Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nanomaterials (Basel) ; 12(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35889549

ABSTRACT

Flexible pressure sensors still face difficulties achieving a constantly adaptable micronanostructure of substrate materials. Interlinked microcone resistive sensors were fabricated by polydimethylsiloxane (PDMS) nanocone array. PDMS nanocone array was achieved by the second transferring tapered polymethyl methacrylate (PMMA) structure. In addition, self-assembly 2D carbon nanotubes (CNTs) networks as a conducting layer were prepared by a low-cost, dependable, and ultrafast Langmuir−Blodgett (LB) process. In addition, the self-assembled two-dimensional carbon nanotubes (CNTs) network as a conductive layer can change the internal resistance due to pressure. The results showed that the interlinked sensor with a nanocone structure can detect the external pressure by the change of resistivity and had a sensitive resistance change in the low pressure (<200 Pa), good stability through 2800 cycles, and a detection limit of 10 kPa. Based on these properties, the electric signals were tested, including swallowing throat, finger bending, finger pressing, and paper folding. The simulation model of the sensors with different structural parameters under external pressure was established. With the advantages of high sensitivity, stability, and wide detection range, this sensor shows great potential for monitoring human motion and can be used in wearable devices.

2.
Polymers (Basel) ; 11(12)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835578

ABSTRACT

Interface optimization in preparing natural fiber based biocomposite becomes a key factor that determines overall properties, especially mechanical performance. The solution for upgrading interfacial adhesion stemmed from polar fiber and nonpolar polymer remains unclear. Here, a kind of pulp fiber/acrylonitrile-butadiene-styrene (ABS) composite with content ratio of 1:1 was fabricated by functionalizing the cellulose fiber to coordinate interaction between fiber and ABS. With addition of 5 wt % polyacrylamide (PAM) there existed an interlinked three-element structure in composite. Three types of treatment to cellulose fiber, including alkali immersion, pivaloyl chloride grafting for 10 h and 20 h were conducted. Pulp fiber that was treated with alkali for one hour, followed by pivaloyl chloride reaction for ten hours, proved to be effective for interfacial adhesion. X-ray Photoelectron Spectroscopy (XPS) analysis reveals 21.9% of carbonyl and 12.1% of ester function in this fiber, which corresponds to oxidation and grafting. For its composite SEM picture displays that most of cellulose fiber are rooted in ABS and evident traces of tearing or fracture can be observed after tension test. DMA test indicates that this modified pulp fiber/ABS composite exhibits great compatibility, because of combined loss modulus peak ranging from 80 °C to 100 °C. Moreover, the well miscible composite has a tensile strength of 58.1 MPa and elastic modulus of 2515 MPa, increasing by nearly 50% and 60% from those of pure ABS, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL