Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Publication year range
1.
Sleep Breath ; 28(5): 1951-1959, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38884695

ABSTRACT

PURPOSE: Chemosensitivity is an essential part of the pathophysiological mechanisms of obstructive sleep apnea (OSA). This study aims to use the rebreathing method to assess hypercapnic ventilatory response (HCVR) and analyze the association between chemosensitivity and certain symptoms in patients with OSA. METHODS: A total of 104 male patients with diagnosed OSA were enrolled. The HCVR was assessed using rebreathing methods under hypoxia exposure to reflect the overall chemosensitivity. Univariate and multivariate linear regression were used to explore the association with chemosensitivity. Participants were enrolled in the cluster analysis using certain symptoms, basic characteristics, and polysomnographic indices. RESULTS: At similar baseline values, the high chemosensitivity group (n = 39) demonstrated more severe levels of OSA and nocturnal hypoxia than the low chemosensitivity group (n = 65). After screening the possible associated factors, nocturnal urination, rather than OSA severity, was found to be positively associated with the level of chemosensitivity. Cluster analysis revealed three distinct groups: Cluster 1 (n = 32, 34.0%) held younger, obese individuals with nocturnal urination, elevated chemosensitivity level, and very severe OSA; Cluster 2 (41, 43.6%) included middle-aged overweighted patients with nocturnal urination, increased chemosensitivity level, but moderate-severe OSA; and Cluster 3 (n = 21, 22.3%) contained middle-aged overweighted patients without nocturnal urination, with a lowered chemosensitivity level and only moderate OSA. CONCLUSION: The presence of nocturnal urination in male patients with OSA may be a sign of higher levels of ventilatory chemosensitivity, requiring early therapy efforts independent of AHI levels.


Subject(s)
Polysomnography , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/physiopathology , Male , Middle Aged , Adult , Hypercapnia/physiopathology , Nocturia/physiopathology , Nocturia/drug therapy , Hypoxia/physiopathology
2.
Br J Anaesth ; 130(4): 485-493, 2023 04.
Article in English | MEDLINE | ID: mdl-36725378

ABSTRACT

BACKGROUND: In humans, the effect of cannabis on ventilatory control is poorly studied, and consequently, the effect of Δ9-tetrahydrocannabinol (THC) remains unknown, particularly when THC is combined with an opioid. We studied the effect of THC on breathing without and with oxycodone pretreatment. We hypothesised that THC causes respiratory depression, which is amplified when THC and oxycodone are combined. METHODS: In this randomised controlled crossover trial, healthy volunteers were administered inhaled Bedrocan® 100 mg (Bedrocan International B.V., Veendam, The Netherlands), a pharmaceutical-grade high-THC cannabis variant (21.8% THC; 0.1% cannabidiol), after placebo or oral oxycodone 20 mg pretreatment; THC was inhaled 1.5 and 4.5 h after placebo or oxycodone intake. The primary endpoint was isohypercapnic ventilation at an end-tidal Pco2 of 55 mm Hg or 7.3 kPa (VE55), measured at 1-h intervals for 7 h after placebo/oxycodone intake. RESULTS: In 18 volunteers (age 22 yr [3]; 9 [50%] female), oxycodone produced a 30% decrease in VE55, whereas placebo was without effect on VE55. The first cannabis inhalation resulted in VE55 changing from 20.3 (3.1) to 23.8 (2.4) L min-1 (P=0.06) after placebo, and from 11.8 (2.8) to 13.0 (3.9) L min-1 (P=0.83) after oxycodone. The second cannabis inhalation also had no effect on VE55, but slightly increased sedation. CONCLUSIONS: In humans, THC has no effect on ventilatory control after placebo or oxycodone pretreatment. CLINICAL TRIAL REGISTRATION: 2021-000083-29 (EU Clinical Trials Register.).


Subject(s)
Cannabis , Respiratory Insufficiency , Humans , Female , Young Adult , Adult , Male , Oxycodone/adverse effects , Dronabinol/adverse effects , Healthy Volunteers , Respiratory Insufficiency/chemically induced , Double-Blind Method
3.
J Physiol ; 599(4): 1115-1130, 2021 02.
Article in English | MEDLINE | ID: mdl-33347681

ABSTRACT

KEY POINTS: This study demonstrates that both CO2 -induced respiratory and cardiovascular responses are augmented in spontaneously hypertensive rats (SHRs). Genetic ablation of the retrotrapezoid nucleus (RTN) neurons depresses enhanced hypercapnic ventilatory response and eliminates CO2 -stimulated increase in arterial pressure and heart rate in SHRs. SHRs have a high protein level of pH-sensitive channels in the RTN, including the TASK-2 channel, Kv12.1 channel and acid-sensing ion channel 3. The inhibition of putative TASK-2 channel activity by clofilium diminishes amplified hypercapnic ventilatory and cardiovascular responses, and reduces the number of CO2 -activated RTN neurons in SHRs. These results indicate that RTN neurons contribute to enhanced CO2 -stimulated respiratory and cardiovascular responses in SHRs. ABSTRACT: The respiratory regulation of cardiovascular activity is essential for maintaining an efficient ventilation and perfusion ratio. Activation of central respiratory chemoreceptors not only elicits a ventilatory response but also regulates sympathetic nerve activity and arterial blood pressure (ABP). The retrotrapezoid nucleus (RTN) is the most completely characterized cluster of central respiratory chemoreceptors. We hypothesize that RTN neurons contribute to augmented CO2 -stimulated respiratory and cardiovascular responses in adult spontaneously hypertensive rats (SHRs). Our findings indicate that SHRs exhibit more enhanced hypercapnic cardiorespiratory responses than age-matched normotensive Wistar-Kyoto rats. Genetic ablation of RTN neurons notably depresses an enhanced hypercapnic ventilatory response (HCVR) and eliminates a CO2 -stimulated greater increase in ABP and heart rate in SHRs. In addition, SHRs have a higher protein level of pH-sensitive channels in the RTN, including TASK-2 channels, Kv12.1 channels and acid-sensing ion channel 3. Administration of clofilium (i.p.), an unselective inhibitor of TASK-2 channels, not only significantly reduces the enhanced HCVR but also inhibits CO2 -amplified increases in ABP and heart rate in SHRs. Moreover, clofilium significantly decreases the number of CO2 -activated RTN neurons in SHRs. Taken together, we suggest that RTN neurons play an important role in enhanced hypercapnic ventilatory and cardiovascular responses in SHRs and the putative mechanism involved is associated with TASK-2 channel activity in the RTN.


Subject(s)
Carbon Dioxide , Chemoreceptor Cells , Animals , Neurons , Rats , Rats, Inbred SHR , Rats, Inbred WKY
4.
J Neurophysiol ; 125(3): 699-719, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33427575

ABSTRACT

Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.


Subject(s)
Chemoreceptor Cells/physiology , Medulla Oblongata/physiology , Receptors, Neurotransmitter/physiology , Respiratory Mechanics/physiology , Adenosine Triphosphate/physiology , Animals , Cholinergic Neurons/physiology , Humans , Medulla Oblongata/cytology , Receptors, Purinergic/physiology , Respiration , Serotonergic Neurons/physiology
5.
Epilepsia ; 62(9): e140-e146, 2021 09.
Article in English | MEDLINE | ID: mdl-34265074

ABSTRACT

OBJECTIVE: Central CO2 chemoreception (CCR), a major chemical drive for breathing, can be quantified with a CO2 re-breathing test to measure the hypercapnic ventilatory response (HCVR). An attenuated HCVR correlates with the severity of respiratory dysfunction after generalized convulsive seizures and is a potential biomarker for sudden unexpected death in epilepsy (SUDEP) risk. Vagus nerve stimulation (VNS) may reduce SUDEP risk, but for unclear reasons the risk remains higher during the first 2 years after implantation. The vagus nerve has widespread connections in the brainstem, including key areas related to CCR. Here we examined whether chronic electrical stimulation of the vagus nerve induces changes in CCR. METHODS: We compared the HCVR in epilepsy patients with or without an active VNS in a sex- and age-matched case-control study. Eligible subjects were selected from a cohort of patients who previously underwent HCVR testing. The HCVR slope, change in minute ventilation (VE) with respect to change in end tidal (ET) CO2 (∆ VE/ ∆ ETCO2) during the test was calculated for each subject. Key variables were compared between the two groups. Univariate and multivariate analyses were carried out for HCVR slope as dependent variable. RESULTS: A total of 86 subjects were in the study. HCVR slope was significantly lower in the cases compared to the controls. Cases had longer duration of epilepsy and higher number of anti-epileptic drugs (AEDs) tried during lifetime. Having active VNS and ETCO2 were associated with a low HCVR slope while high BMI was associated with high HCVR slope in both univariate and multivariate analyses. DISCUSSION: We found having an active VNS was associated with relatively attenuated HCVR slope. Although duration of epilepsy and number of AEDs tried during lifetime was significantly different between the groups, they were not predictors of HCVR slope in subsequent analysis. CONCLUSION: Chronic electrical stimulation of the vagus nerve by VNS may be associated with an attenuated CCR [Correction added on 24 November 2021, after first online publication: The preceding sentence has been revised from "Chronic electrical stimulation of VNS nerve by VNS…"]. A larger prospective study may help to establish the time course of this effect in relation to the time of VNS implantation, whether there is a causal relationship, and determine how it affects SUDEP risk.


Subject(s)
Epilepsy , Sudden Unexpected Death in Epilepsy , Carbon Dioxide , Case-Control Studies , Epilepsy/therapy , Humans , Hypercapnia , Treatment Outcome , Vagus Nerve Stimulation
6.
Anaesthesia ; 75(3): 338-347, 2020 03.
Article in English | MEDLINE | ID: mdl-31420989

ABSTRACT

Obstructive sleep apnoea and residual neuromuscular blockade are, independently, known to be risk factors for respiratory complications after major surgery. Residual effects of neuromuscular blocking agents are known to reduce the hypoxic ventilatory response in healthy volunteers. Patients with obstructive sleep apnoea have impaired control of breathing, but it is not known to what extent neuromuscular blocking agents interfere with the regulation of breathing in such patients. In a physiological study in 10 unsedated men with untreated obstructive sleep apnoea, we wished to examine if partial neuromuscular blockade had an effect on hypoxic ventilatory response (isocapnic hypoxia to oxygen saturation of 80%) and hypercapnic ventilatory response (normoxic inspired carbon dioxide 5%). The hypoxic ventilatory response was reduced by 32% (p = 0.016) during residual neuromuscular block (rocuronium to train-of-four ratio 0.7), but the hypercapnic ventilatory response was unaffected. We conclude that neuromuscular blockade specifically depresses peripheral chemosensitivity, and not respiratory muscle function since the hypercapnic ventilatory response was unaffected.


Subject(s)
Hypoxia/chemically induced , Hypoxia/physiopathology , Neuromuscular Blockade/adverse effects , Neuromuscular Nondepolarizing Agents/adverse effects , Pulmonary Ventilation , Rocuronium/adverse effects , Sleep Apnea, Obstructive/physiopathology , Adolescent , Adult , Aged , Carbon Dioxide/blood , Humans , Hypercapnia/physiopathology , Male , Middle Aged , Oxygen/blood , Prospective Studies , Respiratory Muscles/drug effects , Respiratory Muscles/physiopathology , Risk Factors , Young Adult
7.
Biol Lett ; 15(3): 20190006, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30862308

ABSTRACT

Damaraland mole rats (DMRs, Fukomys damarensis) are a eusocial fossorial species that spend the majority of their life in densely populated underground burrows, in which they likely experience intermittent periods of elevated CO2 (i.e. hypercapnia). The primary physiological response to hypercapnia in most mammals is to increase depth and rate of breathing (i.e. hyperpnoea), but this response is often blunted in species that inhabit hypercapnic environments. In their natural habitat, DMRs putatively experience a gaseous environment ranging from normocapnic (0.1% CO2) to hypercapnic (6.0% CO2) conditions (Roper et al. 2001 J. Zool. 254, 101-107). As such, we hypothesized that DMRs would exhibit blunted hypercapnic ventilatory and metabolic responses, relative to those of non-fossorial rodent species. To test this hypothesis, we exposed awake, freely behaving DMRs to normoxic normocapnia (21% O2, 0% CO2, balance N2) or graded normoxic hypercapnia (21% O2, 0, 2, 5, 7 and 10% CO2, balance N2), and measured ventilation and metabolism using whole-body plethysmography and indirect calorimetry, respectively. We found that ventilation and metabolism were unchanged during prolonged normocapnia, whereas during graded hypercapnia, ventilation was elevated at 2% CO2 and above. As a result, O2 extraction efficiency at the lungs decreased with increasing hyperpnoea. Conversely, metabolic rate did not increase until 10% CO2, presumably due to the metabolic cost of hyperpnoea. Taken together, our results suggest that despite their fossorial lifestyle, DMRs do not exhibit adaptations in their ventilatory or metabolic responses to environmental hypercapnia.


Subject(s)
Hypercapnia , Mole Rats , Acclimatization , Animals , Carbon Dioxide , Hypoxia , Lung , Respiration
8.
Am J Physiol Regul Integr Comp Physiol ; 315(5): R1027-R1037, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30183337

ABSTRACT

We examined the control of breathing by O2 and CO2 in deer mice native to high altitude to help uncover the physiological specializations used to cope with hypoxia in high-altitude environments. Highland deer mice ( Peromyscus maniculatus) and lowland white-footed mice ( P. leucopus) were bred in captivity at sea level. The first and second generation progeny of each population was raised to adulthood and then acclimated to normoxia or hypobaric hypoxia (12 kPa O2, simulating hypoxia at ~4,300 m) for 6-8 wk. Ventilatory responses to poikilocapnic hypoxia (stepwise reductions in inspired O2) and hypercapnia (stepwise increases in inspired CO2) were then compared between groups. Both generations of lowlanders appeared to exhibit ventilatory acclimatization to hypoxia (VAH), in which hypoxia acclimation enhanced the hypoxic ventilatory response and/or made the breathing pattern more effective (higher tidal volumes and lower breathing frequencies at a given total ventilation). In contrast, hypoxia acclimation had no effect on breathing in either generation of highlanders, and breathing was generally similar to hypoxia-acclimated lowlanders. Therefore, attenuation of VAH may be an evolved feature of highlanders that persists for multiple generations in captivity. Hypoxia acclimation increased CO2 sensitivity of breathing, but in this case, the effect of hypoxia acclimation was similar in highlanders and lowlanders. Our results suggest that highland deer mice have evolved high rates of alveolar ventilation that are unaltered by exposure to chronic hypoxia, but they have preserved ventilatory sensitivity to CO2.


Subject(s)
Altitude , Carbon Dioxide/metabolism , Hypoxia/physiopathology , Respiration , Animals , Hypercapnia/physiopathology , Mice , Oxygen/metabolism , Oxygen Consumption/physiology , Peromyscus/physiology
9.
J Card Fail ; 23(1): 83-87, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27867115

ABSTRACT

BACKGROUND: Clinical and prognostic consequences of enhanced central chemosensitivity in the contemporary optimally treated patients with chronic heart failure (CHF) are unknown. METHODS AND RESULTS: We studied central chemosensitivity (defined as hypercapnic ventilatory response [HCVR; L/min/mmHg]) in 161 CHF patients (mean left ventricular ejection fraction [LVEF] 31 ± 6%, all receiving a combination of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker and beta-blocker) and 55 sex- and age-matched healthy controls. HCVR did not differ between CHF patients and controls (median 0.63 vs 0.57 L/min-1/mmHg-1, P = .76). When the CHF patients were divided into tertiles according to their HCVR values, there were no significant differences in clinical characteristics (except for ischemic etiology, which was more frequent in those with the highest HCVR), results of the cardiopulmonary exercise testing, and indices of heart rate variability. During the follow-up (median 28 months, range 1-48 months, ≥15 months in all survivors), 21 patients died. HCVR was not related to survival in the Cox proportional hazards analysis. CONCLUSIONS: Central chemosensitivity is not enhanced in contemporary, optimally treated CHF patients and its assessment does not provide significant clinical or prognostic information.


Subject(s)
Adrenergic beta-Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Chemoreceptor Cells/physiology , Heart Failure, Systolic/physiopathology , Oxygen Consumption/physiology , Stroke Volume/physiology , Ventricular Function, Left/physiology , Exercise Test , Female , Follow-Up Studies , Heart Failure, Systolic/therapy , Humans , Male , Middle Aged , Prognosis , Retrospective Studies
10.
Br J Anaesth ; 119(6): 1169-1177, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29029015

ABSTRACT

Background: There is a clinical need for potent opioids that produce little or no respiratory depression. In the current study we compared the respiratory effects of tapentadol, a mu-opioid receptor agonist and noradrenaline reuptake inhibitor, and oxycodone, a selective mu-opioid receptor agonist. We hypothesize that tapentadol 100 mg has a lesser effect on the control of breathing than oxycodone 20 mg. Methods: Fifteen healthy volunteers were randomized to receive oral tapentadol (100 and 150 mg), oxycodone 20 mg or placebo immediate release tablets in a crossover double-blind randomized design. The main end-point of the study was the effect of treatment on the ventilatory response to hypercapnia and ventilation at an extrapolated end-tidal PCO2 of 7.3 kPa (55 mmHg, VE55); VE55 was assessed prior and for 6-h following drug intake. Results: All three treatments had typical opioid effects on the hypercapnic ventilatory response: a shift to the right coupled to a decrease of the response slope. Oxycodone 20 mg had a significantly larger respiratory depressant effect than tapentadol 100 mg (mean difference -5.0 L min-1, 95% confidence interval: -7.1 to -2.9 L min-1, P<0.01), but not larger than tapentadol 150 mg (oxycodone vs. tapentadol 150 mg: P>0.05). Conclusions: In this exploratory study we observed that both tapentadol and oxycodone produce respiratory depression. Tapentadol 100 mg but not 150 mg had a modest respiratory advantage over oxycodone 20 mg. Further studies are needed to explore how these results translate to the clinical setting.


Subject(s)
Analgesics, Opioid/pharmacology , Oxycodone/pharmacology , Respiration/drug effects , Tapentadol/pharmacology , Adolescent , Adult , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Reference Values , Young Adult
11.
Respir Res ; 17(1): 148, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27842553

ABSTRACT

BACKGROUND: Modafinil is a wake-promoting drug and has been widely used for daytime sleepiness in patients with narcolepsy and other sleep disorders. A recent case series reported that daily oral modafinil alleviated hypercapnic respiratory failure in patients with COPD. However, the precise action of modafinil on respiration such as hypercapnic and/or hypoxic ventilatory responses remains unclear. The aim of this study is to clarify the effect of modafinil on the ventilatory control. METHODS: We investigated the hypothesis that modafinil enhances resting ventilation as well as the stimulatory ventilatory responses to hypercapnia and hypoxia. We addressed the issue by examining minute ventilation, respiratory rate and volume components using plethysmography, combined with a concurrent EEG monitoring of the level of wakefulness before and after administration of modafinil in two doses of 100 mg/kg and 200 mg/kg in unanesthetized mice. In addition, we monitored the effect of the lower dose of modafinil on mice locomotor activity in a freely moving condition by video-recording. RESULTS: Wakefulness, locomotor activity and variability of the breathing pattern in tidal volume were promoted by both doses of modafinil. Neither dose of modafinil increased the absolute values of resting ventilation or promoted the ventilatory responses to hypercapnia and hypoxia. Rather, higher dose of modafinil slightly suppressed respiratory rate in room air condition. CONCLUSIONS: Modafinil is conducive to the state of wakefulness but does not augment resting ventilation or the hyperventilatory responses to chemical stimuli in unanesthetized rodents.


Subject(s)
Activity Cycles/drug effects , Benzhydryl Compounds/pharmacology , Lung/drug effects , Pulmonary Ventilation/drug effects , Respiration/drug effects , Wakefulness-Promoting Agents/pharmacology , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Hypercapnia/drug therapy , Hypercapnia/physiopathology , Hypoxia/drug therapy , Hypoxia/physiopathology , Locomotion/drug effects , Lung/physiopathology , Male , Mice, Inbred C57BL , Modafinil , Time Factors , Video Recording
12.
Sleep Med ; 114: 266-271, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244464

ABSTRACT

OBJECTIVES: Chemosensitivity is an essential part of the pathophysiological mechanisms of obstructive sleep apnea (OSA). Not only does OSA have a certain relationship with the comorbidity of cardiovascular disease (CVD) but also chemosensitivity plays a crucial role in the development of CVD. This study aims to investigate the potential interaction between chemosensitivity and the development of CVD in OSA. METHODS: A total of 169 participants with suspected OSA were included. Data were gathered on the parameters of polysomnography and baseline clinical features. Peripheral chemosensitivity was evaluated by employing the rebreathing test. The lifetime CVD risk was computed using the China-PAR (Prediction for atherosclerotic CVD Risk in China) risk equation. RESULTS: After controlling for covariates, participants with chemosensitivity levels in the second and fifth quantiles tended to hold an increased proportion of high lifetime CVD risk (OR 10.90, 95%CI [2.81-42.28]; OR 6.78, 95%CI [1.70-27.05], respectively). The diagnosis of OSA would significantly increase the 10-year and lifetime CVD risks in participants with low chemosensitivity, while no such differences were found in participants with high chemosensitivity. CONCLUSION: Higher lifetime CVD risk was associated with participants who had greater peripheral chemosensitivity. In terms of the CVD outcomes, adult patients with a relatively low level of chemosensitivity may be primarily related to their diagnosis of OSA, whereas adult patients with a relatively high level of chemosensitivity may be more strongly associated with their elevated levels of chemosensitivity rather than OSA.


Subject(s)
Cardiovascular Diseases , Sleep Apnea, Obstructive , Adult , Humans , Risk Factors , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/diagnosis , Comorbidity , Polysomnography
13.
Life Sci ; 351: 122853, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889841

ABSTRACT

AIMS: Activation of central respiratory chemoreceptors provides excitatory drive to both respiratory and sympathetic outputs. The enhanced respiratory-sympathetic coupling contributes to the onset and development of hypertension. However, the specific central targets and molecular mechanisms involved in this process remain elusive. This study aimed to investigate the role of acid-sensing ion channel 1 (ASIC1) in nucleus tractus solitarii (NTS) neurons in CO2-stimulated cardiorespiratory effects in spontaneously hypertensive rats (SHRs). MAIN METHODS: Respiration and blood pressure of conscious rats were recorded by whole-body plethysmography and telemetry, respectively. Western blot was used to detect the expression difference of ASIC1 protein in NTS region between Wistar-Kyoto (WKY) rats and SHRs. Excitability of NTS neurons were assessed by extracellular recordings. KEY FINDINGS: Compared to WKY rats, the enhanced CO2-stimulated cardiopulmonary effect and up-regulation of ASIC1 in the NTS were already observed in 4-week-old prehypertensive SHRs. Furthermore, specific blockade of ASIC1 effectively attenuated the CO2-stimulated increase in firing rate of NTS neurons in anesthetized adult SHRs. Intracerebroventricular injections of the ASIC1a blocker PcTx1 or knockdown Asic1 in NTS neurons significantly reduced the heightened CO2-stimulated ventilatory response, and diminished the CO2-stimulated increase in arterial pressure and heart rate in adult SHRs. SIGNIFICANCE: These findings showed that dysregulated ASIC1 signaling in the NTS contribute to the exaggerated CO2-stimulated cardiorespiratory effects observed in SHRs.


Subject(s)
Acid Sensing Ion Channels , Blood Pressure , Carbon Dioxide , Hypertension , Neurons , Rats, Inbred SHR , Rats, Inbred WKY , Solitary Nucleus , Animals , Acid Sensing Ion Channels/metabolism , Solitary Nucleus/metabolism , Rats , Neurons/metabolism , Neurons/drug effects , Male , Carbon Dioxide/metabolism , Hypertension/metabolism , Hypertension/physiopathology , Blood Pressure/drug effects , Respiration/drug effects , Peptides , Spider Venoms
14.
Front Physiol ; 14: 1241662, 2023.
Article in English | MEDLINE | ID: mdl-37719465

ABSTRACT

An interoceptive homeostatic system monitors levels of CO2/H+ and provides a proportionate drive to respiratory control networks that adjust lung ventilation to maintain physiologically appropriate levels of CO2 and rapidly regulate tissue acid-base balance. It has long been suspected that the sensory cells responsible for the major CNS contribution to this so-called respiratory CO2/H+ chemoreception are located in the brainstem-but there is still substantial debate in the field as to which specific cells subserve the sensory function. Indeed, at the present time, several cell types have been championed as potential respiratory chemoreceptors, including neurons and astrocytes. In this review, we advance a set of criteria that are necessary and sufficient for definitive acceptance of any cell type as a respiratory chemoreceptor. We examine the extant evidence supporting consideration of the different putative chemoreceptor candidate cell types in the context of these criteria and also note for each where the criteria have not yet been fulfilled. By enumerating these specific criteria we hope to provide a useful heuristic that can be employed both to evaluate the various existing respiratory chemoreceptor candidates, and also to focus effort on specific experimental tests that can satisfy the remaining requirements for definitive acceptance.

15.
Function (Oxf) ; 4(4): zqad023, 2023.
Article in English | MEDLINE | ID: mdl-37342417

ABSTRACT

While the suprachiasmatic nucleus (SCN) controls 24-h rhythms in breathing, including minute ventilation (VE), the mechanisms by which the SCN drives these daily changes are not well understood. Moreover, the extent to which the circadian clock regulates hypercapnic and hypoxic ventilatory chemoreflexes is unknown. We hypothesized that the SCN regulates daily breathing and chemoreflex rhythms by synchronizing the molecular circadian clock of cells. We used whole-body plethysmography to assess ventilatory function in transgenic BMAL1 knockout (KO) mice to determine the role of the molecular clock in regulating daily rhythms in ventilation and chemoreflex. Unlike their wild-type littermates, BMAL1 KO mice exhibited a blunted daily rhythm in VE and failed to demonstrate daily variation in the hypoxic ventilatory response (HVR) or hypercapnic ventilatory response (HCVR). To determine if the observed phenotype was mediated by the molecular clock of key respiratory cells, we then assessed ventilatory rhythms in BMAL1fl/fl; Phox2bCre/+ mice, which lack BMAL1 in all Phox2b-expressing chemoreceptor cells (hereafter called BKOP). BKOP mice lacked daily variation in HVR, similar to BMAL1 KO mice. However, unlike BMAL1 KO mice, BKOP mice exhibited circadian variations in VE and HCVR comparable to controls. These data indicate that the SCN regulates daily rhythms in VE, HVR, and HCVR, in part, through the synchronization of the molecular clock. Moreover, the molecular clock of Phox2b-expressing cells is specifically necessary for daily variation in the hypoxic chemoreflex. These findings suggest that disruption of circadian biology may undermine respiratory homeostasis, which, in turn, may have clinical implications for respiratory disease.


Subject(s)
Circadian Clocks , Animals , Mice , ARNTL Transcription Factors/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Hypercapnia , Mice, Knockout , Suprachiasmatic Nucleus/metabolism
16.
Acta Physiol (Oxf) ; 238(1): e13963, 2023 05.
Article in English | MEDLINE | ID: mdl-36924017

ABSTRACT

Extreme environments are powerful drivers of physiological adaptation. Naked mole-rats offer an informative example of this relationship as they putatively encounter intermittent hypoxia and hypercapnia in their subterranean habitat. This has presumably driven the evolution of a suite of cellular and physiological adaptations that enable life in these conditions. Recently, my laboratory and others have begun to examine physiological responses to environmental hypoxia and hypercapnia in naked mole-rats, and the underlying cellular and molecular mechanisms that differentiate the responses of this species from those of other small mammals. Prominent among these adaptations are a robust hypoxic metabolic response and blunted ventilatory responses to hypoxia and hypercapnia. These responses are mediated in part by modifications to the central nervous system signaling pathways that sense and communicate changes in environmental gas levels and initiate and maintain downstream physiological responses. For example, naked mole-rats retain the signaling architecture necessary for "normal" ventilatory responses to hypoxia and hypercapnia; however, the underlying signaling pathways are muted, resulting in reduced, or even the absence of, sensitivity to otherwise powerful environmental stimuli. Herein, I discuss what we have learned about the manifestation and control of ventilatory and metabolic responses to hypoxia and hypercapnia in naked mole-rats. I also highlight areas where additional work is warranted and consider the implications of what we have learned for the ecophysiology of a species that thrives in conditions that are deleterious or lethal to most adult mammals.


Subject(s)
Hypercapnia , Hypoxia , Animals , Hypoxia/metabolism , Mole Rats/physiology , Adaptation, Physiological , Acclimatization
17.
Cell Rep ; 42(12): 113512, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38039129

ABSTRACT

Mismatch between CO2 production (Vco2) and respiration underlies the pathogenesis of obesity hypoventilation. Leptin-mediated CNS pathways stimulate both metabolism and breathing, but interactions between these functions remain elusive. We hypothesized that LEPRb+ neurons of the dorsomedial hypothalamus (DMH) regulate metabolism and breathing in obesity. In diet-induced obese LeprbCre mice, chemogenetic activation of LEPRb+ DMH neurons increases minute ventilation (Ve) during sleep, the hypercapnic ventilatory response, Vco2, and Ve/Vco2, indicating that breathing is stimulated out of proportion to metabolism. The effects of chemogenetic activation are abolished by a serotonin blocker. Optogenetic stimulation of the LEPRb+ DMH neurons evokes excitatory postsynaptic currents in downstream serotonergic neurons of the dorsal raphe (DR). Administration of retrograde AAV harboring Cre-dependent caspase to the DR deletes LEPRb+ DMH neurons and abolishes metabolic and respiratory responses to leptin. These findings indicate that LEPRb+ DMH neurons match breathing to metabolism through serotonergic pathways to prevent obesity-induced hypoventilation.


Subject(s)
Hypoventilation , Leptin , Mice , Animals , Leptin/metabolism , Hypoventilation/metabolism , Obesity/metabolism , Respiration , Hypothalamus/metabolism , Receptors, Leptin/metabolism
18.
Brain Res ; 1795: 148061, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36037880

ABSTRACT

Suvorexant (Belsomra(R)), a dual orexin receptor antagonist widely used in the treatment of insomnia, inhibits the arousal system in the brain. However, the drug's ventilatory effects have not been fully explored. This study aims to investigate the expression of orexin receptors in respiratory neurons and the effects of suvorexant on ventilation. Immunohistology of brainstem orexin receptor OX2R expression was performed in adult mice (n = 4) in (1) rostral ventral respiratory group (rVRG) neurons projecting to the phrenic nucleus (PhN) retrogradely labeled by Fluoro-Gold (FG) tracer, (2) neurons immunoreactive for paired like homeobox 2b (Phox2b) in the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN), and (3) neurons immunoreactive for neurokinin 1 receptor (NK1R) and somatostatin (SST) in the preBötzinger complex (preBötC). Additionally, we measured in vivo ventilatory responses to hyperoxic hypercapnia (5% CO2) and hypoxia (10% O2) before and after suvorexant pretreatment (10 and cumulative 100 mg/kg) in unrestrained mice (n = 10) in a body plethysmograph. We found the OX2R immunoreactive materials in pFRG/RTN Phox2b and preBötC NK1R/SST immunoreactive neurons but not in FG-labeled rVRG neurons, which suggests the involvement of orexin in respiratory control. Further, suvorexant expressly suppressed the hypercapnic ventilatory augmentation, otherwise unaffecting ventilation. Central orexin is involved in shaping the hypercapnic ventilatory chemosensitivity. Suppression of hypercapnic ventilatory augmentation by the orexin receptor antagonist suvorexant calls for caution in its use in pathologies that may progress to hypercapnic respiratory failure, or sleep-disordered breathing. Clinical trials are required to explore the role of targeted pharmacological inhibition of orexin in ventilatory pathologies.


Subject(s)
Hypercapnia , Orexin Receptor Antagonists , Animals , Azepines , Carbon Dioxide/metabolism , Hypercapnia/metabolism , Mice , Orexin Receptor Antagonists/pharmacology , Orexin Receptors , Orexins , Receptors, Neurokinin-1/metabolism , Somatostatin , Transcription Factors/metabolism , Triazoles
19.
Nat Sci Sleep ; 14: 855-865, 2022.
Article in English | MEDLINE | ID: mdl-35547180

ABSTRACT

Purpose: Hypertension is a common comorbidity in obstructive sleep apnea (OSA), in which dysfunction of the autonomic nervous system plays an integral part. Chemoreflex is essential for ventilatory control and cardiovascular activity. This study aimed to determine whether central chemosensitivity was increased in OSA patients with hypertension and the potential role of the autonomic nerve activity in this relationship. Patients and Methods: A total of 77 men with OSA were included in this cross-sectional study. We measured hypercapnic ventilatory response (HCVR) by the rebreathing method under isoxic hyperoxia to test the central ventilatory chemosensitivity since hyperoxia silences the peripheral chemoreceptors' response to CO2. To elevate the autonomic nerve activity, time-domain, frequency-domain, and non-linear variables of heart rate variability were calculated over 5-min records. Univariate and multivariate linear regression analyses were used to find the determinants of HCVR. Results: The median HCVR was 2.3 (1.8, 3.3), 2.1 (1.6, 3.0), and 3 (2.2, 3.7) L/min/mmHg in all participants, OSA patients, and OSA patients with hypertension, respectively. Hypertension was significantly associated with elevated HCVR after adjusting for age, central obesity, OSA severity, daytime sleepiness, and diabetes mellitus. Compared with OSA patients, OSA patients with hypertension had higher body mass index, worse nocturnal hypoxia, and lower time-domain variables and frequency-domain variables. After adjusting for age, apnea-hypopnea index, central obesity, and beta-blocker usage, approximate entropy was independently negatively associated with HCVR in OSA patients with hypertension. Conclusion: This study demonstrated elevated central chemosensitivity in OSA patients with hypertension. Compared with OSA patients, OSA patients with hypertension had attenuated parasympathetic nerve activity. This study preliminarily illustrated that elevated central chemosensitivity might be associated with weak adaptability of the cardiac autonomic nervous system in OSA patients with hypertension.

20.
Acta Physiol (Oxf) ; 236(2): e13851, 2022 10.
Article in English | MEDLINE | ID: mdl-35757963

ABSTRACT

AIM: Naked mole rats (NMRs) exhibit blunted hypoxic (HVR) and hypercapnic ventilatory responses (HCVR). The mechanism(s) underlying these responses are largely unknown. We hypothesized that attenuated carotid body (CB) sensitivity to hypoxia and hypercapnia contributes to the near absence of ventilatory responses to hypoxia and CO2 in NMRs. METHODS: We measured ex vivo CB sensory nerve activity, phrenic nerve activity (an estimation of ventilation), and blood gases in urethane-anesthetized NMRs and C57BL/6 mice breathing normoxic, hypoxic, or hypercapnic gases. CB morphology, carbon monoxide, and H2 S levels were also determined. RESULTS: Relative to mice, NMRs had blunted CB and HVR. Morphologically, NMRs have larger CBs, which contained more glomus cells than in mice. Furthermore, NMR glomus cells form a dispersed pattern compared to a clustered pattern in mice. Hemeoxygenase (HO)-1 mRNA was elevated in NMR CBs, and an HO inhibitor increased CB sensitivity to hypoxia in NMRs. This increase was blocked by an H2 S synthesis inhibitor, suggesting that interrupted gas messenger signaling contributes to the blunted CB responses and HVR in NMRs. Regarding hypercapnia, CB and ventilatory responses to CO2 in NMRs were larger than in mice. Carbonic anhydrase (CA)-2 mRNA is elevated in NMR CBs, and a CA inhibitor blocked the augmented CB response to CO2 in NMRs, indicating CA activity regulates augmented CB response to CO2 . CONCLUSIONS: Consistent with our hypothesis, impaired CB responses to hypoxia contribute in part to the blunted HVR in NMRs. Conversely, the HCVR and CB are more sensitive to CO2 in NMRs.


Subject(s)
Carbonic Anhydrases , Carotid Body , Animals , Carbon Dioxide , Carbon Monoxide , Hypercapnia , Hypoxia , Mice , Mice, Inbred C57BL , Mole Rats , Oxygen , RNA, Messenger , Respiration , Urethane
SELECTION OF CITATIONS
SEARCH DETAIL