Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 377
Filter
Add more filters

Publication year range
1.
Biochem Biophys Res Commun ; 725: 150261, 2024 09 17.
Article in English | MEDLINE | ID: mdl-38897040

ABSTRACT

GOAL: The long-term goal of our research is to develop safe and effective soluble epoxide hydrolase (sEH) inhibitors. The objective of this study is to evaluate the potency and selectivity of six natural isothiocyanates (ITCs) as sEH inhibitors. METHODS: Molecular docking was used to model likely interactions between the ligands and receptors. The sEH inhibitory activity was tested using a validated fluorescence-based assay and PHOME as a substrate. To evaluate their selectivity as sEH inhibitors, the inhibitory potential of the ITCs was determined on microsomal epoxide hydrolase (mEH) and cytochrome P450 (CYP) enzymes in human liver microsomes. Probe substrates such as styrene oxide (mEH substrate) and established substrates for CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 were used in this study. The metabolites of these substrates were analyzed using validated LC-MS/MS and HPLC-UV assays. RESULTS: Molecular Docking revealed significant differences in binding site preference among the ITCs in silico and pointed to important interactions between the ligands and the catalytic residues of the sEH enzyme. In vitro, the ITCs showed varying degrees of sEH inhibition, but sulforaphane (SFN) and phenyl isothiocyanate (PITC) were the most potent inhibitors with IC50 values of 3.65 and 7.5 µM, respectively. mEH was not significantly inhibited by any of the ITCs. Erucin and iberin were the only ITCs that did not inhibit the activity of any of the tested CYP enzymes. CONCLUSION: Our results demonstrate that natural ITCs have the potential to offer safe, selective, and potent sEH inhibition.


Subject(s)
Enzyme Inhibitors , Epoxide Hydrolases , Isothiocyanates , Microsomes, Liver , Molecular Docking Simulation , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Epoxide Hydrolases/chemistry , Isothiocyanates/pharmacology , Isothiocyanates/chemistry , Isothiocyanates/metabolism , Humans , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Solubility
2.
Pharmacol Res ; 201: 107107, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354869

ABSTRACT

In recent years, isothiocyanates (ITCs), bioactive compounds primarily derived from Brassicaceae vegetables and herbs, have gained significant attention within the biomedical field due to their versatile biological effects. This comprehensive review provides an in-depth exploration of the therapeutic potential and individual biological mechanisms of the three specific ITCs phenylethyl isothiocyanate (PEITC), allyl isothiocyanate (AITC), and benzyl isothiocyanate (BITC), as well as their collective impact within the formulation of ANGOCIN® Anti-Infekt N (Angocin). Angocin comprises horseradish root (Armoracia rusticanae radix, 80 mg) and nasturtium (Tropaeoli majoris herba, 200 mg) and is authorized for treating inflammatory diseases affecting the respiratory and urinary tract. The antimicrobial efficacy of this substance has been confirmed both in vitro and in various clinical trials, with its primary effectiveness attributed to ITCs. PEITC, AITC, and BITC exhibit a wide array of health benefits, including potent anti-inflammatory, antioxidant, and antimicrobial properties, along with noteworthy anticancer potentials. Moreover, we highlight their ability to modulate critical biochemical pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and signal transducer and activator of transcription (STAT) pathways, shedding light on their involvement in cellular apoptosis and their intricate role to guide immune responses.


Subject(s)
Anti-Infective Agents , NF-E2-Related Factor 2 , Kelch-Like ECH-Associated Protein 1 , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use
3.
Crit Rev Food Sci Nutr ; : 1-29, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644658

ABSTRACT

As one of the most important vegetables and oils consumed globally, cruciferous foods are appreciated for their high nutritional value. However, there is no comprehensive knowledge to sufficiently unravel the "flavor mystery" of cruciferous foods. The present review provides a comprehensive literature on the recent advances regarding the contribution of glucosinolates (GSL) degradation products to cruciferous foods odor, which focuses on key GSL degradation products contributing to distinct odor of cruciferous foods (Brassica oleracea, Brassica rapa, Brassica napus, Brassica juncea, Raphanus sativus), and key factors affecting GSL degradation pathways (i.e., enzyme-induced degradation, thermal-induced degradation, chemical-induced degradation, microwave-induced degradation) during different processing and cooking. A total of 93 volatile GSL degradation products (i.e., 36 nitriles, 33 isothiocyanates, 3 thiocyanates, 5 epithionitriles, and 16 sulfides) and 29 GSL (i.e., 20 aliphatic, 5 aromatic, and 4 indolic) were found in generalized cruciferous foods. Remarkably, cruciferous foods have a distinctive pungent, spicy, pickled, sulfur, and vegetable odor. In general, isothiocyanates are mostly present in enzyme-induced degradation of GSL and are therefore often enriched in fresh-cut or low-temperature, short-time cooked cruciferous foods. In contrast, nitriles are mainly derived from thermal-induced degradation of GSL, and are thus often enriched in high-temperature, long-time cooked cruciferous foods.


Processing and cooking can cause degradation of glucosinolates and formation of volatiles.Structure­odor relationship of glucosinolates degradation products is discussed.Nitriles, isothiocyanates, and sulfides play an important role in cruciferous foods odor.Both enzyme- and thermal-induced degradation of glucosinolates is strongly pH-dependent.

4.
Mol Divers ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373808

ABSTRACT

Alzheimer's disease (AD) is a multifactorial neurological disorder that involves multiple enzymes in the process of developing. Conventional monotherapies provide relief, necessitating alternative multi-targeting approaches to address AD complexity. Therefore, we synthesize N-(benzo[d]thiazol-2-yl) benzamide-based compounds and tested against monoamine oxidases (MAO-A and MAO-B). In the in vitro experimental evaluation of MAO, all the compounds displayed remarkable potency, having IC50 values in the lower micromolar range. The most potent MAO-A inhibitor was (3e) with an IC50 value of 0.92 ± 0.09 µM, whereas, (3d) was the most potent inhibitor of MAO-B with an IC50 value of 0.48 ± 0.04 µM. Moreover, Enzyme kinetics studies revealed that the potent inhibitors of MAO-A and MAO-B showed competitive mode of inhibition. Furthermore, molecular docking studies were also performed to confirm the mode of inhibition and obtain an intuitive picture of potent inhibitors. It also revealed several important interactions, particularly hydrogen bonding interaction. All the newly synthesized compounds showed good ADME pharmacokinetic profile and followed Lipinski rule; these compounds represent promising hits for the development of promising lead compounds for AD treatment.

5.
Phytother Res ; 38(1): 331-348, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882581

ABSTRACT

The isothiocyanates (ITCs) derived from the precursor glucosinolate molecules present in Brassica vegetables are bioactive organo-sulfur compounds with numerous pharmacologically important properties such as antioxidant, antiinflammatory, antimicrobial, and anticancer. Over the years, ITCs have been the focus of several research investigations associated with cancer treatment. Due to their potent chemo-preventive action, ITCs have been considered to be promising therapeutics for cancer therapy in place of the already existing conventional anticancer drugs. However, their wide spread use at the clinical stage is greatly restricted due to several factors such as low solubility in an aqueous medium, low bioavailability, low stability, and hormetic effect. To overcome these hindrances, nanotechnology can be exploited to develop nano-scale delivery systems that have the potential to enhance stability, and bioavailability and minimize the hermetic effect of ITCs.


Subject(s)
Anticarcinogenic Agents , Antineoplastic Agents , Brassica , Isothiocyanates/pharmacology , Vegetables , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use , Antineoplastic Agents/pharmacology
6.
Phytother Res ; 38(5): 2388-2405, 2024 May.
Article in English | MEDLINE | ID: mdl-38430052

ABSTRACT

The prevalence of overweight and obesity has progressively increased in the last few years, becoming a real threat to healthcare systems. To date, the clinical management of body weight gain is an unmet medical need, as there are few approved anti-obesity drugs and most require an extensive monitoring and vigilance due to risk of adverse effects and poor patient adherence/persistence. Growing evidence has shown that the gasotransmitter hydrogen sulfide (H2S) and, therefore, H2S-donors could have a central role in the prevention and treatment of overweight/obesity. The main natural sources of H2S-donors are plants from the Alliaceae (garlic and onion), Brassicaceae (e.g., broccoli, cabbage, and wasabi), and Moringaceae botanical families. In particular, polysulfides and isothiocyanates, which slowly release H2S, derive from the hydrolysis of alliin from Alliaceae and glucosinolates from Brassicaceae/Moringaceae, respectively. In this review, we describe the emerging role of endogenous H2S in regulating adipose tissue function and the potential efficacy of natural H2S-donors in animal models of overweight/obesity, with a final focus on the preliminary results from clinical trials. We conclude that organosulfur-containing plants and their extracts could be used before or in combination with conventional anti-obesity agents to improve treatment efficacy and reduce inflammation in obesogenic conditions. However, further high-quality studies are needed to firmly establish their clinical efficacy.


Subject(s)
Hydrogen Sulfide , Obesity , Overweight , Humans , Obesity/drug therapy , Animals , Overweight/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Obesity Agents/pharmacology , Glucosinolates/pharmacology , Glucosinolates/chemistry , Isothiocyanates/pharmacology , Brassicaceae/chemistry
7.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473991

ABSTRACT

In this study, we utilized an in vitro model consisting of human malignant melanoma as well as non-tumorigenic immortalized keratinocyte cells with the aim of characterizing the therapeutic effectiveness of the clinical epigenetic drug Tazemetostat alone or in combination with various isothiocyanates. In doing so, we assessed markers of cell viability, apoptotic induction, and expression levels of key proteins capable of mediating the therapeutic response. Our data indicated, for the first time, that Tazemetostat caused a significant decrease in viability levels of malignant melanoma cells in a dose- and time-dependent manner via the induction of apoptosis, while non-malignant keratinocytes were more resistant. Moreover, combinatorial treatment protocols caused a further decrease in cell viability, together with higher apoptotic rates. In addition, a significant reduction in the Polycomb Repressive Complex 2 (PRC2) members [e.g., Enhancer of Zeste Homologue 2 (EZH2), Embryonic Ectoderm Development (EED), and suppressor of zeste 12 (SUZ12)] and tri-methylating lysine 27 at Histone 3 (H3K27me3) protein expression levels was observed, at least partially, under specific combinatorial exposure conditions. Reactivation of major apoptotic gene targets was determined at much higher levels in combinatorial treatment protocols than Tazemetostat alone, known to be involved in the induction of intrinsic and extrinsic apoptosis. Overall, we developed an optimized experimental therapeutic platform aiming to ensure the therapeutic effectiveness of Tazemetostat in malignant melanoma while at the same time minimizing toxicity against neighboring non-tumorigenic keratinocyte cells.


Subject(s)
Benzamides , Biphenyl Compounds , Histones , Melanoma , Morpholines , Pyridones , Humans , Histones/metabolism , Polycomb Repressive Complex 2/genetics , Lysine/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Apoptosis
8.
Int J Mol Sci ; 25(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255874

ABSTRACT

Inflammatory diseases are strongly associated with global morbidity and mortality. Several mediators are involved in this process, including proinflammatory interleukins and cytokines produced by damaged tissues that, somehow, act as initiators of the autoreactive immune response. Bioactive compounds present in plant-based foods and byproducts have been largely considered active agents with the potential to treat or prevent inflammatory diseases, being a valuable alternative to traditional therapeutic agents used nowadays, which present several side effects. In this regard, the present research uncovers the anti-inflammatory activity of the bioaccessible fraction of broccoli stalks processed, by applying different conditions that render specific concentrations of bioactive sulforaphane (SFN). The raw materials' extracts exhibited significantly different contents of total glucosinolates (GSLs) that ranged between 3993.29 and 12,296.48 mg/kg dry weight (dw), with glucoraphanin as the most abundant one, followed by GI and GE. The indolic GSLs were represented by hydroxy-glucobrassicin, glucobrassicin, methoxy-glucobrassicin, and neo-glucobrassicin, with the two latter as the most abundant. Additionally, SFN and indole-3-carbinol were found in lower concentrations than the corresponding GSL precursors in the raw materials. When exploring the bioaccessibility of these organosulfur compounds, the GSL of all matrices remained at levels lower than the limit of detection, while SFN was the only breakdown product that remained stable and at quantifiable concentrations. The highest concentration of bioaccessible SFN was provided by the high-ITC materials (~4.00 mg/kg dw). The results retrieved on the cytotoxicity of the referred extracts evidenced that the range of supplementation of growth media tested (0.002-430.400 µg of organosulfur compounds/mL) did not display cytotoxic effects on Caco-2 cells. The obtained extracts were assessed based on their capacity to reduce the production of key proinflammatory cytokines (interleukin 6 (IL-6), IL-8, and TNF-α) by the intestinal epithelium. Most of the tested processing conditions provided plant material with significant anti-inflammatory activity and the absence of cytotoxic effects. These data confirm that SFN from broccoli stalks, processed to optimize the bioaccessible concentration of SFN, may be potential therapeutic leads to treat or prevent human intestinal inflammation.


Subject(s)
Brassica , Glucosinolates , Indoles , Inflammatory Bowel Diseases , Isothiocyanates , Sulfoxides , Humans , Caco-2 Cells , Inflammatory Bowel Diseases/drug therapy , Cytokines , Inflammation Mediators , Anti-Inflammatory Agents/pharmacology
9.
Molecules ; 29(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276596

ABSTRACT

The main goal of this work was to develop analytical procedures for the isolation and determination of selected isothiocyanates. As an example, particularly sulforaphane from plants of the Brassicaceae Burnett or Cruciferae Juss family. The applied methodology was mainly based on classical extraction methods and high-performance liquid chromatography coupled with tandem mass spectrometry. Moreover, the effect of temperature on the release of isothiocyanates from plant cells was considered. The cytotoxic activity of the obtained plant extracts against a selected cancer cell line has also been included. The results allow evaluating the usefulness of obtained plant extracts and raw sprouts regarding their content of isothiocyanates-bioactive compounds with chemopreventive properties.


Subject(s)
Antineoplastic Agents , Brassica , Brassica/chemistry , Isothiocyanates/pharmacology , Isothiocyanates/chemistry , Plant Extracts/chemistry , Cell Line , Sulfoxides , Glucosinolates/metabolism
10.
Molecules ; 29(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39203036

ABSTRACT

Herein, we describe the first consistent regiospecific reaction of isothiocyanates with a variety of substituted N-arylcyanothioformamides in a 1:1 molar ratio to generate a series of imidazolidineiminodithiones decorated with a multitude of functional groups on both aromatic rings. The reaction is carried out at room temperature using a 20 mol% catalytic amount of triethylamine with DMF as the solvent to selectively form the mentioned products with exclusive regioselectivity. The methodology features wide substrate scope, no requirement for chromatography, and good to high reaction yields. The products were isolated by simple ether/brine extraction and the structures were verified by multinuclear NMR spectroscopy and high accuracy mass measurements. The first conclusive molecular structure elucidation of the observed regioisomer was established by single-crystal X-ray diffraction analysis. Likewise, the tautomer of the N-arylcyanothioformamide reactant was proven by X-ray diffraction analysis. Density functional theory computations at the B3LYP-D4/def2-TZVP level in implicit DMF solvent were conducted to support the noted regiochemical outcome and proposed mechanism.

11.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125032

ABSTRACT

Reactions with allyl-, acetyl-, and phenylisothiocyanate have been studied on the basis of 3-amino-4,6-dimethylpyridine-2(1H)-one, 3-amino-4-phenylpyridine-2-one, and 3-amino-4-(thiophene-2-yl)pyridine-2(1H)-one (benzoyl-)isothiocyanates, and the corresponding thioureide derivatives 8-11a-c were obtained. Twelve thiourea derivatives were obtained and studied for their anti-diabetic activity against the enzyme α-glucosidase in comparison with the standard drug acarbose. The comparison drug acarbose inhibits the activity of α-glucosidase at a concentration of 15 mM by 46.1% (IC50 for acarbose is 11.96 mM). According to the results of the conducted studies, it was shown that alkyl and phenyl thiourea derivatives 8,9a-c, in contrast to their acetyl-(benzoyl) derivatives and 10,11a-c, show high antidiabetic activity. Thus, 1-(4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)-3-phenylthiourea 9a has the highest inhibitory activity against the enzyme α-glucosidase, exceeding the activity of the comparison drug acarbose, which inhibits the activity of α-glucosidase by 56.6% at a concentration of 15 mm (IC50 = 9,77 mM). 1-(6-methyl-2-oxo 4-(thiophen-2-yl)-1,2-dihydropyridin-3-yl)-3-phenylthiourea 9c has inhibitory activity against the enzyme α-glucosidase, comparable to the comparison drug acarbose, inhibiting the activity of α-glucosidase at a concentration of 15 mm per 41.2% (IC50 = 12,94 mM). Compounds 8a, 8b, and 9b showed inhibitory activity against the enzyme α-glucosidase, with a lower activity compared to acarbose, inhibiting the activity of α-glucosidase at a concentration of 15 mM by 23.3%, 26.9%, and 35.2%, respectively. The IC50 against α-glucosidase for compounds 8a, 8b, and 9b was found to be 16.64 mM, 19.79 mM, and 21.79 mM, respectively. The other compounds 8c, 10a, 10b, 10c, 11a, 11b, and 11c did not show inhibitory activity against α-glucosidase. Thus, the newly synthesized derivatives of thiourea based on 3-aminopyridine-2(1H)-ones are promising candidates for the further modification and study of their potential anti-diabetic activity. These positive bioanalytical results will stimulate further in-depth studies, including in vivo models.


Subject(s)
Glycoside Hydrolase Inhibitors , Thiourea , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacology , Thiourea/analogs & derivatives , Thiourea/chemical synthesis , alpha-Glucosidases/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Molecular Structure , Aminopyridines/chemistry , Aminopyridines/pharmacology , Aminopyridines/chemical synthesis
12.
Molecules ; 29(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338376

ABSTRACT

This review article discusses the recent progress in synthesizing seven-membered ring 1,3,5-triazepine and benzo[f][1,3,5]triazepine derivatives. These derivatives can be either unsaturated, saturated, fused, or separated. This review covers strategies and procedures developed over the past two decades, including cyclo-condensation, cyclization, methylation, chlorination, alkylation, addition, cross-coupling, ring expansions, and ring-closing metathesis. This review discusses the synthesis of 1,3,5-triazepine derivatives using nucleophilic or electrophilic substitution reactions with various reagents such as o-phenylenediamine, 2-aminobenzamide, isothiocyanates, pyrazoles, thiazoles, oxadiazoles, oxadiazepines, and hydrazonoyl chloride. This article systematically presents new approaches and techniques for preparing these compounds. It also highlights the biological importance of benzo[f][1,3,5]triazepine derivatives, which have been used as drugs for treating nervous system diseases. This review aims to provide researchers with the necessary information to create and develop new derivatives of these compounds as quickly as possible.


Subject(s)
Cyclization , Alkylation
13.
J Sci Food Agric ; 104(9): 5010-5020, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38314949

ABSTRACT

BACKGROUND: Cruciferous vegetable sprout has been highlighted as a promising functional material rich in bioactive compounds called isothiocyanates (ITCs) and it can be grown in very short periods in controlled indoor farms. However, because ITCs content depends on multiple factors such as cultivar, germination time and myrosinase activity, those variables need to be controlled during germination or extraction to produce functional materials enriched in ITCs. Sulforaphene (SFEN), an ITC found primarily in radishes (Raphanus sativus L.), exerts beneficial effects on obesity. However, the optimal germination and extraction conditions for radish sprout (RSP) to increase SFEN content remain unascertained, and the extract's anti-obesity effect has yet to be evaluated. RESULTS: The present study found that the SFEN content was highest in purple radish sprout (PRSP) among the six cultivars investigated. Optimal SFEN content occurred after 2 days of PRSP germination (2 days PRSP). To maximize the dry matter yield, total ITCs and SFEN contents in RSP extract, we found the optimal conditions for extracting PRSP [27.5 °C, 60 min, 1:75.52 solute/solvent (w/v), no ascorbic acid] using response surface methodology. Consistent with high SFEN content, 2 days PRSP extract significantly outperformed 3 days or 4 days PRSP extract in inhibiting lipid accumulation in 3T3-L1 cells. Moreover, 2 days PRSP extract suppressed adipogenesis and lipogenesis-related protein expression. CONCLUSION: Regarding the cultivar, germination time and extraction conditions, optimally produced PRSP extract contains high SFEN content and exerts anti-obesity effects. Thus, we suggest PRSP extract as a potent functional material for obesity prevention. © 2024 Society of Chemical Industry.


Subject(s)
Germination , Isothiocyanates , Plant Extracts , Raphanus , Raphanus/chemistry , Raphanus/growth & development , Raphanus/metabolism , Germination/drug effects , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Isothiocyanates/pharmacology , Isothiocyanates/isolation & purification , Isothiocyanates/chemistry , Isothiocyanates/analysis , Mice , Animals , 3T3-L1 Cells , Sulfoxides
14.
Toxicol Mech Methods ; 34(9): 985-999, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38919011

ABSTRACT

Malignant melanoma is the most aggressive type of skin cancer with increasing incidence rates worldwide. On the other hand, watercress is a rich source of phenethyl isothiocyanate (PEITC), among others, which has been widely investigated for its anticancer properties against various cancers. In the present study, we evaluated the role of a watercress extract in modulating apoptotic induction in an in vitro model of human malignant melanoma consisting of melanoma (A375, COLO-679, COLO-800), non-melanoma epidermoid carcinoma (A431) and immortalized, non-tumorigenic keratinocyte (HaCaT) cells. Moreover, the chemical composition of the watercress extract was characterized through UPLC MS/MS and other analytical methodologies. In addition, cytotoxicity was assessed by the alamar blue assay whereas apoptosis was determined, initially, by a multiplex activity assay kit (measuring levels of activated caspases -3, -8 and -9) as well as by qRT-PCR for the identification of major genes regulating apoptosis. In addition, protein expression levels were evaluated by western immunoblotting. Our data indicate that the extract contains various phytochemicals (e.g. phenolics, flavonoids, pigments, etc.) while isothiocyanates (ITCs; especially PEITC) were the most abundant. In addition, the extract was shown to exert a significant time- and dose-dependent cytotoxicity against all malignant melanoma cell lines while non-melanoma and non-tumorigenic cells exhibited significant resistance. Finally, expression profiling revealed a number of genes (and corresponding proteins) being implicated in regulating apoptotic induction through activation of the intrinsic apoptotic cascade. Overall, our data indicate the potential of PEITC as a promising anti-cancer agent in the clinical management of human malignant melanoma.


Subject(s)
Apoptosis , Isothiocyanates , Melanoma , Humans , Isothiocyanates/pharmacology , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Skin Neoplasms/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Caspases/metabolism , Dose-Response Relationship, Drug , Rubus/chemistry
15.
Pharmacol Res ; 196: 106947, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37797660

ABSTRACT

Hydrogen sulfide (H2S) has been extensively studied as a signal molecule in the body for the past 30 years. Researchers have conducted studies using both natural and synthetic sources of H2S, known as H2S donors, which have different characteristics in terms of how they release H2S. These donors can be inorganic salts or have various organic structures. In recent years, certain types of sulfur compounds found naturally in foods have been characterized as H2S donors and explored for their potential health benefits. These compounds are referred to as "sulfanutraceuticals," a term that combines "nutrition" and "pharmaceutical". It is used to describe products derived from food sources that offer additional health advantages. By introducing the terms "sulfaceuticals" and "sulfanutraceuticals," we categorize sulfur-containing substances based on their origin and their use in both preclinical and clinical research, as well as in dietary supplements.


Subject(s)
Hydrogen Sulfide , Sulfur Compounds/therapeutic use , Sulfur
16.
Crit Rev Food Sci Nutr ; 63(20): 4217-4234, 2023.
Article in English | MEDLINE | ID: mdl-35389274

ABSTRACT

Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an "enterohepatic circulation" in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.


Subject(s)
Brassicaceae , Glucosinolates , Glucosinolates/metabolism , Glycoside Hydrolases/metabolism , Brassicaceae/chemistry , Brassicaceae/metabolism , Isothiocyanates/metabolism , Anti-Inflammatory Agents/metabolism
17.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37035931

ABSTRACT

Cruciferous vegetables and oilseeds are rich in glucosinolates that can transform into isothiocyanates upon enzymic hydrolysis during post-harvest handling, food preparation and/or digestion. Vegetables contain glucosinolates that have beneficial bioactivities, while glucosinolates in oilseeds might have anti-nutritional properties. It is therefore important to monitor and assess glucosinolates and isothiocyanates content through the food value chain as well as for optimized crop production. Vibrational spectroscopy methods, such as infrared (IR) spectroscopy, are used as a nondestructive, rapid and low-cost alternative to the current and common costly, destructive, and time-consuming techniques. This systematic review discusses and evaluates the recent literature available on the use of IR spectroscopy to determine glucosinolates and isothiocyanates in vegetables and oilseeds. NIR spectroscopy was used to predict glucosinolates in broccoli, kale, rocket, cabbage, Brussels sprouts, brown mustard, rapeseed, pennycress, and a combination of Brassicaceae family seeds. Only one study reported the use of NIR spectroscopy to predict broccoli isothiocyanates. The major limitations of these studies were the absence of the critical evaluation of errors associated with the reference method used to develop the calibration models and the lack of interpretation of loadings or regression coefficients used to predict glucosinolates.

18.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38031341

ABSTRACT

AIMS: Sclerotinia sclerotiorum is an important pathogen of a wide range of crops, with current control mostly relying on the use of fungicides. This study assessed the effect of biofumigation on in vitro inhibition of mycelial growth and reduction of sclerotial viability of S. sclerotiorum as an attempt to seek an alternative management strategy. METHODS AND RESULTS: The effect of different biofumigant crop types to inhibit mycelial growth of ten S. sclerotiorum isolates was investigated, with Brassica juncea 'Caliente 199' being the most effective biofumigant crop. The efficacy of 'Caliente 199' to inhibit mycelial growth and reduce sclerotial viability was influenced by different crop factors. Plant tissue of 'Caliente 199' harvested at 50% or 100% flowering and adjusted to 80% (w/w) moisture resulted in greater mycelial inhibition and a reduction in the sclerotial viability compared with the vegetative tissue with the same plant moisture. Mycelial inhibition and reduction of sclerotial viability were affected by tissue quantity. Whole plant tissue and shoots only resulted in a similar inhibition of mycelial growth, but whole plant tissue resulted in a greater reduction of sclerotial viability. The S. sclerotiorum isolates differed in sensitivity to the volatile bioactive compounds released by the biofumigant plant tissue. CONCLUSIONS: The volatile bioactive compounds released by 'Caliente 199' resulted in effective mycelial inhibition but did not kill sclerotia completely.


Subject(s)
Ascomycota , Brassicaceae , Fungicides, Industrial , Mycelium , Fungicides, Industrial/pharmacology , Crops, Agricultural
19.
Bioorg Chem ; 130: 106231, 2023 01.
Article in English | MEDLINE | ID: mdl-36335649

ABSTRACT

Different series of annulated pyrazole derivatives were designed, synthesized via both green and traditional methods, and structurally characterized. In vitro uPA evaluation, antiproliferative activities and DNA binding damage was studied in this work. Thus, all the synthesized compounds were evaluated against three types of cancer cell lines; HepG-2, HCT-116, and MCF-7 cancer cell lines in addition to normal cell line WI38. Compounds 11, 20, 21, 23 and 24 displayed the most significant antiproliferative activity with IC50 ranging between 4.42 ± 0.59 µM to 11.05 ± 0.95 µM against HepG-2, HCT-116, and MCF-7 cancer cell lines compared to the reference drug, doxorubicin. Thus compound 11 exhibited cytotoxic activity with IC50 8.58 µM, 9.22 µM and 7.53 µM, compound 20 showed IC50 9.99 µM, 6.72 µM and 6.87 µM, analogue 21 displayed IC50 10.80 µM, 7.90 µM and 9.16 µM, compound 23 showed IC50 4.82 µM, 11.05 µM and 4.42 µM and derivative 24 exhibited potent cytotoxic activity with IC50 7.44 µM, 5.18 µM and 8.22 µM against HepG-2, HCT-116, and MCF-7 cancer cell lines, respectively. Additionally, compounds 11, 21, 23 and 24 showed significant uPA inhibitory activity with IC50 27.28 µM, 29.36 µM, 11.73 µM, and 7.96 µM respectively. Moreover, HCT-116 cell lines were treated with both compounds 23 and 24 that remarkably showed a high score of DNA binding damage. Mechanistic studies demonstrated the apoptotic activity of the most active tricyclic heteroaromatic analogue 24 on HCT-116 cancer cells by inducing a strong S phase cell cycle arrest suggesting that the mechanism of its antiproliferative activity may be through uPA inhibition. Finally, deeper insight illustrated that the hit compounds exhibited characteristic binding interactions in the active site of uPA that are required in the S pocket, which are important for activity Arg 217, Gly 219, and Ser 190.


Subject(s)
Antineoplastic Agents , Urokinase-Type Plasminogen Activator , Humans , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Molecular Structure , Antineoplastic Agents/chemistry , Pyrazoles/chemistry , DNA , Cell Proliferation , Cell Line, Tumor , Molecular Docking Simulation , Dose-Response Relationship, Drug
20.
Mol Divers ; 27(2): 651-666, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35639224

ABSTRACT

A new route to 5-amino-1,2,4-thiadiazole derivatives via reaction of N-chloroamidines with isothiocyanates has been proposed. The advantages of this method are high product yields (up to 93%), the column chromatography-free workup procedure, scalability and the absence of additive oxidizing agents or transition metal catalysts. The 28 examples of 5-amino-1,2,4-thiadiazole derivatives obtaining via the proposing protocol were evaluated in vitro against ESKAPE pathogens strains (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae). It was found that compounds 5ba, 5bd, 6a, 6d and 6c have potent antibacterial activity (MIC values 0.09-1.5 µg mL-1), which is superior to the activity of commercial antibiotics such as pefloxacin (MIC 4-8 µg mL-1) and streptomycin (MIC 2-32 µg mL-1). The additional cytotoxic assay of hit compounds on PANC-1 cell line demonstrated the low or non-cytotoxicity activity at the same level of concentrations. Thus, these 5 compounds are promising starting point for further antimicrobial drug development.


Subject(s)
Anti-Infective Agents , Enterococcus faecium , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL