Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.144
Filter
Add more filters

Publication year range
1.
Cell ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39326417

ABSTRACT

We report the 1-year results from one patient as the preliminary analysis of a first-in-human phase I clinical trial (ChiCTR2300072200) assessing the feasibility of autologous transplantation of chemically induced pluripotent stem-cell-derived islets (CiPSC islets) beneath the abdominal anterior rectus sheath for type 1 diabetes treatment. The patient achieved sustained insulin independence starting 75 days post-transplantation. The patient's time-in-target glycemic range increased from a baseline value of 43.18% to 96.21% by month 4 post-transplantation, accompanied by a decrease in glycated hemoglobin, an indicator of long-term systemic glucose levels at a non-diabetic level. Thereafter, the patient presented a state of stable glycemic control, with time-in-target glycemic range at >98% and glycated hemoglobin at around 5%. At 1 year, the clinical data met all study endpoints with no indication of transplant-related abnormalities. Promising results from this patient suggest that further clinical studies assessing CiPSC-islet transplantation in type 1 diabetes are warranted.

2.
Cell ; 184(3): 827-839.e14, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33545036

ABSTRACT

Ahmed and colleagues recently described a novel hybrid lymphocyte expressing both a B and T cell receptor, termed double expresser (DE) cells. DE cells in blood of type 1 diabetes (T1D) subjects were present at increased numbers and enriched for a public B cell clonotype. Here, we attempted to reproduce these findings. While we could identify DE cells by flow cytometry, we found no association between DE cell frequency and T1D status. We were unable to identify the reported public B cell clone, or any similar clone, in bulk B cells or sorted DE cells from T1D subjects or controls. We also did not observe increased usage of the public clone VH or DH genes in B cells or in sorted DE cells. Taken together, our findings suggest that DE cells and their alleged public clonotype are not enriched in T1D. This Matters Arising paper is in response to Ahmed et al. (2019), published in Cell. See also the response by Ahmed et al. (2021), published in this issue.


Subject(s)
Diabetes Mellitus, Type 1 , B-Lymphocytes , Clone Cells , Diabetes Mellitus, Type 1/genetics , Flow Cytometry , Humans , Receptors, Antigen, T-Cell
3.
Cell ; 177(6): 1583-1599.e16, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150624

ABSTRACT

T and B cells are the two known lineages of adaptive immune cells. Here, we describe a previously unknown lymphocyte that is a dual expresser (DE) of TCR and BCR and key lineage markers of both B and T cells. In type 1 diabetes (T1D), DEs are predominated by one clonotype that encodes a potent CD4 T cell autoantigen in its antigen binding site. Molecular dynamics simulations revealed that this peptide has an optimal binding register for diabetogenic HLA-DQ8. In concordance, a synthetic version of the peptide forms stable DQ8 complexes and potently stimulates autoreactive CD4 T cells from T1D patients, but not healthy controls. Moreover, mAbs bearing this clonotype are autoreactive against CD4 T cells and inhibit insulin tetramer binding to CD4 T cells. Thus, compartmentalization of adaptive immune cells into T and B cells is not absolute, and violators of this paradigm are likely key drivers of autoimmune diseases.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Adolescent , Adult , Autoantigens/immunology , Child , Child, Preschool , Diabetes Mellitus, Type 1/metabolism , Epitopes/immunology , Female , HEK293 Cells , HLA-DQ Antigens/immunology , HLA-DQ Antigens/ultrastructure , Humans , Lymphocyte Activation/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Middle Aged , Molecular Dynamics Simulation , Peptides , Protein Binding/immunology
4.
Cell ; 171(2): 321-330.e14, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28965763

ABSTRACT

As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue.


Subject(s)
Aging/pathology , Cellular Senescence , Mutation , Pancreas/pathology , Single-Cell Analysis , Adult , Child , Child, Preschool , Humans , Infant , Middle Aged , Pancreas/cytology , Pancreas/physiology , Polymorphism, Single Nucleotide , Sequence Analysis, RNA , Transcription, Genetic
5.
Cell ; 171(3): 655-667.e17, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053971

ABSTRACT

The gut microbiota contributes to the development of normal immunity but, when dysregulated, can promote autoimmunity through various non-antigen-specific effects on pathogenic and regulatory lymphocytes. Here, we show that an integrase expressed by several species of the gut microbial genus Bacteroides encodes a low-avidity mimotope of the pancreatic ß cell autoantigen islet-specific glucose-6-phosphatase-catalytic-subunit-related protein (IGRP206-214). Studies in germ-free mice monocolonized with integrase-competent, integrase-deficient, and integrase-transgenic Bacteroides demonstrate that the microbial epitope promotes the recruitment of diabetogenic CD8+ T cells to the gut. There, these effectors suppress colitis by targeting microbial antigen-loaded, antigen-presenting cells in an integrin ß7-, perforin-, and major histocompatibility complex class I-dependent manner. Like their murine counterparts, human peripheral blood T cells also recognize Bacteroides integrase. These data suggest that gut microbial antigen-specific cytotoxic T cells may have therapeutic value in inflammatory bowel disease and unearth molecular mimicry as a novel mechanism by which the gut microbiota can regulate normal immune homeostasis. PAPERCLIP.


Subject(s)
Autoantigens/immunology , Bacteroides/immunology , Colitis/immunology , Gastrointestinal Microbiome , Glucose-6-Phosphatase/immunology , Adult , Animals , Bacteroides/classification , Bacteroides/enzymology , Colitis/microbiology , Female , Glucose-6-Phosphatase/genetics , Humans , Lymphoid Tissue/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Middle Aged , Molecular Mimicry , T-Lymphocytes/immunology
6.
Genes Dev ; 37(11-12): 490-504, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37364986

ABSTRACT

The consolidation of unambiguous cell fate commitment relies on the ability of transcription factors (TFs) to exert tissue-specific regulation of complex genetic networks. However, the mechanisms by which TFs establish such precise control over gene expression have remained elusive-especially in instances in which a single TF operates in two or more discrete cellular systems. In this study, we demonstrate that ß cell-specific functions of NKX2.2 are driven by the highly conserved NK2-specific domain (SD). Mutation of the endogenous NKX2.2 SD prevents the developmental progression of ß cell precursors into mature, insulin-expressing ß cells, resulting in overt neonatal diabetes. Within the adult ß cell, the SD stimulates ß cell performance through the activation and repression of a subset of NKX2.2-regulated transcripts critical for ß cell function. These irregularities in ß cell gene expression may be mediated via SD-contingent interactions with components of chromatin remodelers and the nuclear pore complex. However, in stark contrast to these pancreatic phenotypes, the SD is entirely dispensable for the development of NKX2.2-dependent cell types within the CNS. Together, these results reveal a previously undetermined mechanism through which NKX2.2 directs disparate transcriptional programs in the pancreas versus neuroepithelium.


Subject(s)
Homeodomain Proteins , Insulin-Secreting Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeobox Protein Nkx-2.2 , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation , Zebrafish Proteins/genetics
7.
Genes Dev ; 37(11-12): 451-453, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37399332

ABSTRACT

The homeodomain transcription factor (TF) Nkx2.2 governs crucial cell fate decisions in several developing organs, including the central nervous system (CNS), pancreas, and intestine. How Nkx2.2 regulates unique targets in these different systems to impact their individual transcriptional programs remains unclear. In this issue of Genes & Development Abarinov and colleagues (pp. 490-504) generated and analyzed mice in which the Nkx2.2 SD is mutated and found that the SD is required for normal pancreatic islet differentiation but dispensable for most aspects of neuronal differentiation.


Subject(s)
Homeodomain Proteins , Islets of Langerhans , Mice , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeobox Protein Nkx-2.2 , Zebrafish Proteins/genetics , Islets of Langerhans/metabolism , Cell Differentiation/genetics , Neurons/metabolism , Gene Expression Regulation, Developmental
8.
Physiol Rev ; 102(1): 155-208, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34280055

ABSTRACT

Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors, of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues defines prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, pro-islet amyloid polypeptide (proIAPP), and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin-to-C-peptide ratio for progression to type 2 diabetes, and elevated proinsulin or proinsulin-to-C-peptide ratio is predictive for development of type 1 diabetes in at-risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP, and proinsulin may be an autoantigen in type 1 diabetes. Furthermore, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes, leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glucagon/metabolism , Proglucagon/metabolism , Proinsulin/metabolism , Animals , Glucagon-Like Peptide 1/metabolism , Humans , Protein Precursors/metabolism
9.
Genes Dev ; 35(3-4): 234-249, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33446570

ABSTRACT

The physiological functions of many vital tissues and organs continue to mature after birth, but the genetic mechanisms governing this postnatal maturation remain an unsolved mystery. Human pancreatic ß cells produce and secrete insulin in response to physiological cues like glucose, and these hallmark functions improve in the years after birth. This coincides with expression of the transcription factors SIX2 and SIX3, whose functions in native human ß cells remain unknown. Here, we show that shRNA-mediated SIX2 or SIX3 suppression in human pancreatic adult islets impairs insulin secretion. However, transcriptome studies revealed that SIX2 and SIX3 regulate distinct targets. Loss of SIX2 markedly impaired expression of genes governing ß-cell insulin processing and output, glucose sensing, and electrophysiology, while SIX3 loss led to inappropriate expression of genes normally expressed in fetal ß cells, adult α cells, and other non-ß cells. Chromatin accessibility studies identified genes directly regulated by SIX2. Moreover, ß cells from diabetic humans with impaired insulin secretion also had reduced SIX2 transcript levels. Revealing how SIX2 and SIX3 govern functional maturation and maintain developmental fate in native human ß cells should advance ß-cell replacement and other therapeutic strategies for diabetes.


Subject(s)
Cell Differentiation/genetics , Eye Proteins/metabolism , Gene Expression Regulation/genetics , Homeodomain Proteins/metabolism , Insulin-Secreting Cells/cytology , Nerve Tissue Proteins/metabolism , Diabetes Mellitus, Type 2/physiopathology , Humans , Insulin Secretion/genetics , RNA, Small Interfering/metabolism , Transcriptome , Homeobox Protein SIX3
10.
Proc Natl Acad Sci U S A ; 121(16): e2320883121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38598342

ABSTRACT

Differentiation of pancreatic endocrine cells from human pluripotent stem cells (PSCs) has been thoroughly investigated for application in cell therapy against diabetes. In the context of induced pancreatic endocrine cell implantation, previous studies have reported graft enlargement resulting from off-target pancreatic lineage cells. However, there is currently no documented evidence of proliferative off-target cells beyond the pancreatic lineage in existing studies. Here, we show that the implantation of seven-stage induced PSC-derived pancreatic islet cells (s7-iPICs) leads to the emergence of unexpected off-target cells with proliferative capacity via in vivo maturation. These cells display characteristics of both mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs), termed proliferative MSC- and SMC-like cells (PMSCs). The frequency of PMSC emergence was found to be high when 108 s7-iPICs were used. Given that clinical applications involve the use of a greater number of induced cells than 108, it is challenging to ensure the safety of clinical applications unless PMSCs are adequately addressed. Accordingly, we developed a detection system and removal methods for PMSCs. To detect PMSCs without implantation, we implemented a 4-wk-extended culture system and demonstrated that putative PMSCs could be reduced by compound treatment, particularly with the taxane docetaxel. When docetaxel-treated s7-iPICs were implanted, the PMSCs were no longer observed. This study provides useful insights into the identification and resolution of safety issues, which are particularly important in the field of cell-based medicine using PSCs.


Subject(s)
Induced Pluripotent Stem Cells , Islets of Langerhans , Humans , Docetaxel , Cell Differentiation , Embryo Implantation
11.
Trends Genet ; 39(7): 526-527, 2023 07.
Article in English | MEDLINE | ID: mdl-37080883

ABSTRACT

Many molecular mechanisms underlying blood glucose homeostasis remain elusive. Juan-Mateu et al. find that pancreatic islet cells utilize a regulatory program, originally identified in neurons, that involves alternative splicing of microexons in genes important for insulin secretion or diabetes risk.


Subject(s)
Alternative Splicing , Islets of Langerhans , Alternative Splicing/genetics , Homeostasis/genetics , Glucose/genetics , Glucose/metabolism , Insulin/genetics , Insulin/metabolism , Islets of Langerhans/metabolism
12.
J Cell Sci ; 137(20)2024 10 15.
Article in English | MEDLINE | ID: mdl-38804679

ABSTRACT

The definitive demonstration of protein localization on primary cilia has been a challenge for cilia biologists. Primary cilia are solitary thread-like projections that have a specialized protein composition, but as the ciliary structure overlays the cell membrane and other cell parts, the identity of ciliary proteins are difficult to ascertain by conventional imaging approaches like immunofluorescence microscopy. Surface scanning electron microscopy combined with immunolabeling (immuno-SEM) bypasses some of these indeterminacies by unambiguously showing protein expression in the context of the three-dimensional ultrastructure of the cilium. Here, we apply immuno-SEM to specifically identify proteins on the primary cilia of mouse and human pancreatic islets, including post-translationally modified tubulin, intraflagellar transport (IFT)88, the small GTPase Arl13b, as well as subunits of axonemal dynein. Key parameters in sample preparation, immunolabeling and imaging acquisition are discussed to facilitate similar studies by others in the cilia research community.


Subject(s)
Cilia , Islets of Langerhans , Cilia/ultrastructure , Cilia/metabolism , Animals , Humans , Mice , Islets of Langerhans/ultrastructure , Islets of Langerhans/metabolism , Microscopy, Electron, Scanning/methods
13.
Development ; 150(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36897571

ABSTRACT

Hormone secretion from pancreatic islets is essential for glucose homeostasis, and loss or dysfunction of islet cells is a hallmark of type 2 diabetes. Maf transcription factors are crucial for establishing and maintaining adult endocrine cell function. However, during pancreas development, MafB is not only expressed in insulin- and glucagon-producing cells, but also in Neurog3+ endocrine progenitor cells, suggesting additional functions in cell differentiation and islet formation. Here, we report that MafB deficiency impairs ß cell clustering and islet formation, but also coincides with loss of neurotransmitter and axon guidance receptor gene expression. Moreover, the observed loss of nicotinic receptor gene expression in human and mouse ß cells implied that signaling through these receptors contributes to islet cell migration/formation. Inhibition of nicotinic receptor activity resulted in reduced ß cell migration towards autonomic nerves and impaired ß cell clustering. These findings highlight a novel function of MafB in controlling neuronal-directed signaling events required for islet formation.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Mice , Adult , Animals , Humans , Glucagon/genetics , Glucagon/metabolism , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Insulin/metabolism , Pancreas/metabolism , MafB Transcription Factor/genetics , MafB Transcription Factor/metabolism
14.
Immunity ; 47(5): 928-942.e7, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29166590

ABSTRACT

Pancreatic-islet inflammation contributes to the failure of ß cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1ß, and palmitate). IL-33 promoted ß cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the ß cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute ß cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion.


Subject(s)
Insulin/metabolism , Interleukin-33/pharmacology , Islets of Langerhans/drug effects , Lymphocytes/drug effects , Myeloid Cells/metabolism , Tretinoin/metabolism , Animals , Humans , Inflammation/immunology , Insulin Secretion , Interleukin-33/biosynthesis , Islets of Langerhans/immunology , Islets of Langerhans/pathology , Lymphocytes/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Vitamin A/physiology
15.
Proc Natl Acad Sci U S A ; 120(40): e2311707120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37738292

ABSTRACT

The immune isolation of cells within devices has the potential to enable long-term protein replacement and functional cures for a range of diseases, without requiring immune suppressive therapy. However, a lack of vasculature and the formation of fibrotic capsules around cell immune-isolating devices limits oxygen availability, leading to hypoxia and cell death in vivo. This is particularly problematic for pancreatic islet cells that have high O2 requirements. Here, we combine bioelectronics with encapsulated cell therapies to develop the first wireless, battery-free oxygen-generating immune-isolating device (O2-Macrodevice) for the oxygenation and immune isolation of cells in vivo. The system relies on electrochemical water splitting based on a water-vapor reactant feed, sustained by wireless power harvesting based on a flexible resonant inductive coupling circuit. As such, the device does not require pumping, refilling, or ports for recharging and does not generate potentially toxic side products. Through systematic in vitro studies with primary cell lines and cell lines engineered to secrete protein, we demonstrate device performance in preventing hypoxia in ambient oxygen concentrations as low as 0.5%. Importantly, this device has shown the potential to enable subcutaneous (SC) survival of encapsulated islet cells, in vivo in awake, freely moving, immune-competent animals. Islet transplantation in Type I Diabetes represents an important application space, and 1-mo studies in immune-competent animals with SC implants show that the O2-Macrodevice allows for survival and function of islets at high densities (~1,000 islets/cm2) in vivo without immune suppression and induces normoglycemia in diabetic animals.


Subject(s)
Hypoxia , Oxygen , Animals , Hypoxia/therapy , Cell Death , Cell Line , Cell- and Tissue-Based Therapy
16.
J Biol Chem ; 300(9): 107611, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39074637

ABSTRACT

In type 1 diabetes (T1D), autoreactive immune cells infiltrate the pancreas and secrete proinflammatory cytokines that initiate cell death in insulin producing islet ß-cells. Protein kinase C δ (PKCδ) plays a role in mediating cytokine-induced ß-cell death; however, the exact mechanisms are not well understood. To address this, we used an inducible ß-cell specific PKCδ KO mouse as well as a small peptide inhibitor of PKCδ. We identified a role for PKCδ in mediating cytokine-induced ß-cell death and have shown that inhibiting PKCδ protects pancreatic ß-cells from cytokine-induced apoptosis in both mouse and human islets. We determined that cytokines induced nuclear translocation and activity of PKCδ and that caspase-3 cleavage of PKCδ may be required for cytokine-mediated islet apoptosis. Further, cytokine activated PKCδ increases activity both of proapoptotic Bax with acute treatment and C-Jun N-terminal kinase with prolonged treatment. Overall, our results suggest that PKCδ mediates cytokine-induced apoptosis via nuclear translocation, cleavage by caspase-3, and upregulation of proapoptotic signaling in pancreatic ß-cells. Combined with the protective effects of PKCδ inhibition with δV1-1, the results of this study will aid in the development of novel therapies to prevent or delay ß-cell death and preserve ß-cell function in T1D.


Subject(s)
Apoptosis , Caspase 3 , Cytokines , Mice, Knockout , Protein Kinase C-delta , Protein Kinase C-delta/metabolism , Protein Kinase C-delta/genetics , Animals , Caspase 3/metabolism , Caspase 3/genetics , Humans , Mice , Cytokines/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology
17.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36513375

ABSTRACT

Type 1 diabetes (T1D) outcome prediction plays a vital role in identifying novel risk factors, ensuring early patient care and designing cohort studies. TEDDY is a longitudinal cohort study that collects a vast amount of multi-omics and clinical data from its participants to explore the progression and markers of T1D. However, missing data in the omics profiles make the outcome prediction a difficult task. TEDDY collected time series gene expression for less than 6% of enrolled participants. Additionally, for the participants whose gene expressions are collected, 79% time steps are missing. This study introduces an advanced bioinformatics framework for gene expression imputation and islet autoimmunity (IA) prediction. The imputation model generates synthetic data for participants with partially or entirely missing gene expression. The prediction model integrates the synthetic gene expression with other risk factors to achieve better predictive performance. Comprehensive experiments on TEDDY datasets show that: (1) Our pipeline can effectively integrate synthetic gene expression with family history, HLA genotype and SNPs to better predict IA status at 2 years (sensitivity 0.622, AUC 0.715) compared with the individual datasets and state-of-the-art results in the literature (AUC 0.682). (2) The synthetic gene expression contains predictive signals as strong as the true gene expression, reducing reliance on expensive and long-term longitudinal data collection. (3) Time series gene expression is crucial to the proposed improvement and shows significantly better predictive ability than cross-sectional gene expression. (4) Our pipeline is robust to limited data availability. Availability: Code is available at https://github.com/compbiolabucf/TEDDY.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/genetics , Autoimmunity/genetics , Longitudinal Studies , Time Factors , Cross-Sectional Studies , Genetic Predisposition to Disease , Gene Expression
18.
FASEB J ; 38(3): e23437, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38305849

ABSTRACT

Impaired functionality and loss of islet ß-cells are the primary abnormalities underlying the pathogenesis of both type 1 and 2 diabetes (T1DM and T2DM). However, specific therapeutic and preventive mechanisms underlying these conditions remain unclear. Mitogen-activated protein kinase phosphatase-5 (MKP-5) has been implicated in carcinogenesis, lipid metabolism regulation, and immune cell activation. In a previous study, we demonstrated the involvement of exogenous MKP-5 in the regulation of obesity-induced T2DM. However, the role of endogenous MKP-5 in the T1DM and T2DM processes is unclear. Thus, mice with MKP-5 knockout (KO) were generated and used to establish mouse models of both T1DM and T2DM. Our results showed that MKP-5 KO exacerbated diabetes-related symptoms in mice with both T1DM and T2DM. Given that most phenotypic studies on islet dysfunction have focused on mice with T2DM rather than T1DM, we specifically aimed to investigate the role of endoplasmic reticulum stress (ERS) and autophagy in T2DM KO islets. To accomplish this, we performed RNA sequence analysis to gain comprehensive insight into the molecular mechanisms associated with ERS and autophagy in T2DM KO islets. The results showed that the islets from mice with MKP-5 KO triggered 5' adenosine monophosphate-activated protein kinase (AMPK)-mediated autophagy inhibition and glucose-regulated protein 78 (GRP-78)-dominated ERS. Hence, we concluded that the autophagy impairment, resulting in islet dysfunction in mice with MKP-5 KO, is mediated through GRP-78 involvement. These findings provide valuable insights into the molecular pathogenesis of diabetes and highlight the significant role of MKP-5. Moreover, this knowledge holds promise for novel therapeutic strategies targeting MKP-5 for diabetes management.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Islets of Langerhans , Mice , Animals , Mitogen-Activated Protein Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 1/metabolism , Phosphates/metabolism , Islets of Langerhans/metabolism
19.
Differentiation ; 135: 100744, 2024.
Article in English | MEDLINE | ID: mdl-38128465

ABSTRACT

Differentiation of human umbilical cord mesenchymal stem cells (Uc-MSCs) into islet-like clusters which are capable of synthesizing and secreting insulin can potentially serve as donors for islet transplantation in the patient deficiency in islet ß cell function both in type 1 or type 2 diabetic patients. Therefore, we developed an easy and higher efficacy approach by trypsinazing the Uc-MSCs and followed culture in differentiation medium to induce of Uc-MSCs differentiation into islet-like clusters, and the potential mechanism that in the early stage of differentiation was also investigated by using RNA-sequencing and bioinformatics. Results show that induction efficacy was reached to 98% and TGF-ß signaling pathway may play critical role in the early stage differentiation, it was further confirmed that the retardant effect of differentiation progress either in cell morphology or in islet specific genes expression can be observed upon blocking the activation of TGF-ß signaling pathway using specific inhibitor of LY2109761 (TßRI/II kinase inhibitor). Our current study, for the first time, development a protocol for differentiation of Uc-MSCs into islet-like clusters, and revealed the importance of TGF-ß signaling pathway in the early stage of differentiation of Uc-MSCs into islet-like clusters. Our study will provide alternative approach for clinical treatment of either type I or type II diabtes mellitus with dysfunctional pancreatic islets.


Subject(s)
Insulin-Secreting Cells , Mesenchymal Stem Cells , Humans , Insulin , Trypsin/metabolism , Cell Differentiation/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Signal Transduction , Umbilical Cord
20.
Genes Dev ; 31(23-24): 2376-2390, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29330353

ABSTRACT

Proper lumen morphogenesis during pancreas development is critical to endocrine and exocrine cell fate. Recent studies showed that a central network of lumens (termed core), but not the surrounding terminal branches (termed periphery), produces most islet endocrine cells. To date, it remains unclear how pancreatic lumens form and remodel and which aspects of lumen morphogenesis influence cell fate. Importantly, models testing the function of the central lumen network as an endocrine niche are lacking. Here, we identify mechanisms underlying lumen formation and remodeling and show that central lumen network morphogenesis impacts pancreatic endocrine mass. We show that loss of the scaffolding protein Afadin disrupts de novo lumenogenesis and lumen continuity in the tip epithelium. Codepletion of the actomyosin regulator RhoA and Afadin results in defects in the central lumens and arrests lumen remodeling. This arrest leads to prolonged perdurance of the central lumen network over developmental time and expansion of the endocrine progenitor population and, eventually, endocrine mass. Our study uncovers essential roles of Afadin and RhoA in pancreatic central lumen morphogenesis, which subsequently determines endocrine cell mass.


Subject(s)
Microfilament Proteins/metabolism , Morphogenesis/genetics , Pancreas/embryology , rho GTP-Binding Proteins/metabolism , Animals , Cell Differentiation , Cell Membrane/metabolism , Endocrine Cells/cytology , Endocrine Cells/metabolism , Endocrine Cells/ultrastructure , Mice , Microfilament Proteins/genetics , Microscopy, Electron, Transmission , Mutation , Pancreas/cytology , Pancreas/ultrastructure , rhoA GTP-Binding Protein
SELECTION OF CITATIONS
SEARCH DETAIL