Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Publication year range
1.
Cell Mol Life Sci ; 79(11): 540, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36197517

ABSTRACT

Glycine receptors (GlyRs) are ligand-gated pentameric chloride channels in the central nervous system. GlyR-α3 is a possible target for chronic pain treatment and temporal lobe epilepsy. Alternative splicing into K or L variants determines the subcellular fate and function of GlyR-α3, yet it remains to be shown whether its different splice variants can functionally co-assemble, and what the properties of such heteropentamers would be. Here, we subjected GlyR-α3 to a combined fluorescence microscopy and electrophysiology analysis. We employ masked Pearson's and dual-color spatiotemporal correlation analysis to prove that GlyR-α3 splice variants heteropentamerize, adopting the mobility of the K variant. Fluorescence-based single-subunit counting experiments revealed a variable and concentration ratio dependent hetero-stoichiometry. Via cell-attached single-channel electrophysiologyĀ we show that heteropentamers exhibit currents in between those of K and L variants. Our data are compatible with a model where α3 heteropentamerization fine-tunes mobility and activity of GlyR-α3 channels, which is important to understand and tackle α3 related diseases.


Subject(s)
Receptors, Glycine , Synaptic Transmission , Alternative Splicing/genetics , Ligands , Mutation , Receptors, Glycine/genetics
2.
Proc Natl Acad Sci U S A ; 116(52): 26633-26643, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31843909

ABSTRACT

Corneal epithelia have limited self-renewal and therefore reparative capacity. They are continuously replaced by transient amplifying cells which spawn from stem cells and migrate from the periphery. Because this view has recently been challenged, our goal was to resolve the conflict by giving mice annular injuries in different locations within the corneolimbal epithelium, then spatiotemporally fate-mapping cell behavior during healing. Under these conditions, elevated proliferation was observed in the periphery but not the center, and wounds predominantly resolved by centripetally migrating limbal epithelia. After wound closure, the central corneal epithelium was completely replaced by K14+ limbal-derived clones, an observation supported by high-resolution fluorescence imaging of genetically marked cells in organ-cultured corneas and via computational modeling. These results solidify the essential role of K14+ limbal epithelial stem cells for wound healing and refute the notion that stem cells exist within the central cornea and that their progeny have the capacity to migrate centrifugally.

3.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077237

ABSTRACT

Fluorescence correlation spectroscopy (FCS) is an extremely versatile tool that has been widely used to measure chemical reaction rates, protein binding, nanoparticle-protein interactions, and biomolecular dynamics in vitro and in vivo. As an inherently micro-sized approach, FCS is compatible with high-throughput screening applications, as demanded for drug design, but typically limited to nanomolar concentrations, which restricts possible applications. Here, we show how massively parallel camera-based detection with side illumination can extend the usable concentration range of FCS more than 100-fold to measure low affinity processes. Our line illumination (LIM) approach is robust, fast (1 s acquisition times), and does not require any reference measurements to characterize the observation volume size.


Subject(s)
Lighting , Microscopy, Fluorescence/methods , Spectrometry, Fluorescence/methods
4.
Int J Mol Sci ; 23(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35955894

ABSTRACT

Bacterial and viral pathogens can modulate the glycosylation of key host proteins to facilitate pathogenesis by using various glycosidases, particularly sialidases. Epidermal growth factor receptor (EGFR) signaling is activated by ligand-induced receptor dimerization and oligomerization. Ligand binding induces conformational changes in EGFR, leading to clusters and aggregation. However, information on the relevance of EGFR clustering in the pattern of glycosylation during bacterial and viral invasion remains unclear. In this study, (1) we established CRISPR/Cas9-mediated GFP knock-in (EGFP-KI) HeLa cells expressing fluorescently tagged EGFR at close to endogenous levels to study EGF-induced EGFR clustering and molecular dynamics; (2) We studied the effect of sialylation on EGF-induced EGFR clustering and localization in live cells using a high content analysis platform and raster image correlation spectroscopy (RICS) coupled with a number and brightness (N&B) analysis; (3) Our data reveal that the removal of cell surface sialic acids by sialidase treatment significantly decreases EGF receptor clustering with reduced fluorescence intensity, number, and area of EGFR-GFP clusters per cell upon EGF stimulation. Sialylation appears to mediate EGF-induced EGFR clustering as demonstrated by the change of EGFR-GFP clusters in the diffusion coefficient and molecular brightness, providing new insights into the role of sialylation in EGF-induced EGFR activation; and (4) We envision that the combination of CRISPR/Cas9-mediated fluorescent tagging of endogenous proteins and fluorescence imaging techniques can be the method of choice for studying the molecular dynamics and interactions of proteins in live cells.


Subject(s)
Epidermal Growth Factor , Molecular Dynamics Simulation , CRISPR-Cas Systems/genetics , Cluster Analysis , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , HeLa Cells , Humans , Ligands , Neuraminidase/genetics , Neuraminidase/metabolism , Phosphorylation
5.
Sensors (Basel) ; 21(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809144

ABSTRACT

Since the introduction of super-resolution microscopy, there has been growing interest in quantifying the nanoscale spatial distributions of fluorescent probes to better understand cellular processes and their interactions. One way to check if distributions are correlated or not is to perform colocalization analysis of multi-color acquisitions. Among all the possible methods available to study and quantify the colocalization between multicolor images, there is image cross-correlation spectroscopy (ICCS). The main advantage of ICCS, in comparison with other co-localization techniques, is that it does not require pre-segmentation of the sample into single objects. Here we show that the combination of structured illumination microscopy (SIM) with ICCS (SIM-ICCS) is a simple approach to quantify colocalization and measure nanoscale distances from multi-color SIM images. We validate the SIM-ICCS analysis on SIM images of optical nanorulers, DNA-origami-based model samples containing fluorophores of different colors at a distance of 80 nm. The SIM-ICCS analysis is compared with an object-based analysis performed on the same samples. Finally, we show that SIM-ICCS can be used to quantify the nanoscale spatial distribution of functional nuclear sites in fixed cells.

6.
Methods ; 140-141: 112-118, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29410223

ABSTRACT

Many cellular processes are regulated by the spatio-temporal organisation of signalling complexes, cytoskeletal components and membranes. One such example is at the T cell immunological synapse where the retrograde flow of cortical filamentous (F)-actin from the synapse periphery drives signalling protein microclusters towards the synapse centre. The density of this mesh however, makes visualisation and analysis of individual actin fibres difficult due to the resolution limit of conventional microscopy. Recently, super-resolution methods such as structured illumination microscopy (SIM) have surpassed this resolution limit. Here, we apply SIM to better visualise the dense cortical actin meshwork in T cell synapses formed against activating, antibody-coated surfaces and image under total-internal reflection fluorescence (TIRF) illumination. To analyse the observed molecular flows, and the relationship between them, we apply spatio-temporal image correlation spectroscopy (STICS) and its cross-correlation variant (STICCS). We show that the dynamic cortical actin mesh can be visualised with unprecedented detail and that STICS/STICCS can output accurate, quantitative maps of molecular flow velocity and directionality from such data. We find that the actin flow can be disrupted using small molecule inhibitors of actin polymerisation. This combination of imaging and quantitative analysis may provide an important new tool for researchers to investigate the molecular dynamics at cellular length scales. Here we demonstrate the retrograde flow of F-actin which may be important for the clustering and dynamics of key signalling proteins within the plasma membrane, a phenomenon which is vital to correct T cell activation and therefore the mounting of an effective immune response.


Subject(s)
Actins/metabolism , Intravital Microscopy/methods , Molecular Dynamics Simulation , Spectrometry, Fluorescence/methods , T-Lymphocytes/metabolism , Cell Membrane/metabolism , Humans , Image Processing, Computer-Assisted/methods , Immunological Synapses/immunology , Immunological Synapses/metabolism , Intravital Microscopy/instrumentation , Jurkat Cells , Lymphocyte Activation/immunology , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Signal Transduction/immunology , Spectrometry, Fluorescence/instrumentation , T-Lymphocytes/immunology
7.
Methods ; 140-141: 126-139, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29454860

ABSTRACT

Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells.


Subject(s)
Image Processing, Computer-Assisted/methods , Intravital Microscopy/methods , Microtubules/metabolism , Neoplasm Proteins/metabolism , Spectrometry, Fluorescence/methods , Stromal Interaction Molecule 1/metabolism , Cell Line , Cell Membrane/metabolism , Cell Movement , Computer Simulation , Diffusion , Epithelial Cells , Humans , Intravital Microscopy/instrumentation , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Sensitivity and Specificity , Spectrometry, Fluorescence/instrumentation
8.
Methods ; 140-141: 97-111, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29408283

ABSTRACT

Raster image cross-correlation spectroscopy (ccRICS) can be used to quantify the interaction affinities between diffusing molecules by analyzing the fluctuations between two-color confocal images. Spectral crosstalk compromises the quantitative analysis of ccRICS experiments, limiting multicolor implementations to dyes with well-separated emission spectra. Here, we remove this restriction by introducing raster spectral image correlation spectroscopy (RSICS), which employs statistical filtering based on spectral information to quantitatively separate signals of fluorophores during spatial correlation analysis. We investigate the performance of RSICS by testing how different levels of spectral overlap or different relative signal intensities affect the correlation function and analyze the influence of statistical filter quality. We apply RSICS in vitro to resolve dyes with very similar emission spectra, and carry out RSICS in live cells to simultaneously analyze the diffusion of molecules carrying three different fluorescent protein labels (eGFP, Venus and mCherry). Finally, we successfully apply statistical weighting to data that was recorded with only a single detection channel per fluorophore, highlighting the general applicability of this method to data acquired with any type of multicolor detection. In conclusion, RSICS enables artifact-free quantitative analysis of concentrations, mobility and interactions of multiple species labeled with different fluorophores. It can be performed on commercial laser scanning microscopes, and the algorithm can be easily extended to other image correlation methods. Thus, RSICS opens the door to quantitative multicolor fluctuation analyses of complex (bio-) molecular systems.


Subject(s)
Intravital Microscopy/methods , Spectrometry, Fluorescence/methods , Algorithms , Artifacts , Color , Diffusion , Feasibility Studies , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , HEK293 Cells , Humans , Intravital Microscopy/instrumentation , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Signal-To-Noise Ratio , Software , Spectrometry, Fluorescence/instrumentation , Staining and Labeling/instrumentation , Staining and Labeling/methods
9.
Adv Exp Med Biol ; 1112: 41-52, 2018.
Article in English | MEDLINE | ID: mdl-30637689

ABSTRACT

The epidermal growth factor receptor (EGFR) is an important cell surface receptor in normal physiology and disease. Recent work has shown that EGF-gold nanoparticle conjugates can influence cell behaviour, but the underlying mechanism at the receptor quaternary structural level remains poorly understood.In the present work, the cluster density and cluster size of activated (phosphorylated) EGFR clusters in HeLa cells were determined with photobleaching image correlation spectroscopy. EGFR activation was probed via immunofluorescence-detected phosphorylation of tyrosines (pY-mAb) located in the kinase domain of EGFR (Y845) and at the EGFR cytoplasmic tail (Y1173). Cell activation was probed via nuclear extracellular-regulated kinase (ERK) phosphorylation. The cluster size of activated EGFR was 1.3-2.4 pY-mAb/cluster in unstimulated HeLa cells. EGF or nanorod treatment led to an increase in EGFR oligomers containing multiple phosphotyrosines (>2 phosphotyrosines per EGFR oligomer, average cluster size range = 3-5 pY-mAb/cluster) which paralleled increases in nuclear p-ERK. In contrast, EGF-nanorods decreased the contribution from higher-order phospho-clusters and decreased nuclear p-ERK relative to the nanorod control. These studies provide direct evidence that targeted nanotechnology can manipulate receptor organization and lead to changes in receptor activation and subsequent signalling processes.


Subject(s)
Metal Nanoparticles , Photobleaching , ErbB Receptors/metabolism , Gold , HeLa Cells , Humans , Phosphorylation , Phosphotyrosine , Spectrum Analysis
10.
Int J Mol Sci ; 19(4)2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29570669

ABSTRACT

Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and Huntington's disease, are devastating proteinopathies with misfolded protein aggregates accumulating in neuronal cells. Inclusion bodies of protein aggregates are frequently observed in the neuronal cells of patients. Investigation of the underlying causes of neurodegeneration requires the establishment and selection of appropriate methodologies for detailed investigation of the state and conformation of protein aggregates. In the current review, we present an overview of the principles and application of several methodologies used for the elucidation of protein aggregation, specifically ones based on determination of fluctuations of fluorescence. The discussed methods include fluorescence correlation spectroscopy (FCS), imaging FCS, image correlation spectroscopy (ICS), photobleaching ICS (pbICS), number and brightness (N&B) analysis, super-resolution optical fluctuation imaging (SOFI), and transient state (TRAST) monitoring spectroscopy. Some of these methodologies are classical protein aggregation analyses, while others are not yet widely used. Collectively, the methods presented here should help the future development of research not only into protein aggregation but also neurodegenerative diseases.


Subject(s)
Amyloid/chemistry , Proteins/chemistry , Fluorescence , Humans , Protein Folding , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL