Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.230
Filter
Add more filters

Publication year range
1.
Cell ; 186(13): 2823-2838.e20, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37236193

ABSTRACT

Mental health profoundly impacts inflammatory responses in the body. This is particularly apparent in inflammatory bowel disease (IBD), in which psychological stress is associated with exacerbated disease flares. Here, we discover a critical role for the enteric nervous system (ENS) in mediating the aggravating effect of chronic stress on intestinal inflammation. We find that chronically elevated levels of glucocorticoids drive the generation of an inflammatory subset of enteric glia that promotes monocyte- and TNF-mediated inflammation via CSF1. Additionally, glucocorticoids cause transcriptional immaturity in enteric neurons, acetylcholine deficiency, and dysmotility via TGF-ß2. We verify the connection between the psychological state, intestinal inflammation, and dysmotility in three cohorts of IBD patients. Together, these findings offer a mechanistic explanation for the impact of the brain on peripheral inflammation, define the ENS as a relay between psychological stress and gut inflammation, and suggest that stress management could serve as a valuable component of IBD care.


Subject(s)
Enteric Nervous System , Inflammatory Bowel Diseases , Humans , Glucocorticoids/pharmacology , Inflammation , Enteric Nervous System/physiology , Stress, Psychological
2.
Cell ; 180(5): 847-861.e15, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32142678

ABSTRACT

Early life environmental exposure, particularly during perinatal period, can have a life-long impact on organismal development and physiology. The biological rationale for this phenomenon is to promote physiological adaptations to the anticipated environment based on early life experience. However, perinatal exposure to adverse environments can also be associated with adult-onset disorders. Multiple environmental stressors induce glucocorticoids, which prompted us to investigate their role in developmental programming. Here, we report that perinatal glucocorticoid exposure had long-term consequences and resulted in diminished CD8 T cell response in adulthood and impaired control of tumor growth and bacterial infection. We found that perinatal glucocorticoid exposure resulted in persistent alteration of the hypothalamic-pituitary-adrenal (HPA) axis. Consequently, the level of the hormone in adults was significantly reduced, resulting in decreased CD8 T cell function. Our study thus demonstrates that perinatal stress can have long-term consequences on CD8 T cell immunity by altering HPA axis activity.


Subject(s)
Bacterial Infections/immunology , Embryonic Development/immunology , Glucocorticoids/adverse effects , Prenatal Exposure Delayed Effects/genetics , Animals , Bacterial Infections/genetics , Bacterial Infections/microbiology , Bacterial Infections/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation/drug effects , Dexamethasone/pharmacology , Embryonic Development/genetics , Female , Glucocorticoids/immunology , Glucocorticoids/metabolism , Humans , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Interleukin-4/pharmacology , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Male , Neoplasms/chemically induced , Neoplasms/genetics , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/pathology , Receptors, Glucocorticoid/genetics , Signal Transduction/genetics
3.
Immunity ; 57(2): 364-378.e9, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38301651

ABSTRACT

Mutations of the CBP/p300 histone acetyltransferase (HAT) domain can be linked to leukemic transformation in humans, suggestive of a checkpoint of leukocyte compartment sizes. Here, we examined the impact of reversible inhibition of this domain by the small-molecule A485. We found that A485 triggered acute and transient mobilization of leukocytes from the bone marrow into the blood. Leukocyte mobilization by A485 was equally potent as, but mechanistically distinct from, granulocyte colony-stimulating factor (G-CSF), which allowed for additive neutrophil mobilization when both compounds were combined. These effects were maintained in models of leukopenia and conferred augmented host defenses. Mechanistically, activation of the hypothalamus-pituitary-adrenal gland (HPA) axis by A485 relayed shifts in leukocyte distribution through corticotropin-releasing hormone receptor 1 (CRHR1) and adrenocorticotropic hormone (ACTH), but independently of glucocorticoids. Our findings identify a strategy for rapid expansion of the blood leukocyte compartment via a neuroendocrine loop, with implications for the treatment of human pathologies.


Subject(s)
Bone Marrow , Histone Acetyltransferases , Humans , Histone Acetyltransferases/metabolism , Bone Marrow/metabolism , Histones/metabolism , Neutrophils/metabolism , Hypothalamo-Hypophyseal System/metabolism
4.
Immunity ; 53(3): 581-596.e5, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32707034

ABSTRACT

Glucocorticoids (GC) are the mainstay treatment option for inflammatory conditions. Despite the broad usage of GC, the mechanisms by which GC exerts its effects remain elusive. Here, utilizing murine autoimmune and allergic inflammation models, we report that Foxp3+ regulatory T (Treg) cells are irreplaceable GC target cells in vivo. Dexamethasone (Dex) administered in the absence of Treg cells completely lost its ability to control inflammation, and the lack of glucocorticoid receptor in Treg cells alone resulted in the loss of therapeutic ability of Dex. Mechanistically, Dex induced miR-342-3p specifically in Treg cells and miR-342-3p directly targeted the mTORC2 component, Rictor. Altering miRNA-342-3p or Rictor expression in Treg cells dysregulated metabolic programming in Treg cells, controlling their regulatory functions in vivo. Our results uncover a previously unknown contribution of Treg cells during glucocorticoid-mediated treatment of inflammation and the underlying mechanisms operated via the Dex-miR-342-Rictor axis.


Subject(s)
Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Inflammation/drug therapy , MicroRNAs/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Anti-Inflammatory Agents/pharmacology , Forkhead Transcription Factors/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/biosynthesis , Receptors, Glucocorticoid/genetics , T-Lymphocytes, Regulatory/metabolism
5.
Annu Rev Med ; 75: 427-442, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37683286

ABSTRACT

Giant cell arteritis (GCA) and Takayasu arteritis (TAK) are large-vessel vasculitides affecting the aorta and its branches. Arterial damage from these diseases may result in ischemic complications, aneurysms, and dissections. Despite their similarities, the management of GCA and TAK differs. Glucocorticoids are used frequently but relapses are common, and glucocorticoid toxicity contributes to significant morbidity. Conventional immunosuppressive therapies can be beneficial in TAK, though their role in the management of GCA remains unclear. Tumor necrosis factor inhibitors improve remission rates and appear to limit vascular damage in TAK; these agents are not beneficial in GCA. Tocilizumab is the first biologic glucocorticoid-sparing agent approved for use in GCA and also appears to be effective in TAK. A better understanding of the pathogenesis of both conditions and the availability of targeted therapies hold much promise for future management.


Subject(s)
Giant Cell Arteritis , Takayasu Arteritis , Humans , Glucocorticoids/therapeutic use , Giant Cell Arteritis/drug therapy , Takayasu Arteritis/drug therapy
6.
Immunity ; 47(2): 298-309.e5, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28801231

ABSTRACT

Despite the widespread use of glucocorticoids (GCs), their anti-inflammatory effects are not understood mechanistically. Numerous investigations have examined the effects of glucocorticoid receptor (GR) activation prior to inflammatory challenges. However, clinical situations are emulated by a GC intervention initiated in the midst of rampant inflammatory responses. To characterize the effects of a late GC treatment, we profiled macrophage transcriptional and chromatinscapes with Dexamethasone (Dex) treatment before or after stimulation by lipopolysaccharide (LPS). The late activation of GR had a similar gene-expression profile as from GR pre-activation, while ameliorating the disruption of metabolic genes. Chromatin occupancy of GR was not predictive of Dex-regulated gene expression, contradicting the "trans-repression by tethering" model. Rather, GR activation resulted in genome-wide blockade of NF-κB interaction with chromatin and directly induced inhibitors of NF-κB and AP-1. Our investigation using GC treatments with clinically relevant timing highlights mechanisms underlying GR actions for modulating the "inflamed epigenome."


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Inflammation/drug therapy , Macrophages/drug effects , Macrophages/immunology , Receptors, Glucocorticoid/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Cells, Cultured , Chromatin/metabolism , Chromatin Assembly and Disassembly , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , Humans , Inflammation/immunology , Lipopolysaccharides/immunology , Macrophage Activation , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcriptome
7.
Circ Res ; 134(10): 1306-1326, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38533639

ABSTRACT

BACKGROUND: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.


Subject(s)
Circadian Rhythm , Myocytes, Cardiac , Receptors, Glucocorticoid , Animals , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Mice , Myocytes, Cardiac/metabolism , Male , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/genetics , Mice, Inbred C57BL , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Connexin 43/metabolism , Connexin 43/genetics , Mice, Knockout , Action Potentials
8.
Mol Cell Proteomics ; 23(3): 100741, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387774

ABSTRACT

Exogenous glucocorticoids are frequently used to treat inflammatory disorders and as adjuncts for the treatment of solid cancers. However, their use is associated with severe side effects and therapy resistance. Novel glucocorticoid receptor (GR) ligands with a patient-validated reduced side effect profile have not yet reached the clinic. GR is a member of the nuclear receptor family of transcription factors and heavily relies on interactions with coregulator proteins for its transcriptional activity. To elucidate the role of the GR interactome in the differential transcriptional activity of GR following treatment with the selective GR agonist and modulator dagrocorat compared to classic (ant)agonists, we generated comprehensive interactome maps by high-confidence proximity proteomics in lung epithelial carcinoma cells. We found that dagrocorat and the antagonist RU486 both reduced GR interaction with CREB-binding protein/p300 and the mediator complex compared to the full GR agonist dexamethasone. Chromatin immunoprecipitation assays revealed that these changes in GR interactome were accompanied by reduced GR chromatin occupancy with dagrocorat and RU486. Our data offer new insights into the role of differential coregulator recruitment in shaping ligand-specific GR-mediated transcriptional responses.


Subject(s)
Benzamides , Chromatin , Phenanthrenes , Receptors, Glucocorticoid , Humans , Receptors, Glucocorticoid/genetics , Mifepristone/pharmacology , Mediator Complex/metabolism , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Dexamethasone/pharmacology
9.
Proc Natl Acad Sci U S A ; 120(15): e2211996120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37023133

ABSTRACT

Disrupted circadian activity is associated with many neuropsychiatric disorders. A major coordinator of circadian biological systems is adrenal glucocorticoid secretion which exhibits a pronounced preawakening peak that regulates metabolic, immune, and cardiovascular processes, as well as mood and cognitive function. Loss of this circadian rhythm during corticosteroid therapy is often associated with memory impairment. Surprisingly, the mechanisms that underlie this deficit are not understood. In this study, in rats, we report that circadian regulation of the hippocampal transcriptome integrates crucial functional networks that link corticosteroid-inducible gene regulation to synaptic plasticity processes via an intrahippocampal circadian transcriptional clock. Further, these circadian hippocampal functions were significantly impacted by corticosteroid treatment delivered in a 5-d oral dosing treatment protocol. Rhythmic expression of the hippocampal transcriptome, as well as the circadian regulation of synaptic plasticity, was misaligned with the natural light/dark circadian-entraining cues, resulting in memory impairment in hippocampal-dependent behavior. These findings provide mechanistic insights into how the transcriptional clock machinery within the hippocampus is influenced by corticosteroid exposure, leading to adverse effects on critical hippocampal functions, as well as identifying a molecular basis for memory deficits in patients treated with long-acting synthetic corticosteroids.


Subject(s)
Circadian Clocks , Hippocampus , Rats , Animals , Hippocampus/metabolism , Gene Expression Regulation , Circadian Rhythm/physiology , Adrenal Cortex Hormones/pharmacology , Memory Disorders/drug therapy , Memory Disorders/metabolism
10.
Proc Natl Acad Sci U S A ; 120(49): e2305773120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011552

ABSTRACT

Exposure to stressful life events increases the risk for psychiatric disorders. Mechanistic insight into the genetic factors moderating the impact of stress can increase our understanding of disease processes. Here, we test 3,662 single nucleotide polymorphisms (SNPs) from preselected expression quantitative trait loci in massively parallel reporter assays to identify genetic variants that modulate the activity of regulatory elements sensitive to glucocorticoids, important mediators of the stress response. Of the tested SNP sequences, 547 were located in glucocorticoid-responsive regulatory elements of which 233 showed allele-dependent activity. Transcripts regulated by these functional variants were enriched for those differentially expressed in psychiatric disorders in the postmortem brain. Phenome-wide Mendelian randomization analysis in 4,439 phenotypes revealed potentially causal associations specifically in neurobehavioral traits, including major depression and other psychiatric disorders. Finally, a functional gene score derived from these variants was significantly associated with differences in the physiological stress response, suggesting that these variants may alter disease risk by moderating the individual set point of the stress response.


Subject(s)
Glucocorticoids , Mental Disorders , Humans , High-Throughput Screening Assays , Regulatory Sequences, Nucleic Acid , Quantitative Trait Loci , Mental Disorders/genetics , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Genetic Predisposition to Disease
11.
Proc Natl Acad Sci U S A ; 120(49): e2305775120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011550

ABSTRACT

Anxiety disorders are among the most prevalent psychiatric disorders, causing significant suffering and disability. Relative to other psychiatric disorders, anxiety disorders tend to emerge early in life, supporting the importance of developmental mechanisms in their emergence and maintenance. Behavioral inhibition (BI) is a temperament that emerges early in life and, when stable and extreme, is linked to an increased risk for the later development of anxiety disorders and other stress-related psychopathology. Understanding the neural systems and molecular mechanisms underlying this dispositional risk could provide insight into treatment targets for anxiety disorders. Nonhuman primates (NHPs) have an anxiety-related temperament, called anxious temperament (AT), that is remarkably similar to BI in humans, facilitating the design of highly translational models for studying the early risk for stress-related psychopathology. Because of the recent evolutionary divergence between humans and NHPs, many of the anxiety-related brain regions that contribute to psychopathology are highly similar in terms of their structure and function, particularly with respect to the prefrontal cortex. The orbitofrontal cortex plays a critical role in the flexible encoding and regulation of threat responses, in part through connections with subcortical structures like the amygdala. Here, we explore individual differences in the transcriptional profile of cells within the region, using laser capture microdissection and single nuclear sequencing, providing insight into the molecules underlying individual differences in AT-related function of the pOFC, with a particular focus on previously implicated cellular systems, including neurotrophins and glucocorticoid signaling.


Subject(s)
Anxiety , Temperament , Animals , Humans , Temperament/physiology , Prefrontal Cortex , Primates/genetics , Gene Expression
12.
J Biol Chem ; : 107581, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025450

ABSTRACT

Because of their ability to induce lymphocyte apoptosis, glucocorticoids (GC) are widely used to treat hematological malignancies such as lymphomas and multiple myeloma. Their effectiveness is often limited, however, due to the development of glucocorticoid resistance by a variety of molecular mechanisms. Here we performed an unbiased genome-wide CRISPR screen with the human T cell leukemia cell line Jurkat to find previously unidentified genes required for GC-induced apoptosis. One such gene was KMT2D (also known as MLL2 or MLL4), which encodes a histone lysine methyltransferase whose mutations are associated with a variety of cancers, blood malignancies in particular, and are considered markers of poor prognosis. Knockout of KMT2D by CRISPR/Cas9 gene editing in Jurkat and several multiple myeloma cell lines downregulated GR protein expression. Surprisingly, this was not due to a reduction in GR transcripts, but rather to a decrease in the protein's half-life, primarily due to proteasomal degradation. Reconstitution of KMT2D expression restored GR levels. In contrast to the known ability of KMT2D to control gene transcription through covalent histone methylation, KMT2D-mediated upregulation of GR levels did not require its methyltransferase activity. Co-immunoprecipitation and proximity ligation assays found constitutive binding of KMT2D to the GR, which was enhanced in the presence of GC. These observations reveal KMT2D to be essential for stabilization of cellular GR levels, and suggest a possible mechanism by which KMT2D mutations may lead to GC resistance in some malignancies.

13.
Front Neuroendocrinol ; 72: 101117, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38176543

ABSTRACT

Perinatal depression (PND) and anxiety affect around 20% of women, but available pharmacotherapy is not sufficiently effective in 20-60% of them, indicating a need for better understanding of these diseases. Since stress is a significant risk factor for PND, the aim was to examine the role of biological, environmental and psychological stress in PND and anxiety through a systematic literature search. Overall 210 studies were included, among which numerous rodent studies showed that perinatal stress induced depressive-like and anxious behavior, which was associated with HPA-axis alterations and morphological brain changes. Human studies indicated that the relationship between cortisol and perinatal depression/anxiety was not as clear and with many contradictions, although social and psychological stress were clearly positively associated with PND. Finally, oxytocin, synthetic neuroactive steroid and n-3 PUFA diet have been identified as potentially beneficial in the therapy of PND and anxiety, worth to be investigated in the future.

14.
EMBO Rep ; 24(2): e55363, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36520372

ABSTRACT

Macrophages are key cells after tissue damage since they mediate both acute inflammatory phase and regenerative inflammation by shifting from pro-inflammatory to restorative cells. Glucocorticoids (GCs) are the most potent anti-inflammatory hormone in clinical use, still their actions on macrophages are not fully understood. We show that the metabolic sensor AMP-activated protein kinase (AMPK) is required for GCs to induce restorative macrophages. GC Dexamethasone activates AMPK in macrophages and GC receptor (GR) phosphorylation is decreased in AMPK-deficient macrophages. Loss of AMPK in macrophages abrogates the GC-induced acquisition of their repair phenotype and impairs GC-induced resolution of inflammation in vivo during post-injury muscle regeneration and acute lung injury. Mechanistically, two categories of genes are impacted by GC treatment in macrophages. Firstly, canonical cytokine regulation by GCs is not affected by AMPK loss. Secondly, AMPK-dependent GC-induced genes required for the phenotypic transition of macrophages are co-regulated by the transcription factor FOXO3, an AMPK substrate. Thus, beyond cytokine regulation, GR requires AMPK-FOXO3 for immunomodulatory actions in macrophages, linking their metabolic status to transcriptional control in regenerative inflammation.


Subject(s)
AMP-Activated Protein Kinases , Glucocorticoids , Humans , Glucocorticoids/pharmacology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Macrophages/metabolism , Inflammation/metabolism , Cytokines/metabolism
15.
Am J Respir Crit Care Med ; 209(9): 1141-1151, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38346237

ABSTRACT

Rationale: Diffuse alveolar hemorrhage (DAH) is a life-threatening manifestation of antineutrophil cytoplasmic antibody-associated vasculitis (AAV). The PEXIVAS (Plasma Exchange and Glucocorticoids in Severe Antineutrophil Cytoplasmic Antibody-Associated Vasculitis) (NCT00987389) trial was the largest in AAV and the first to enroll participants with DAH requiring mechanical ventilation. Objectives: Evaluate characteristics, treatment effects, and outcomes for patients with AAV with and without DAH. Methods: PEXIVAS randomized 704 participants to plasma exchange (PLEX) or no-PLEX and reduced or standard-dose glucocorticoids (GC). DAH status was defined at enrollment as no-DAH, nonsevere, or severe (room air oxygen saturation of ⩽ 85% as measured by pulse oximetry, or use of mechanical ventilation). Measurements and Main Results: At enrollment, 191 (27.1%) participants had DAH (61 severe, including 29 ventilated) and were younger, more frequently relapsing, PR3 (proteinase 3)-ANCA positive, and had lower serum creatinine but were more frequently dialyzed than participants without DAH (n = 513; 72.9%). Among those with DAH, 8/95 (8.4%) receiving PLEX died within 1 year versus 15/96 (15.6%) with no-PLEX (hazard ratio, 0.52; confidence interval [CI], 0.21-1.24), whereas 13/96 (13.5%) receiving reduced GC died versus 10/95 (10.5%) with standard GC (hazard ratio, 1.33; CI, 0.57-3.13). When ventilated, ventilator-free days were similar with PLEX versus no-PLEX (medians, 25; interquartile range [IQR], 22-26 vs. 22-27) and fewer with reduced GC (median, 23; IQR, 20-25) versus standard GC (median, 26; IQR, 25-28). Treatment effects on mortality did not vary by presence or severity of DAH. Overall, 23/191 (12.0%) with DAH died within 1 year versus 34/513 (6.6%) without DAH. End-stage kidney disease and serious infections did not differ by DAH status or treatments. Conclusions: Patients with AAV and DAH differ from those without DAH in multiple ways. Further data are required to confirm or refute a benefit of PLEX or GC dosing on mortality. Original clinical trial registered with www.clinicaltrials.gov (NCT00987389).


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Glucocorticoids , Hemorrhage , Plasma Exchange , Humans , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/complications , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/mortality , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/therapy , Male , Female , Middle Aged , Hemorrhage/therapy , Hemorrhage/etiology , Aged , Plasma Exchange/methods , Glucocorticoids/therapeutic use , Respiration, Artificial/statistics & numerical data , Lung Diseases/etiology , Lung Diseases/therapy , Pulmonary Alveoli , Adult , Treatment Outcome
16.
Dev Biol ; 496: 73-86, 2023 04.
Article in English | MEDLINE | ID: mdl-36805498

ABSTRACT

Glucocorticoids induced osteonecrosis of the femoral head (GIONFH) is a devastating orthopedic disease. Previous studies suggested that connexin43 is involved in the process of osteogenesis and angiogenesis. However, the role of Cx43 potentiates in the osteogenesis and angiogenesis of bone marrow-derived stromal stem cells (BMSCs) in GIONFH is still not investigated. In this study, BMSCs were isolated and transfected with green fluorescent protein or the fusion gene encoding GFP and Cx43. The osteogenic differentiation of BMSCs were detected after transfected with Cx43. In addition, the migration abilities and angiogenesis of human umbilical vein endothelial cells (HUVECs) were been detected after induced by transfected BMSCs supernatants in vitro. Finally, we established GC-ONFH rat model, then, a certain amount of transfected or controlled BMSCs were injected into the tibia of the rats. Immunohistological staining and micro-CT scanning results showed that the transplanted experiment group had significantly promoted more bone regeneration and vessel volume when compared with the effects of the negative or control groups. This study demonstrated for the first time that the Cx43 overexpression in BMSCs could promote bone regeneration as seen in the osteogenesis and angiogenesis process, suggesting that Cx43 may serve as a therapeutic gene target for GIONFH treatment.


Subject(s)
Femur Head Necrosis , Glucocorticoids , Rats , Humans , Animals , Glucocorticoids/adverse effects , Glucocorticoids/metabolism , Osteogenesis , Connexin 43/metabolism , Femur Head/metabolism , Femur Head/pathology , Femur Head Necrosis/chemically induced , Femur Head Necrosis/pathology , Femur Head Necrosis/therapy , Rats, Sprague-Dawley , Bone Regeneration , Cell Differentiation , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology
17.
J Physiol ; 602(9): 2127-2139, 2024 May.
Article in English | MEDLINE | ID: mdl-38285002

ABSTRACT

Maternal stress and glucocorticoid exposure during pregnancy have multigenerational effects on neuroendocrine function and behaviours in offspring. Importantly, effects are transmitted through the paternal lineage. Altered phenotypes are associated with profound differences in transcription and DNA methylation in the brain. In the present study, we hypothesized that maternal prenatal synthetic glucocorticoid (sGC) exposure in the F0 pregnancy will result in differences in miRNA levels in testes germ cells and sperm across multiple generations, and that these changes will associate with modified microRNA (miRNA) profiles and gene expression in the prefrontal cortex (PFC) of subsequent generations. Pregnant guinea-pigs (F0) were treated with multiple courses of the sGC betamethasone (Beta) (1 mg kg-1; gestational days 40, 41, 50, 51, 60 and 61) in late gestation. miRNA levels were assessed in testes germ cells and in F2 PFC using the GeneChip miRNA 4.0 Array and candidate miRNA measured in epididymal sperm by quantitative real-time PCR. Maternal Beta exposure did not alter miRNA levels in germ cells derived from the testes of adult male offspring. However, there were significant differences in the levels of four candidate miRNAs in the sperm of F1 and F2 adult males. There were no changes in miRNA levels in the PFC of juvenile F2 female offspring. The present study has identified that maternal Beta exposure leads to altered miRNA levels in sperm that are apparent for at least two generations. The fact that differences were confined to epididymal sperm suggests that the intergenerational effects of Beta may target the epididymis. KEY POINTS: Paternal glucocorticoid exposure prior to conception leads to profound epigenetic changes in the brain and somatic tissues in offspring, and microRNAs (miRNAs) in sperm may mediate these changes. We show that there were significant differences in the miRNA profile of epididymal sperm in two generations following prenatal glucocorticoid exposure that were not observed in germ cells derived from the testes. The epididymis is a probable target for intergenerational programming. The effects of prenatal glucocorticoid treatment may span multiple generations.


Subject(s)
Glucocorticoids , MicroRNAs , Prenatal Exposure Delayed Effects , Spermatozoa , Animals , Female , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Spermatozoa/drug effects , Spermatozoa/metabolism , Guinea Pigs , Glucocorticoids/pharmacology , Testis/drug effects , Testis/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Betamethasone/pharmacology , Maternal Exposure/adverse effects
18.
Clin Infect Dis ; 78(4): e37-e56, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37669916

ABSTRACT

Glucocorticoids are widespread anti-inflammatory medications used in medical practice. The immunosuppressive effects of systemic glucocorticoids and increased susceptibility to infections are widely appreciated. However, the dose-dependent model frequently used may not accurately predict the risk of infection in all patients treated with long-term glucocorticoids. In this review, we examine the risks of opportunistic infections (OIs) in patients requiring glucocorticoid therapy by evaluating the influence of the glucocorticoid dose, duration, and potency, combined with biological and host clinical factors and concomitant immunosuppressive therapy. We propose strategies to prevent OIs, which involve screening, antimicrobial prophylaxis, and immunizations. While this review focuses on patients with autoimmune, inflammatory, or neoplastic diseases, the potential risks and preventative strategies are likely applicable to other populations. Clinicians should actively assess the benefit-harm ratios of systemic glucocorticoids and implement preventive efforts to decrease their associated infections complications.


Subject(s)
Glucocorticoids , Opportunistic Infections , Adult , Humans , Glucocorticoids/adverse effects , Opportunistic Infections/epidemiology , Opportunistic Infections/etiology , Immunosuppressive Agents/adverse effects , Anti-Inflammatory Agents
19.
Eur J Neurosci ; 59(11): 3134-3146, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602078

ABSTRACT

Early life stress (ELS) exposure alters stress susceptibility in later life and affects vulnerability to stress-related disorders, but how ELS changes the long-lasting responsiveness of the stress system is not well understood. Zebrafish provides an opportunity to study conserved mechanisms underlying the development and function of the stress response that is regulated largely by the neuroendocrine hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis, with glucocorticoids (GC) as the final effector. In this study, we established a method to chronically elevate endogenous GC levels during early life in larval zebrafish. To this end, we employed an optogenetic actuator, beggiatoa photoactivated adenylyl cyclase, specifically expressed in the interrenal cells of zebrafish and demonstrate that its chronic activation leads to hypercortisolaemia and dampens the acute-stress evoked cortisol levels, across a variety of stressor modalities during early life. This blunting of stress-response was conserved in ontogeny at a later developmental stage. Furthermore, we observe a strong reduction of proopiomelanocortin (pomc)-expression in the pituitary as well as upregulation of fkbp5 gene expression. Going forward, we propose that this model can be leveraged to tease apart the mechanisms underlying developmental programming of the HPA/I axis by early-life GC exposure and its implications for vulnerability and resilience to stress in adulthood.


Subject(s)
Glucocorticoids , Hypothalamo-Hypophyseal System , Larva , Optogenetics , Zebrafish , Animals , Optogenetics/methods , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/drug effects , Hydrocortisone/metabolism , Stress, Psychological/metabolism , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Interrenal Gland/metabolism , Interrenal Gland/drug effects , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics
20.
Article in English | MEDLINE | ID: mdl-39041676

ABSTRACT

Glucocorticoids are steroid hormones well-known for their potent anti-inflammatory effects. However, their immunomodulatory properties are multifaceted. Increasing evidence suggests that glucocorticoid signaling promotes effective immunity and that disruption of glucocorticoid signaling impairs immune function. In this study, we conditionally deleted the glucocorticoid receptor (GR) in the myeloid lineage using the LysM-Cre driver (myGRKO). We examined the impact on macrophage activation and gastric immune responses to Helicobacter pylori, the best-known risk factor of gastric cancer. Our results indicate that, compared to WT, GRKO macrophages exhibited higher expression of proinflammatory genes in steroid-free conditions. However, when challenged in vivo, GRKO macrophages exhibited aberrant chromatin landscapes and impaired proinflammatory gene expression profiles. Moreover, gastric colonization with Helicobacter pylori revealed impaired gastric immune responses and reduced T cell recruitment in myGRKO mice. As a result, myGRKO mice were protected from atrophic gastritis and pyloric metaplasia development. These results demonstrate a dual role for glucocorticoid signaling in preparing macrophages to respond to bacterial infection but limiting their pathogenic activation. In addition, our results support that macrophages are critical for gastric Helicobacter pylori immunity.

SELECTION OF CITATIONS
SEARCH DETAIL