ABSTRACT
Reinventing potato from a clonally propagated tetraploid into a seed-propagated diploid, hybrid potato, is an important innovation in agriculture. Due to deleterious mutations, it has remained a challenge to develop highly homozygous inbred lines, a prerequisite to breed hybrid potato. Here, we employed genome design to develop a generation of pure and fertile potato lines and thereby the uniform, vigorous F1s. The metrics we applied in genome design included the percentage of genome homozygosity and the number of deleterious mutations in the starting material, the number of segregation distortions in the S1 population, the haplotype information to infer the break of tight linkage between beneficial and deleterious alleles, and the genome complementarity of the parental lines. This study transforms potato breeding from a slow, non-accumulative mode into a fast-iterative one, thereby potentiating a broad spectrum of benefits to farmers and consumers.
Subject(s)
Genome, Plant , Hybridization, Genetic , Solanum tuberosum/genetics , Crosses, Genetic , Diploidy , Fertility/genetics , Genes, Plant , Genetic Variation , Genetics, Population , Heterozygote , Homozygote , Hybrid Vigor/genetics , Mutation/genetics , Pedigree , Plant Breeding , Principal Component Analysis , Selection, GeneticABSTRACT
Adaptive evolution often involves structural variation affecting genes or cis-regulatory changes that engender novel and favorable gain-of-function gene regulation. Such mutation could result in a favorable dominant trait. At the same time, the gene product could be dosage sensitive if its change in concentration disrupts another trait. As a result, the mutant allele would display dosage-sensitive pleiotropy (DSP). By minimizing imbalance while conserving the favorable dominant effect, heterozygosity can increase fitness and result in heterosis. The properties of these alleles are consistent with evidence from multiple studies that indicate increased fitness of heterozygous regulatory mutations. DSP can help explain mysterious properties of heterosis as well as other effects of hybridization.
Subject(s)
Alleles , Humans , Hybrid Vigor/genetics , Mutation , Animals , Genetic Pleiotropy , Heterozygote , Gene Expression Regulation/genetics , Evolution, MolecularABSTRACT
Understanding the quantitative genetics of crops has been and will continue to be central to maintaining and improving global food security. We outline four stages that plant breeding either has already achieved or will probably soon achieve. Top-of-the-line breeding programs are currently in Breeding 3.0, where inexpensive, genome-wide data coupled with powerful algorithms allow us to start breeding on predicted instead of measured phenotypes. We focus on three major questions that must be answered to move from current Breeding 3.0 practices to Breeding 4.0: ( a) How do we adapt crops to better fit agricultural environments? ( b) What is the nature of the diversity upon which breeding can act? ( c) How do we deal with deleterious variants? Answering these questions and then translating them to actual gains for farmers will be a significant part of achieving global food security in the twenty-first century.
Subject(s)
Crops, Agricultural/genetics , Genome, Plant/genetics , Plant Breeding , Quantitative Trait Loci/genetics , Genomics , HumansABSTRACT
Controlled population development and genome-wide association studies have proven powerful in uncovering genes and alleles underlying complex traits. An underexplored dimension of such studies is the phenotypic contribution of nonadditive interactions between quantitative trait loci (QTLs). Capturing of such epistasis in a genome-wide manner requires very large populations to represent replicated combinations of loci whose interactions determine phenotypic outcomes. Here, we dissect epistasis using a densely genotyped population of 1,400 backcross inbred lines (BILs) between a modern processing tomato inbred (Solanum lycopersicum) and the Lost Accession (LA5240) of a distant, green-fruited, drought-tolerant wild species, Solanum pennellii. The homozygous BILs, each harboring an average of 11 introgressions and their hybrids with the recurrent parents, were phenotyped for tomato yield components. Population-wide mean yield of the BILs was less than 50% of that of their hybrids (BILHs). All the homozygous introgressions across the genome reduced yield relative to recurrent parent, while several QTLs of the BILHs independently improved productivity. Analysis of two QTL scans showed 61 cases of less-than-additive interactions and 19 cases of more-than-additive interactions. Strikingly, a single epistatic interaction involving S. pennellii QTLs on chromosomes 1 and 7, that independently did not affect yield, increased fruit yield by 20 to 50% in the double introgression hybrid grown in irrigated and dry fields over a period of 4 y. Our work demonstrates the power of large, interspecific controlled population development to uncover hidden QTL phenotypes and how rare epistatic interactions can improve crop productivity via heterosis.
Subject(s)
Quantitative Trait Loci , Solanum lycopersicum , Quantitative Trait Loci/genetics , Solanum lycopersicum/genetics , Chromosome Mapping , Genome-Wide Association Study , Hybrid Vigor/genetics , Quantitative Trait, Heritable , Genes, Plant , Phenotype , Epistasis, GeneticABSTRACT
The utilization of rice heterosis is essential for ensuring global food security; however, its molecular mechanism remains unclear. In this study, comprehensive analyses of accessible chromatin regions (ACRs), DNA methylation, and gene expression in inter-subspecific hybrid and its parents were performed to determine the potential role of chromatin accessibility in rice heterosis. The hybrid exhibited abundant ACRs, in which the gene ACRs and proximal ACRs were directly related to transcriptional activation rather than the distal ACRs. Regarding the dynamic accessibility contribution of the parents, paternal ZHF1015 transmitted a greater number of ACRs to the hybrid. Accessible genotype-specific target genes were enriched with overrepresented transcription factors, indicating a unique regulatory network of genes in the hybrid. Compared with its parents, the differentially accessible chromatin regions with upregulated chromatin accessibility were much greater than those with downregulated chromatin accessibility, reflecting a stronger regulation in the hybrid. Furthermore, DNA methylation levels were negatively correlated with ACR intensity, and genes were strongly affected by CHH methylation in the hybrid. Chromatin accessibility positively regulated the overall expression level of each genotype. ACR-related genes with maternal Z04A-bias allele-specific expression tended to be enriched during carotenoid biosynthesis, whereas paternal ZHF1015-bias genes were more active in carbohydrate metabolism. Our findings provide a new perspective on the mechanism of heterosis based on chromatin accessibility in inter-subspecific hybrid rice.
Subject(s)
Chromatin , DNA Methylation , Gene Expression Regulation, Plant , Hybrid Vigor , Oryza , Oryza/genetics , Oryza/metabolism , Hybrid Vigor/genetics , Chromatin/genetics , Chromatin/metabolism , Genome, Plant/genetics , Hybridization, Genetic , Genotype , Transcription Factors/genetics , Transcription Factors/metabolismABSTRACT
Heterosis has been widely used in multiple crops. However, the molecular mechanism and prediction of heterosis remains elusive. We generated five F1 hybrids [four showing better-parent heterosis (BPH) and one showing mid-parent heterosis], and performed the transcriptomic and methylomic analyses to identify the candidate genes for BPH and explore the molecular mechanism of heterosis and the potential predictors for heterosis. Transcriptomic results showed that most of the differentially expressed genes shared in the four better-parent hybrids were significantly enriched into the terms of molecular function, and the additive and dominant effects played crucial roles for BPH. DNA methylation level, especially in CG context, significantly and positively correlated with grain yield per plant. The ratios of differentially methylated regions in CG context in exons to transcription start sites between the parents exhibited significantly negative correlation with the heterosis levels of their hybrids, as was further confirmed in 24 pairwise comparisons of other rice lines, implying that this ratio could be a feasible predictor for heterosis level, and this ratio of less than 5 between parents in early growth stages might be a critical index for judging that their F1 hybrids would show BPH. Additionally, we identified some important genes showing differential expression and methylation, such as OsDCL2, Pi5, DTH2, DTH8, Hd1 and GLW7 in the four better-parent hybrids as the candidate genes for BPH. Our findings helped shed more light on the molecular mechanism and heterosis prediction.
Subject(s)
Oryza , Humans , Gene Expression Profiling , Hybrid Vigor/genetics , Oryza/genetics , Transcriptome/geneticsABSTRACT
F1 hybrids derived from a cross between two inbred parental lines often display widespread changes in DNA methylation patterns relative to their parents. To which extent these changes drive non-additive gene expression levels and phenotypic heterosis in F1 individuals is not fully resolved. Current mechanistic models propose that DNA methylation remodeling in hybrids is the result of epigenetic interactions between parental alleles via small interfering RNA (sRNA). These models have strong empirical support but are limited to genomic regions where the two parental lines differ in DNA methylation status. However, most remodeling events occur in parental regions with similar methylation patterns, and seem to be strongly conditioned by distally acting factors, even in isogenic hybrid systems. The molecular basis of these distal interactions is currently unknown, and will likely emerge as an active area of research in the future. Despite these gaps in our molecular understanding, parental DNA methylation states are statistically associated with heterosis, independent of genetic information, and may serve as biomarkers in crop breeding.
ABSTRACT
BACKGROUND: Leaves are the nutritional and economic organs of tobacco, and their biomass directly affects tobacco yield and the economic benefits of farmers. In the early stage, our research found that tobacco hybrids have more leaves and larger leaf areas, but the performance and formation reasons of biomass heterosis are not yet clear. RESULTS: This study selected 5 parents with significant differences in tobacco biomass and paired them with hybrid varieties. It was found that tobacco hybrid varieties have a common biomass heterosis, and 45 days after transplantation is the key period for the formation of tobacco biomass heterosis; By analyzing the biomass heterosis of hybrids, Va116×GDH94 and its parents were selected for transcriptome analysis. 76.69% of the differentially expressed genes between Va116×GDH94 and its parents showed overdominant expression pattern, and these overdominant expression genes were significantly enriched in the biological processes of photosynthesis and TCA cycle; During the process of photosynthesis, the overdominant up-regulation of genes such as Lhc, Psa, and rbcl promotes the progress of photosynthesis, thereby increasing the accumulation of tobacco biomass; During the respiratory process, genes such as MDH, ACO, and OGDH are overedominantly down-regulated, inhibiting the TCA cycle and reducing substrate consumption in hybrid offspring; The photosynthetic characteristics of the hybrid and its parents were measured, and the net photosynthetic capacity of the hybrid was significantly higher than that of the parents. CONCLUSION: These results indicate that the overdominant expression effect of differentially expressed genes in Va116×GDH94 and its parents plays a crucial role in the formation of tobacco biomass heterosis. The overdominant expression of genes related to photosynthesis and respiration enhances the photosynthetic ability of Va116×GDH94, reduces respiratory consumption, promotes the increase of biomass, and exhibits obvious heterosis.
Subject(s)
Biomass , Gene Expression Profiling , Gene Expression Regulation, Plant , Hybrid Vigor , Nicotiana , Photosynthesis , Photosynthesis/genetics , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Hybrid Vigor/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Transcriptome , Cell Respiration/genetics , Genes, DominantABSTRACT
BACKGROUND: Heterosis has successfully enhanced maize productivity and quality. Although significant progress has been made in delineating the genetic basis of heterosis, the molecular mechanisms underlying its genetic components remain less explored. Allele-specific expression (ASE), the imbalanced expression between two parental alleles in hybrids, is increasingly being recognized as a factor contributing to heterosis. ASE is a complex process regulated by both epigenetic and genetic variations in response to developmental and environmental conditions. RESULTS: In this study, we explored the differential characteristics of ASE by analyzing the transcriptome data of two maize hybrids and their parents under four light conditions. On the basis of allele expression patterns in different hybrids under various conditions, ASE genes were divided into three categories: bias-consistent genes involved in basal metabolic processes in a functionally complementary manner, bias-reversal genes adapting to the light environment, and bias-specific genes maintaining cell homeostasis. We observed that 758 ASE genes (ASEGs) were significantly overlapped with heterosis quantitative trait loci (QTLs), and high-frequency variations in the promoter regions of heterosis-related ASEGs were identified between parents. In addition, 10 heterosis-related ASEGs participating in yield heterosis were selected during domestication. CONCLUSIONS: The comprehensive analysis of ASEGs offers a distinctive perspective on how light quality influences gene expression patterns and gene-environment interactions, with implications for the identification of heterosis-related ASEGs to enhance maize yield.
Subject(s)
Alleles , Gene Expression Regulation, Plant , Hybrid Vigor , Promoter Regions, Genetic , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/metabolism , Hybrid Vigor/genetics , Gene Expression Profiling , Genetic Variation , TranscriptomeABSTRACT
BACKGROUND: Carcass weight (HCW) and marbling (MARB) are critical for meat quality and market value in beef cattle. In composite breeds like Brangus, which meld the genetics of Angus and Brahman, SNP-based analyses have illuminated some genetic influences on these traits, but they fall short in fully capturing the nuanced effects of breed of origin alleles (BOA) on these traits. Focus on the impacts of BOA on phenotypic features within Brangus populations can result in a more profound understanding of the specific influences of Angus and Brahman genetics. Moreover, the consideration of BOA becomes particularly significant when evaluating dominance effects contributing to heterosis in crossbred populations. BOA provides a more comprehensive measure of heterosis due to its ability to differentiate the distinct genetic contributions originating from each parent breed. This detailed understanding of genetic effects is essential for making informed breeding decisions to optimize the benefits of heterosis in composite breeds like Brangus. OBJECTIVE: This study aims to identify quantitative trait loci (QTL) influencing HCW and MARB by utilizing SNP and BOA information, incorporating additive, dominance, and overdominance effects within a multi-generational Brangus commercial herd. METHODS: We analyzed phenotypic data from 1,066 genotyped Brangus steers. BOA inference was performed using LAMP-LD software using Angus and Brahman reference sets. SNP-based and BOA-based GWAS were then conducted considering additive, dominance, and overdominance models. RESULTS: The study identified numerous QTLs for HCW and MARB. A notable QTL for HCW was associated to the SGCB gene, pivotal for muscle growth, and was identified solely in the BOA GWAS. Several BOA GWAS QTLs exhibited a dominance effect underscoring their importance in estimating heterosis. CONCLUSIONS: Our findings demonstrate that SNP-based methods may not detect all genetic variation affecting economically important traits in composite breeds. BOA inclusion in genomic evaluations is crucial for identifying genetic regions contributing to trait variation and for understanding the dominance value underpinning heterosis. By considering BOA, we gain a deeper understanding of genetic interactions and heterosis, which is integral to advancing breeding programs. The incorporation of BOA is recommended for comprehensive genomic evaluations to optimize trait improvements in crossbred cattle populations.
Subject(s)
Breeding , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Cattle/genetics , Genotype , Hybrid Vigor , Meat , AllelesABSTRACT
Heterosis, recognized for improving crop performance, especially in the first filial (F1) generation, remains an area of significant study in the tobacco industry. The low utilization of leaf veins in tobacco contributes to economic inefficiency and resource waste. Despite the positive impacts of heterosis on crop genetics, investigations into leaf-vein ratio heterosis in tobacco have been lacking. Understanding the mechanisms underlying negative heterosis in leaf vein ratio at the molecular level is crucial for advancing low vein ratio leaf breeding research. This study involved 12 hybrid combinations and their parental lines to explore heterosis associated with leaf vein ratios. The hybrids displayed diverse patterns of positive or negative leaf vein ratio heterosis across different developmental stages. Notably, the F1 hybrid (G70 × Qinggeng) consistently exhibited substantial negative heterosis, reaching a maximum of -19.79% 80 days after transplanting. A comparative transcriptome analysis revealed that a significant proportion of differentially expressed genes (DEGs), approximately 39.04% and 23.73%, exhibited dominant and over-dominant expression patterns, respectively. These findings highlight the critical role of non-additive gene expression, particularly the dominance pattern, in governing leaf vein ratio heterosis. The non-additive genes, largely associated with various GO terms such as response to abiotic stimuli, galactose metabolic process, plant-type cell wall organization, auxin-activated signaling pathway, hydrolase activity, and UDP-glycosyltransferase activity, were identified. Furthermore, KEGG enrichment analysis unveiled their involvement in phenylpropanoid biosynthesis, galactose metabolism, plant hormone signal transduction, glutathione metabolism, MAPK signaling pathway, starch, and sucrose metabolism. Among the non-additive genes, we identified some genes related to leaf development, leaf size, leaf senescence, and cell wall extensibility that showed significantly lower expression in F1 than in its parents. These results indicate that the non-additive expression of genes plays a key role in the heterosis of the leaf vein ratio in tobacco. This study marks the first exploration into the molecular mechanisms governing leaf vein ratio heterosis at the transcriptome level. These findings significantly contribute to understanding leaf vein ratios in tobacco breeding strategies.
Subject(s)
Hybrid Vigor , Nicotiana , Plant Leaves , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Hybrid Vigor/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , TranscriptomeABSTRACT
Impacts of immigration on micro-evolution and population dynamics fundamentally depend on net rates and forms of resulting gene flow into recipient populations. Yet, the degrees to which observed rates and sex ratios of physical immigration translate into multi-generational genetic legacies have not been explicitly quantified in natural meta-populations, precluding inference on how movements translate into effective gene flow and eco-evolutionary outcomes. Our analyses of three decades of complete song sparrow (Melospiza melodia) pedigree data show that multi-generational genetic contributions from regular natural immigrants substantially exceeded those from contemporary natives, consistent with heterosis-enhanced introgression. However, while contributions from female immigrants exceeded those from female natives by up to three-fold, male immigrants' lineages typically went locally extinct soon after arriving. Both the overall magnitude, and the degree of female bias, of effective gene flow therefore greatly exceeded those which would be inferred from observed physical arrivals, altering multiple eco-evolutionary implications of immigration.
Subject(s)
Emigrants and Immigrants , Passeriformes , Animals , Male , Humans , Female , Gene Flow , Population DynamicsABSTRACT
Future breeding is likely to involve the detection and removal of deleterious alleles, which are mutations that negatively affect crop fitness. However, little is known about the prevalence of such mutations and their effects on phenotypic traits in the context of modern crop breeding. To address this, we examined the number and frequency of deleterious mutations in 350 elite maize inbred lines developed over the past few decades in China and the United States. Our findings reveal an accumulation of weakly deleterious mutations and a decrease in strongly deleterious mutations, indicating the dominant effects of genetic drift and purifying selection for the two types of mutations, respectively. We also discovered that slightly deleterious mutations, when at lower frequencies, were more likely to be heterozygous in the developed hybrids. This is consistent with complementation as a potential explanation for heterosis. Subsequently, we found that deleterious mutations accounted for more of the variation in phenotypic traits than nondeleterious mutations with matched minor allele frequencies, especially for traits related to leaf angle and flowering time. Moreover, we detected fewer deleterious mutations in the promoter and gene body regions of differentially expressed genes across breeding eras than in nondifferentially expressed genes. Overall, our results provide a comprehensive assessment of the prevalence and impact of deleterious mutations in modern maize breeding and establish a useful baseline for future maize improvement efforts.
Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Prevalence , Gene Frequency , MutationABSTRACT
AbstractThe fitness of immigrants and their descendants produced within recipient populations fundamentally underpins the genetic and population dynamic consequences of immigration. Immigrants can in principle induce contrasting genetic effects on fitness across generations, reflecting multifaceted additive, dominance, and epistatic effects. Yet full multigenerational and sex-specific fitness effects of regular immigration have not been quantified within naturally structured systems, precluding inference on underlying genetic architectures and population outcomes. We used four decades of song sparrow (Melospiza melodia) life history and pedigree data to quantify fitness of natural immigrants, natives, and their F1, F2, and backcross descendants and test for evidence of nonadditive genetic effects. Values of key fitness components (including adult lifetime reproductive success and zygote survival) of F1 offspring of immigrant-native matings substantially exceeded their parent mean, indicating strong heterosis. Meanwhile, F2 offspring of F1-F1 matings had notably low values, indicating surprisingly strong epistatic breakdown. Furthermore, magnitudes of effects varied among fitness components and differed between female and male descendants. These results demonstrate that strong nonadditive genetic effects on fitness can arise within weakly structured and fragmented populations experiencing frequent natural immigration. Such effects will substantially affect the net degree of effective gene flow and resulting local genetic introgression and adaptation.
Subject(s)
Animals, Wild , Hybrid Vigor , Animals , Female , Male , Birds , Emigration and ImmigrationABSTRACT
BACKGROUND: Heterosis breeding is one of the most important breeding methods for chrysanthemum. To date, the genetic mechanisms of heterosis for waterlogging tolerance in chrysanthemum are still unclear. This study aims to analyze the expression profiles and potential heterosis-related genes of two hybrid lines and their parents with extreme differences in waterlogging tolerance under control and waterlogging stress conditions by RNA-seq. RESULTS: A population of 140 F1 progeny derived from Chrysanthemum indicum (Nanchang) (waterlogging-tolerant) and Chrysanthemum indicum (Nanjing) (waterlogging-sensitive) was used to characterize the extent of genetic variation in terms of seven waterlogging tolerance-related traits across two years. Lines 98 and 95, respectively displaying positive and negative overdominance heterosis for the waterlogging tolerance traits together with their parents under control and waterlogging stress conditions, were used for RNA-seq. In consequence, the maximal number of differentially expressed genes (DEGs) occurred in line 98. Gene ontology (GO) enrichment analysis revealed multiple stress-related biological processes for the common up-regulated genes. Line 98 had a significant increase in non-additive genes under waterlogging stress, with transgressive up-regulation and paternal-expression dominant patterns being the major gene expression profiles. Further, GO analysis identified 55 and 95 transgressive up-regulation genes that overlapped with the up-regulated genes shared by two parents in terms of responses to stress and stimulus, respectively. 6,640 genes in total displaying maternal-expression dominance patterns were observed in line 95. In addition, 16 key candidate genes, including SAP12, DOX1, and ERF017 which might be of significant importance for the formation of waterlogging tolerance heterosis in line 98, were highlighted. CONCLUSION: The current study provides a comprehensive overview of the root transcriptomes among F1 hybrids and their parents under waterlogging stress. These findings lay the foundation for further studies on molecular mechanisms underlying chrysanthemum heterosis on waterlogging tolerance.
Subject(s)
Chrysanthemum , Transcriptome , Hybrid Vigor/genetics , Chrysanthemum/genetics , Plant Breeding , Gene Expression Profiling/methods , Gene Expression Regulation, PlantABSTRACT
Nicotine exhibits obvious heterosis, which can be used to create Nicotiana tabacum L. (tobacco) varieties with varying nicotine content. However, the reasons for the formation of nicotine heterosis and its relationship to nicotine transport and accumulation remain unknown. This study conducted a comprehensive analysis of six tobacco hybrids with varying heterosis levels and their parent materials from various aspects, such as phenotype, physiology, and transcriptomics. The results showed that the direct path coefficient of transport heterosis to nicotine heterosis was highest in hybrids, at 0.98, and a highly significant positive correlation between the two. The plant height, thick stalk circumference, large flow of tissue fluid in the stalk, and high nicotine concentration of tobacco were the underlying factors that led to the strong nicotine transport capacity of hybrids. The formation of nicotine transport heterosis in hybrids was mainly influenced by non-additive gene effects (accounting for 89.93%), with over-dominant effects playing a dominant role (accounting for 58.79%). Among non-additive expression DEGs, nicotine transporter related multi antimicrobial extrusion protein, drug/metabolite transporter, ABC family transporter, and glutathione S-transferase were significantly upregulated in hybrid strains. The RT-qPCR results indicated that these genes related nicotine transport also exhibited heterosis at the expression level. Our results revealed that the formation of nicotine heterosis is mainly achieved by enhancing the nicotine transport capacity in hybrids. The results are not only beneficial for promoting the theoretical study of nicotine heterosis in tobacco and the breeding and utilization of hybrids, but are also of great significance for guiding nicotine production and promoting its multipurpose utilization.
Subject(s)
Hybrid Vigor , Hybridization, Genetic , Nicotiana , Nicotine , Nicotine/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Biological Transport , Gene Expression Regulation, PlantABSTRACT
BACKGROUND: Orobanche is an obligate parasite on faba bean in the Mediterranean region, causes considerable yield losses. Breeding tolerant faba bean genotypes to Orobanche is pivotal to sustain production and ensuring global food security, particularly considering the challenges posed by population growth. In the present study, seven faba bean lines and four testers were used in a line×tester mating design during 2020-2021 and 2021-2022 growing seasons. The eleven parents and their 28 F1 crosses were evaluated under Orobanche free and naturally infested soils. RESULTS: The results demonstrated considerable variations among the evaluated genotypes, wide diversity among the parental materials, and heterotic effects for all studied agronomic traits under Orobanche-free and infested soils. Orbanche infestation displayed a significant adverse impact on all the studied agronomic traits. The genotypes Line1, Line2, Line3, and Line5 displayed superior performance under Orobanche-infested conditions and recorded the highest values of all studied agronomic traits. Additionally, Line1, Line2, Line3, Line5, and Line7 exhibited desirable significant GCA for most evaluated traits under the two infestation conditions. The obtained crosses displayed significant negative or positive heterosis for studied agronomic characters such as plant height, number of branches per plant, number of pods per plant, number of seeds per plant, and seed weight per plant were observed. Furthermore, specific cross combinations such as Line2×Sakha3, Line3×Nubaria5, Line7 × Nubaria5, Line6×Nubaria1, Line5×Sakha3, Line1×Sakha3, and Line1 × Nubaria5 exhibited superior performance in seed yield and contributing traits under Orobanche-infested conditions. Moreover, these specific crosses showed superior efficacy in reducing dry weight of Orobanche spikes. The results obtained from GGE biplot analysis closely aligned with those from the line×tester procedure, affirming the significance of GGE biplot as a valuable statistical tool for assessing genotype combining ability in line× tester data. Both additive and non-additive gene actions were reported to be predominantly involved in the inheritance of the studied agronomic traits in faba bean. CONCLUSIONS: The detected genetic diversity within the evaluated faba bean genotypes and their developed crosses exhibits substantial potential for improving faba bean productivity under Orobanche-infested conditions. The parental genotypes, Line1, Line2, Line3, Line5, and Line7, were identified as effective and promising combiners. Moreover, the developed crosses Line2×Sakha3, Line3×Nubaria5, Line7×Nubaria5, Line6×Nubaria1, Line5×Sakha3, Line1×Sakha3, and Line1×Nubaria5 could be considered valuable candidates for developing high-yielding and tolerant faba bean genotypes to Orobanche.
Subject(s)
Orobanche , Vicia faba , Vicia faba/genetics , Vicia faba/parasitology , Orobanche/genetics , Soil , Plant Breeding , Inheritance PatternsABSTRACT
BACKGROUND: Inter-subspecific hybrid rice represents a significant breakthrough in agricultural genetics, offering higher yields and better resilience to various environmental stresses. While the utilization of these hybrids has shed light on the genetic processes underlying hybridization, understanding the molecular mechanisms driving heterosis remains a complex and ongoing challenge. Here, chromatin immunoprecipitation-sequencing (ChIP-seq) was used to analyze genome-wide profiles of H3K4me3 and H3K27me3 modifications in the inter-subspecific hybrid rice ZY19 and its parents, Z04A and ZHF1015, then combined them with the transcriptome and DNA methylation data to uncover the effects of histone modifications on gene expression and the contribution of epigenetic modifications to heterosis. RESULTS: In the hybrid, there were 8,126 and 1,610 different peaks for H3K4me3 and H3K27me3 modifications when compared to its parents, respectively, with the majority of them originating from the parental lines. The different modifications between the hybrid and its parents were more frequently observed as higher levels in the hybrid than in the parents. In ZY19, there were 476 and 84 allele-specific genes with H3K4me3 and H3K27me3 modifications identified, representing 7.9% and 12% of the total analyzed genes, respectively. Only a small portion of genes that showed differences in parental H3K4me3 and H3K27me3 modifications which demonstrated allele-specific histone modifications (ASHM) in the hybrid. The H3K4me3 modification level in the hybrid was significantly lower compared to the parents. In the hybrid, DNA methylation occurs more frequently among histone modification target genes. Additionally, over 62.58% of differentially expressed genes (DEGs) were affected by epigenetic variations. Notably, there was a strong correlation observed between variations in H3K4me3 modifications and gene expression levels in the hybrid and its parents. CONCLUSION: These findings highlight the substantial impact of histone modifications and DNA methylation on gene expression during hybridization. Epigenetic variations play a crucial role in controlling the differential expression of genes, with potential implications for heterosis.
Subject(s)
Histone Code , Hybrid Vigor , Hybridization, Genetic , Oryza , Plant Leaves , Hybrid Vigor/genetics , Oryza/genetics , Oryza/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Histones/metabolism , Histones/genetics , Epigenesis, Genetic , DNA Methylation , Gene Expression Regulation, PlantABSTRACT
MAIN CONCLUSION: Molecular mechanisms of biological rhythms provide opportunities to harness functional allelic diversity in core (and trait- or stress-responsive) oscillator networks to develop more climate-resilient and productive germplasm. The circadian clock senses light and temperature in day-night cycles to drive biological rhythms. The clock integrates endogenous signals and exogenous stimuli to coordinate diverse physiological processes. Advances in high-throughput non-invasive assays, use of forward- and inverse-genetic approaches, and powerful algorithms are allowing quantitation of variation and detection of genes associated with circadian dynamics. Circadian rhythms and phytohormone pathways in response to endogenous and exogenous cues have been well documented the model plant Arabidopsis. Novel allelic variation associated with circadian rhythms facilitates adaptation and range expansion, and may provide additional opportunity to tailor climate-resilient crops. The circadian phase and period can determine adaptation to environments, while the robustness in the circadian amplitude can enhance resilience to environmental changes. Circadian rhythms in plants are tightly controlled by multiple and interlocked transcriptional-translational feedback loops involving morning (CCA1, LHY), mid-day (PRR9, PRR7, PRR5), and evening (TOC1, ELF3, ELF4, LUX) genes that maintain the plant circadian clock ticking. Significant progress has been made to unravel the functions of circadian rhythms and clock genes that regulate traits, via interaction with phytohormones and trait-responsive genes, in diverse crops. Altered circadian rhythms and clock genes may contribute to hybrid vigor as shown in Arabidopsis, maize, and rice. Modifying circadian rhythms via transgenesis or genome-editing may provide additional opportunities to develop crops with better buffering capacity to environmental stresses. Models that involve clock geneâphytohormoneâtrait interactions can provide novel insights to orchestrate circadian rhythms and modulate clock genes to facilitate breeding of all season crops.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Circadian Clocks/genetics , Arabidopsis/genetics , Plant Growth Regulators , Plant Breeding , Alleles , Crops, Agricultural/genetics , Transcription Factors/geneticsABSTRACT
The exploitation of heterosis to integrate parental advantages is one of the fastest and most efficient ways of rice breeding. The genomic architecture of heterosis suggests that the grain yield is strongly correlated with the accumulation of numerous rare superior alleles with positive dominance. However, the improvements in yield of hybrid rice have shown a slowdown or even plateaued due to the limited availability of complementary superior alleles. In this study, we achieved a considerable increase in grain yield of restorer lines by inducing an alternative splicing event in a heterosis gene OsMADS1 through CRISPR-Cas9, which accounted for approximately 34.1%-47.5% of yield advantage over their corresponding inbred rice cultivars. To achieve a higher yield in hybrid rice, we crossed the gene-edited restorer parents harbouring OsMADS1GW3p6 with the sterile lines to develop new rice hybrids. In two-line hybrid rice Guang-liang-you 676 (GLY676), the yield of modified hybrids carrying the homozygous heterosis gene OsMADS1GW3p6 significantly exceeded that of the original hybrids with heterozygous OsMADS1. Similarly, the gene-modified F1 hybrids with heterozygous OsMADS1GW3p6 increased grain yield by over 3.4% compared to the three-line hybrid rice Quan-you-si-miao (QYSM) with the homozygous genotype of OsMADS1. Our study highlighted the great potential in increasing the grain yield of hybrid rice by pyramiding a single heterosis gene via CRISPR-Cas9. Furthermore, these results demonstrated that the incomplete dominance of heterosis genes played a major role in yield-related heterosis and provided a promising strategy for breeding higher-yielding rice varieties above what is currently achievable.