential for preimplantation development. A better understanding of the mechanisms involved in maintaining genome integrity during preimplantation development could contribute to advances in reproductive medicine and technology.


Subject(s)
Blastocyst/cytology , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/genetics , Mutation , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle/physiology , Female , Fertilization in Vitro , Genome , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , In Vitro Techniques , Mice , Mice, Inbred ICR , Oocytes/cytology , Tumor Suppressor Protein p53/metabolism
13.
Int J Mol Sci ; 21(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32917005

ABSTRACT

Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.


Subject(s)
Aging/metabolism , DNA Damage , DNA Repair , Oligonucleotides/isolation & purification , Poly ADP Ribosylation , Animals , Denaturing Gradient Gel Electrophoresis , Female , Hep G2 Cells , Humans , Liver/metabolism , Male , Mice, Inbred C57BL , Sex Characteristics
14.
Mol Reprod Dev ; 86(10): 1369-1377, 2019 10.
Article in English | MEDLINE | ID: mdl-30803093

ABSTRACT

Titanium dioxide nanoparticles (TiO2 -NPs) are one of the most widely engineered nanoparticles used. The study has been focused on TiO 2 -NPs genotoxic effects on human spermatozoa in vitro. TiO 2 -NPs are able to cross the blood-testis barrier induced inflammation, cytotoxicity, and gene expression changes that lead to impairment of the male reproductive system. This study presents new data about DNA damage in human sperms exposed in vitro to two n-TiO 2 concentrations (1 µg/L and 10 µg/L) for different times and the putative role of reactive oxygen species (ROS) as mediators of n-TiO 2 genotoxicity. Primary n-TiO 2 characterization was performed by transmission electron microscopy. The dispersed state of the n-TiO 2 in media was spectrophotometrically determined at 0, 24, 48, and 72 hr from the initial exposure. The genotoxicity has been highlighted by different experimental approaches (comet assay, terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] test, DCF assay, random amplification of polymorphic DNA polymerase chain reaction [RAPD-PCR]). The comet assay showed a statistically significant loss of sperm DNA integrity after 30 min of exposure. Increased threshold of sperm DNA fragmentation was highlighted after 30 min of exposure by the TUNEL Test. Also, the RAPD-PCR analysis showed a variation in the polymorphic profiles of the sperm DNA exposed to n-TiO 2 . The evidence from the DCF assay showed a statistically significant increase in intracellular ROS linked to n-TiO 2 exposure. This research provides the evaluation of n-TiO 2 potential genotoxicity on human sperm that probably occurs through the production of intracellular ROS.


Subject(s)
DNA Damage/drug effects , Metal Nanoparticles/toxicity , Mutagens/toxicity , Spermatozoa/drug effects , Titanium/toxicity , Adult , Genomic Instability/drug effects , Humans , Male , Metal Nanoparticles/chemistry , Mutagenicity Tests , Mutagens/chemistry , Oxidative Stress/drug effects , Titanium/chemistry
15.
J Cell Sci ; 129(8): 1619-34, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26919979

ABSTRACT

Correct duplication of stem cell genetic material and its appropriate segregation into daughter cells are requisites for tissue, organ and organism homeostasis. Disruption of stem cell genomic integrity can lead to developmental abnormalities and cancer. Roles of the Smc5/6 structural maintenance of chromosomes complex in pluripotent stem cell genome maintenance have not been investigated, despite its important roles in DNA synthesis, DNA repair and chromosome segregation as evaluated in other model systems. Using mouse embryonic stem cells (mESCs) with a conditional knockout allele of Smc5, we showed that Smc5 protein depletion resulted in destabilization of the Smc5/6 complex, accumulation of cells in G2 phase of the cell cycle and apoptosis. Detailed assessment of mitotic mESCs revealed abnormal condensin distribution and perturbed chromosome segregation, accompanied by irregular spindle morphology, lagging chromosomes and DNA bridges. Mutation of Smc5 resulted in retention of Aurora B kinase and enrichment of condensin on chromosome arms. Furthermore, we observed reduced levels of Polo-like kinase 1 at kinetochores during mitosis. Our study reveals crucial requirements of the Smc5/6 complex during cell cycle progression and for stem cell genome maintenance.


Subject(s)
Cell Cycle Proteins/metabolism , Embryonic Stem Cells/physiology , Adenosine Triphosphatases/metabolism , Animals , Apoptosis/genetics , Aurora Kinase B/metabolism , Cell Cycle Checkpoints/genetics , Cell Cycle Proteins/genetics , Cell Line , Chromosome Segregation/genetics , DNA-Binding Proteins/metabolism , Mice , Mitosis , Multiprotein Complexes/metabolism , Mutation/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Spindle Apparatus/physiology , Polo-Like Kinase 1
16.
Development ; 142(22): 3943-53, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26428007

ABSTRACT

Mammalian early embryos maintain accurate genome integrity for proper development within a programmed timeline despite constant assaults on their DNA by replication, DNA demethylation and genetic defects transmitted from germ cells. However, how genome integrity is safeguarded during mammalian early embryonic development remains unclear. BCAS2 (breast carcinoma amplified sequence 2), a core component of the PRP19 complex involved in pre-mRNA splicing, plays an important role in the DNA damage response through the RPA complex, a key regulator in the maintenance of genome integrity. Currently, the physiological role of BCAS2 in mammals is unknown. We now report that BCAS2 responds to endogenous and exogenous DNA damage in mouse zygotes. Maternal depletion of BCAS2 compromises the DNA damage response in early embryos, leading to developmental arrest at the two- to four-cell stage accompanied by the accumulation of damaged DNA and micronuclei. Furthermore, BCAS2 mutants that are unable to bind RPA1 fail in DNA repair during the zygotic stage. In addition, phosphorylated RPA2 cannot localise to the DNA damage sites in mouse zygotes with disrupted maternal BCAS2. These data suggest that BCAS2 might function through the RPA complex during DNA repair in zygotes. Together, our results reveal that maternal BCAS2 maintains the genome integrity of early embryos and is essential for female mouse fertility.


Subject(s)
DNA Repair/physiology , Embryonic Development/physiology , Fertility/physiology , Genomic Instability/physiology , Multiprotein Complexes/metabolism , Neoplasm Proteins/metabolism , Animals , Blotting, Western , DNA Repair/genetics , Embryonic Development/genetics , Female , Fertility/genetics , Gene Targeting , Genomic Instability/genetics , In Situ Nick-End Labeling , Mice , Microscopy, Fluorescence , Nuclear Matrix-Associated Proteins/metabolism , Pregnancy , RNA Splicing Factors , Real-Time Polymerase Chain Reaction , Replication Protein A/metabolism , Reverse Transcriptase Polymerase Chain Reaction
17.
EMBO Rep ; 17(11): 1532-1541, 2016 11.
Article in English | MEDLINE | ID: mdl-27670884

ABSTRACT

BRCA1 mutations strongly predispose affected individuals to breast and ovarian cancer, but the mechanism by which BRCA1 acts as a tumor suppressor is not fully understood. Homozygous deletion of exon 2 of the mouse Brca1 gene normally causes embryonic lethality, but we show that exon 2-deleted alleles of Brca1 are expressed as a mutant isoform that lacks the N-terminal RING domain. This "RING-less" BRCA1 protein is stable and efficiently recruited to the sites of DNA damage. Surprisingly, robust RAD51 foci form in cells expressing RING-less BRCA1 in response to DNA damage, but the cells nonetheless display the substantial genomic instability. Genomic instability can be rescued by the deletion of Trp53bp1, which encodes the DNA damage response factor 53BP1, and mice expressing RING-less BRCA1 do not show an increased susceptibility to tumors in the absence of 53BP1. Genomic instability in cells expressing RING-less BRCA1 correlates with the loss of BARD1 and a defect in restart of replication forks after hydroxyurea treatment, suggesting a role of BRCA1-BARD1 in genomic integrity that is independent of RAD51 loading.


Subject(s)
Genomic Instability , Tumor Suppressor Proteins/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Animals , BRCA1 Protein , Base Sequence , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA Damage , DNA Repair , DNA-Binding Proteins , Exons/genetics , Female , Intracellular Signaling Peptides and Proteins , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins , Sequence Deletion , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/deficiency , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics
18.
Proc Natl Acad Sci U S A ; 112(20): E2575-84, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25941401

ABSTRACT

Nonhomologous end-joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), involving synapsis and ligation of the broken strands. We describe the use of in vivo and in vitro single-molecule methods to define the organization and interaction of NHEJ repair proteins at DSB ends. Super-resolution fluorescence microscopy allowed the precise visualization of XRCC4, XLF, and DNA ligase IV filaments adjacent to DSBs, which bridge the broken chromosome and direct rejoining. We show, by single-molecule FRET analysis of the Ku/XRCC4/XLF/DNA ligase IV NHEJ ligation complex, that end-to-end synapsis involves a dynamic positioning of the two ends relative to one another. Our observations form the basis of a new model for NHEJ that describes the mechanism whereby filament-forming proteins bridge DNA DSBs in vivo. In this scheme, the filaments at either end of the DSB interact dynamically to achieve optimal configuration and end-to-end positioning and ligation.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair/physiology , DNA Ligases/metabolism , DNA-Binding Proteins/metabolism , Models, Molecular , Blotting, Western , Cell Line, Tumor , DNA Ligase ATP , Fluorescence Resonance Energy Transfer , Fluorescent Antibody Technique , Humans , Kinetics
19.
J Sports Sci ; 36(2): 213-219, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28282748

ABSTRACT

The purpose of this study was to examine the association between leukocyte telomere length (LTL) and mortality (outcome variable), with consideration by physical activity behaviour. Data from the 1999-2002 National Health and Nutrition Examination Survey were employed (N = 6,611; 20-85 yrs), with follow-up mortality assessment through 31 December 2006. DNA was extracted from whole blood to assess LTL via quantitative polymerase chain reaction. Compared to those in the first LTL tertile, the adjusted hazard ratio for all-cause mortality for those in the 2nd and 3rd LTL tertiles, respectively, was 0.82 (95% CI: 0.60-1.12; P = .22) and 0.76 (95% CI: 0.50-1.14; P = .18). However, after adjustments, LTL tertile 3 (vs. 1) was associated with all-cause mortality (HR = 0.37; 95% CI: 0.14-0.93; P = .03) for those who engaged in moderate-intensity exercise. Similarly, LTL was associated with CVD-specific mortality for those who engaged in moderate-intensity exercise (HR = 0.17; 95% CI: 0.04-0.73; P = .02). Longer telomeres are associated with increased survival, particularly among men and those who are active, underscoring the importance of promotion of physical activity behaviour.


Subject(s)
Exercise/physiology , Leukocytes/physiology , Mortality , Telomere Homeostasis , Adult , Aged , Aged, 80 and over , Aging/physiology , Cardiovascular Diseases/mortality , Female , Humans , Male , Middle Aged , Nutrition Surveys , United States/epidemiology , Young Adult
20.
J Proteome Res ; 15(7): 2178-86, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27239679

ABSTRACT

MYCN and HDAC2 jointly repress the transcription of tumor suppressive miR-183 in neuroblastoma. Enforced miR-183 expression induces neuroblastoma cell death and inhibits xenograft growth in mice. Here we aimed to focus more closely on the miR-183 signaling network using a label-free mass spectrometric approach. Analysis of neuroblastoma cells transfected with either control or miR-183 expression vectors identified 85 differentially expressed proteins. All six members of the minichromosome maintenance (MCM) complex, which is indispensable for initiation and elongation during DNA replication and transcriptionally activated by MYCN in neuroblastoma, emerged to be down-regulated by miR-183. Subsequent annotation category enrichment analysis revealed a ∼14-fold enrichment in the "MCM" protein module category, which highlighted this complex as a critical node in the miR-183 signaling network. Down-regulation was confirmed by Western blotting. MCMs 2-5 were predicted by in silico methods as direct miR-183 targets. Dual-luciferase reporter gene assays with 3'-UTR constructs of the randomly selected MCMs 3 and 5 experimentally confirmed them as direct targets of miR-183. Our results reveal the MCM complex to be a critical and directly regulated node within the miR-183 signaling network in MYCN-amplified neuroblastoma cells.


Subject(s)
MicroRNAs/pharmacology , Minichromosome Maintenance Proteins/metabolism , N-Myc Proto-Oncogene Protein/physiology , Neuroblastoma/pathology , Signal Transduction , Cell Line, Tumor , Down-Regulation , Humans , Mass Spectrometry , MicroRNAs/metabolism , Minichromosome Maintenance Complex Component 3/drug effects , Minichromosome Maintenance Complex Component 3/metabolism , Minichromosome Maintenance Complex Component 5/drug effects , Minichromosome Maintenance Complex Component 5/metabolism , Neuroblastoma/chemistry , Neuroblastoma/metabolism , Transfection , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL