Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
Add more filters

Country/Region as subject
Publication year range
1.
New Phytol ; 242(5): 1911-1918, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38628036

ABSTRACT

Metabolic flux analysis (MFA) is a valuable tool for quantifying cellular phenotypes and to guide plant metabolic engineering. By introducing stable isotopic tracers and employing mathematical models, MFA can quantify the rates of metabolic reactions through biochemical pathways. Recent applications of isotopically nonstationary MFA (INST-MFA) to plants have elucidated nonintuitive metabolism in leaves under optimal and stress conditions, described coupled fluxes for fast-growing algae, and produced a synergistic multi-organ flux map that is a first in MFA for any biological system. These insights could not be elucidated through other approaches and show the potential of INST-MFA to correct an oversimplified understanding of plant metabolism.


Subject(s)
Metabolic Flux Analysis , Plants , Metabolic Flux Analysis/methods , Plants/metabolism , Models, Biological , Plant Leaves/metabolism
2.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38271585

ABSTRACT

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Subject(s)
Carbon , Rainforest , Carbon/metabolism , Ecosystem , Droughts , Water/metabolism , Trees/metabolism , Carbohydrates , Plant Leaves/metabolism
3.
Microb Cell Fact ; 23(1): 208, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049057

ABSTRACT

The diversity of chemical and structural attributes of proteins makes it inherently difficult to produce a wide range of proteins in a single recombinant protein production system. The nature of the target proteins themselves, along with cost, ease of use, and speed, are typically cited as major factors to consider in production. Despite a wide variety of alternative expression systems, most recombinant proteins for research and therapeutics are produced in a limited number of systems: Escherichia coli, yeast, insect cells, and the mammalian cell lines HEK293 and CHO. Recent interest in Vibrio natriegens as a new bacterial recombinant protein expression host is due in part to its short doubling time of ≤ 10 min but also stems from the promise of compatibility with techniques and genetic systems developed for E. coli. We successfully incorporated V. natriegens as an additional bacterial expression system for recombinant protein production and report improvements to published protocols as well as new protocols that expand the versatility of the system. While not all proteins benefit from production in V. natriegens, we successfully produced several proteins that were difficult or impossible to produce in E. coli. We also show that in some cases, the increased yield is due to higher levels of properly folded protein. Additionally, we were able to adapt our enhanced isotope incorporation methods for use with V. natriegens. Taken together, these observations and improvements allowed production of proteins for structural biology, biochemistry, assay development, and structure-based drug design in V. natriegens that were impossible and/or unaffordable to produce in E. coli.


Subject(s)
Recombinant Proteins , Vibrio , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Vibrio/genetics , Vibrio/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Humans
4.
Environ Sci Technol ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39163040

ABSTRACT

The carbonyl functionality of natural organic matter (NOM) is poorly constrained. Here, we treated Suwannee River NOM (SRNOM) with ammonium acetate and sodium cyanoborohydride to convert ketone-containing compounds by reductive amination to their corresponding primary amines. The total dissolved nitrogen content increased by up to 275% after amination. Up to 30% of the molecular formulas of SRNOM contained isomers with ketone functionalities as detected by ultrahigh-resolution mass spectrometry. Most of these isomers contained one or two keto groups. At least 3.5% of the oxygen in SRNOM was bound in ketone moieties. The conversion of reacted compounds increased linearly with O/H values of molecular formulas and was predictable from the elemental composition. The mean conversion rate of reacted compounds nearly followed a log-normal distribution. This distribution and the predictability of the proportion of ketone-containing isomers solely based on the molecular formula indicated a stochastic distribution of ketones across SRNOM compounds. We obtained isotopically labeled amines by using 15N-labeled ammonium acetate, facilitating the identification of reaction products and enabling NMR spectroscopic analysis. 1H,15N HSQC NMR experiments of derivatized samples containing less than 20 µg of nitrogen confirmed the predominant formation of primary amines, as expected from the reaction pathway.

5.
Anal Bioanal Chem ; 416(2): 467-474, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37993551

ABSTRACT

Natural bioactive compounds (NBCs) are widely used in clinical treatment. For example, Tripterygium wilfordii Hook f. is commonly known in China as Lei-Gong-Teng which means thunder god vine. This herb is widely distributed in Eastern and Southern China, Korea, and Japan. The natural bioactive compounds of this herb can be extracted and made into tripterygium glycoside tablets. It is one of the most commonly used and effective traditional Chinese herbal medicines against rheumatoid arthritis (RA), nephrotic syndrome (NS), autoimmune hepatis (AIH), and so on. However, many NBCs are difficult to reliably quantify in the serum due to the effects of matrix and RSD. In addition, the targeted compound's internal standard (IS) is rarely sold due to the complex isotope internal standard synthesis pathway. In this study, a new quantitation method for 18O labeling combined with off-line SPE was formulated. We contrasted the recoveries and matrix effects of various separation methods in order to choose the best method. Furthermore, we optimized the conditions for SPE loading and washing. An isotopic internal standard was prepared by the 16O/18O exchanging reaction in order to eliminate the matrix effects. The method's accuracy and precision met the requirements for method validation. The recovery of this method was close to 60%. The relative standard deviation (RSD) of the high-concentration sample was 2%, and the limit of detection (LOD) was 1 ng/mL. This method could be used to analyze the clinical serum concentration of demethylzeylasteral. Sixty samples were collected from 10 patients with diabetes nephropathy. The quantitation results of demethylzeylasteral in patients' serum obtained using this method exhibited a correlation between therapeutic drug monitoring (TDM) and decreased urinary protein. This work may have broad implications for the study of drug metabolism in vivo and the clinical application of low-abundance and difficult-to-quantify NBCs.


Subject(s)
Arthritis, Rheumatoid , Drugs, Chinese Herbal , Triterpenes , Humans , Arthritis, Rheumatoid/drug therapy , Glycosides
6.
Anal Bioanal Chem ; 416(11): 2625-2640, 2024 May.
Article in English | MEDLINE | ID: mdl-38175283

ABSTRACT

Bioassays using inductively coupled plasma mass spectrometry (ICP-MS) have gained increasing attention because of the high sensitivity of ICP-MS and the various strategies of labeling biomolecules with detectable metal tags. The classic strategy to tag the target biomolecules is through direct antibody-antigen interaction and DNA hybridization, and requires the separation of the bound from the unbound tags. Label-free ICP-MS techniques for biomolecular assays do not require direct labeling: they generate detectable metal ions indirectly from specific biomolecular reactions, such as enzymatic cleavage. Here, we highlight the development of three main strategies of label-free ICP-MS assays for biomolecules: (1) enzymatic cleavage of metal-labeled substrates, (2) release of immobilized metal ions from the DNA backbone, and (3) nucleic acid amplification-assisted aggregation and release of metal tags to achieve amplified detection. We briefly describe the fundamental basis of these label-free ICP-MS assays and discuss the benefits and drawbacks of various designs. Future research is needed to reduce non-specific adsorption and minimize background and interference. Analytical innovations are also required to confront challenges faced by in vivo applications.


Subject(s)
DNA , Metals , Mass Spectrometry/methods , DNA/chemistry , Nucleic Acid Hybridization , Spectrum Analysis , Ions
7.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34389667

ABSTRACT

Climate change is expected to pose a global threat to forest health by intensifying extreme events like drought and insect attacks. Carbon allocation is a fundamental process that determines the adaptive responses of long-lived late-maturing organisms like trees to such stresses. However, our mechanistic understanding of how trees coordinate and set allocation priorities among different sinks (e.g., growth and storage) under severe source limitation remains limited. Using flux measurements, isotopic tracing, targeted metabolomics, and transcriptomics, we investigated how limitation of source supply influences sink activity, particularly growth and carbon storage, and their relative regulation in Norway spruce (Picea abies) clones. During photosynthetic deprivation, absolute rates of respiration, growth, and allocation to storage all decline. When trees approach neutral carbon balance, i.e., daytime net carbon gain equals nighttime carbon loss, genes encoding major enzymes of metabolic pathways remain relatively unaffected. However, under negative carbon balance, photosynthesis and growth are down-regulated while sucrose and starch biosynthesis pathways are up-regulated, indicating that trees prioritize carbon allocation to storage over growth. Moreover, trees under negative carbon balance actively increase the turnover rate of starch, lipids, and amino acids, most likely to support respiration and mitigate stress. Our study provides molecular evidence that trees faced with severe photosynthetic limitation strategically regulate storage allocation and consumption at the expense of growth. Understanding such allocation strategies is crucial for predicting how trees may respond to extreme events involving steep declines in photosynthesis, like severe drought, or defoliation by heat waves, late frost, or insect attack.


Subject(s)
Carbon/metabolism , Picea/growth & development , Picea/metabolism , Stress, Physiological , Photosynthesis/physiology , Plant Physiological Phenomena , Plant Transpiration
8.
Mycorrhiza ; 34(4): 303-316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38829432

ABSTRACT

Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used 15N-chitin as the isotopically labeled organic N source. In Experiment 1 (in vitro), mycelium of all AM fungal genotypes transferred a higher amount of 15N to the plants than the passive transfer of 15N measured in the non-mycorrhizal (NM) controls. Noticeably, certain genotypes (e.g., LPA9) showed higher extraradical mycelium biomass production but not necessarily greater 15N acquisition than the others. Experiment 2 (in pots) highlighted that some of the AM fungal genotypes (e.g., MA2, STSI) exhibited higher rates of targeted hyphal exploration of chitin-enriched zones, indicative of distinct N exploration patterns from the other genotypes. Importantly, there was a high congruence of hyphal exploration patterns between the two experiments (isolate STSI always showing highest efficiency of hyphal exploration and isolate L23/1 being consistently the lowest), despite very different (micro) environmental conditions in the two experiments. This study suggests possible strategies that AM fungal genotypes employ for efficient N acquisition, and how to measure them. Implications of such traits for local mycorrhizal community assembly still need to be understood.


Subject(s)
Genotype , Hyphae , Mycorrhizae , Hyphae/genetics , Hyphae/growth & development , Mycorrhizae/physiology , Mycorrhizae/genetics , Nitrogen/metabolism , Glomeromycota/physiology , Glomeromycota/genetics , Chitin/metabolism , Fungi
9.
Angew Chem Int Ed Engl ; 63(23): e202405140, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38584136

ABSTRACT

Little is known about the structures and catalytic mechanisms of sesterterpene synthases (StTSs), which greatly hinders the structure-based engineering of StTSs for structural diversity expansion of sesterterpenes. We here report on the crystal structures of the terpene cyclization (TC) domains of two fungal StTSs: sesterfisherol synthase (NfSS) and sesterbrasiliatriene synthase (PbSS). Both TC structures contain benzyltriethylammonium chloride (BTAC), pyrophosphate (PPi), and magnesium ions (Mg2+), clearly defining the catalytic active sites. A combination of theory and experiments including carbocationic intermediates modeling, site-directed mutagenesis, and isotope labeling provided detailed insights into the structural basis for their catalytic mechanisms. Structure-based engineering of NfSS and PbSS resulted in the formation of 20 sesterterpenes including 13 new compounds and four pairs of epimers with different configurations at C18. These results expand the structural diversity of sesterterpenes and provide important insights for future synthetic biology research.


Subject(s)
Sesterterpenes , Sesterterpenes/chemistry , Sesterterpenes/metabolism , Cyclization , Terpenes/metabolism , Terpenes/chemistry , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/genetics , Protein Engineering , Catalytic Domain , Models, Molecular , Crystallography, X-Ray
10.
Angew Chem Int Ed Engl ; 63(27): e202404278, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38656696

ABSTRACT

Positron emission tomography (PET) is becoming increasingly important in nuclear medicine and drug discovery. To date, the development of many potential PET tracers is hampered by the lack of suitable synthetic pathways for their preparation. This is particularly true for the highly desired radiolabeling of compounds bearing [18F]CF3-groups. For instance, S(O)nCF3-groups (n=0, 1, 2) serve as structural motif in a range of biologically active compounds, but their radiosynthesis remains largely unprecedented (for n=1, 2). Herein, we describe general methods for the radiosynthesis of 18F-labeled aryl trifluoromethyl sulfones, -sulfoxides, and -sulfides. All three methods are operationally straightforward, start from widely available precursors, i.e., sulfonyl fluorides and thiophenols, and make use of the recently established [18F]Ruppert-Prakash reagent. Further, the syntheses display good functional group tolerance as demonstrated by the 18F-labeling of more than 40 compounds. The applicability of the new method is demonstrated by the radiolabeling of three bioactive molecules, optionally to be used as PET tracers. In a broader context, this work presents a substantial expansion of the chemical space of radiofluorinated structural motifs to be used for the development of new PET tracers.

11.
J Biol Chem ; 298(8): 102253, 2022 08.
Article in English | MEDLINE | ID: mdl-35835218

ABSTRACT

Highly deuterated protein samples expand the biophysics and biological tool kit by providing, among other qualities, contrast matching in neutron diffraction experiments and reduction of dipolar spin interactions from normally protonated proteins in magnetic resonance studies, impacting both electron paramagnetic resonance and NMR spectroscopy. In NMR applications, deuteration is often combined with other isotopic labeling patterns to expand the range of conventional NMR spectroscopy research in both solution and solid-state conditions. However, preparation of deuterated proteins is challenging. We present here a simple, effective, and user-friendly protocol to produce highly deuterated proteins in Escherichia coli cells. The protocol utilizes the common shaker flask growth method and the well-known pET system (which provides expression control via the T7 promotor) for large-scale recombinant protein expression. One liter expression typically yields 5 to 50 mg of highly deuterated protein. Our data demonstrate that the optimized procedure produces a comparable quantity of protein in deuterium (2H2O) oxide M9 medium compared with that in 1H2O M9 medium. The protocol will enable a broader utilization of deuterated proteins in a number of biophysical techniques.


Subject(s)
Biophysics , Deuterium , Recombinant Proteins , Biophysics/methods , Deuterium/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Isotope Labeling , Neutron Diffraction , Recombinant Proteins/metabolism
12.
Plant J ; 111(5): 1486-1500, 2022 09.
Article in English | MEDLINE | ID: mdl-35819300

ABSTRACT

Quantification of reaction fluxes of metabolic networks can help us understand how the integration of different metabolic pathways determines cellular functions. Yet, intracellular fluxes cannot be measured directly but are estimated with metabolic flux analysis (MFA), which relies on the patterns of isotope labeling of metabolites in the network. The application of MFA also requires a stoichiometric model with atom mappings that are currently not available for the majority of large-scale metabolic network models, particularly of plants. While automated approaches such as the Reaction Decoder Toolkit (RDT) can produce atom mappings for individual reactions, tracing the flow of individual atoms of the entire reactions across a metabolic model remains challenging. Here we establish an automated workflow to obtain reliable atom mappings for large-scale metabolic models by refining the outcome of RDT, and apply the workflow to metabolic models of Arabidopsis thaliana. We demonstrate the accuracy of RDT through a comparative analysis with atom mappings from a large database of biochemical reactions, MetaCyc. We further show the utility of our automated workflow by simulating 15 N isotope enrichment and identifying nitrogen (N)-containing metabolites which show enrichment patterns that are informative for flux estimation in future 15 N-MFA studies of A. thaliana. The automated workflow established in this study can be readily expanded to other species for which metabolic models have been established and the resulting atom mappings will facilitate MFA and graph-theoretic structural analyses with large-scale metabolic networks.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Carbon Isotopes/metabolism , Isotope Labeling/methods , Metabolic Flux Analysis , Metabolic Networks and Pathways , Models, Biological , Workflow
13.
Biochem Biophys Res Commun ; 682: 381-385, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37844447

ABSTRACT

The measurement of serum IgG4 levels is mandatory for the diagnosis of IgG4-related disease, but no widely accepted reference material exists due to a lack of consensus on the standard assay. Therefore, we developed here an LC-MS/MS method for absolute quantification of IgG4 in a purified IgG sample, addressing a concern over the reliability depending on the proteolytic digestion efficiency. Our method uses internal calibrator sets containing unique amino acid sequences within IgG4, each of which comprises non-cleavable and dually-cleavable peptides labeled with different numbers of isotopes for mass separation, to determine digestion efficiency. Surrogate peptides generated by trypsin or lysyl endopeptidase digestion were selected based on selectivity, stability, and identifiability. IgG4 quantification using synthetic calibrator peptides showed high precision across the two conditions with different peptidases (relative differences ≤6.1%), even with low digestion efficiencies (<20%), which was within the interday precision under an established condition (% coefficient of variation ≤6.9%, digestion efficiencies >90%, n = 5). These results indicate that the LC-MS/MS method for quantifying IgG4 is robust against digestion efficiency variations and is applicable to validating an IgG4 reference material.


Subject(s)
Immunoglobulin G , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Reproducibility of Results , Tandem Mass Spectrometry/methods , Peptides/chemistry , Digestion
14.
Chembiochem ; 24(19): e202300362, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37435783

ABSTRACT

Pyrazines are ubiquitous in nature - biosynthesized by microorganisms, insects, and plants. Due to their great structural diversity, they own manifold biological functions. Alkyl- and alkoxypyrazines for instance play a key role as semiochemicals, but also as important aroma compounds in foods. Especially 3-alkyl-2-methoxypyrazines (MPs) have been of great research interest. MPs are associated with green and earthy attributes. They are responsible for the distinctive aroma properties of numerous vegetables. Moreover, they have a strong influence on the aroma of wines, in which they are primarily grape-derived. Over the years various methods have been developed and implemented to analyse the distribution of MPs in plants. In addition, the biosynthetic pathway of MPs has always been of particular interest. Different pathways and precursors have been proposed and controversially discussed in the literature. While the identification of genes encoding O-methyltransferases gave important insights into the last step of MP-biosynthesis, earlier biosynthetic steps and precursors remained unknown. It was not until 2022 that in vivo feeding experiments with stable isotope labeled compounds revealed l-leucine and l-serine as important precursors for IBMP. This discovery gave evidence for a metabolic interface between the MP-biosynthesis and photorespiration.

15.
Chemistry ; 29(16): e202203443, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36533705

ABSTRACT

Sensitivity and specificity are both crucial for the efficient solid-state NMR structure determination of large biomolecules. We present an approach that features both advantages by site-specific enhancement of NMR spectroscopic signals from the protein-RNA binding site within a ribonucleoprotein (RNP) by dynamic nuclear polarization (DNP). This approach uses modern biochemical techniques for sparse isotope labeling and exploits the molecular dynamics of 13 C-labeled methyl groups exclusively present in the protein. These dynamics drive heteronuclear cross relaxation and thus allow specific hyperpolarization transfer across the biomolecular complex's interface. For the example of the L7Ae protein in complex with a 26mer guide RNA minimal construct from the box C/D complex in archaea, we demonstrate that a single methyl-nucleotide contact is responsible for most of the polarization transfer to the RNA, and that this specific transfer can be used to boost both NMR spectral sensitivity and specificity by DNP.


Subject(s)
Proteins , RNA , RNA/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Magnetic Resonance Spectroscopy , Protein Binding
16.
Chemistry ; 29(16): e202203674, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36548125

ABSTRACT

3-Isobutyl-2-methoxypyrazine (IBMP) is an extremely potent odorant and responsible for the specific aroma of many fruits and vegetables. Especially bell pepper contains high levels of IBMP, which is the character impact compound of its typical aroma. However, since the discovery of methoxypyrazines in plants in the 1960s the biosynthesis of their pyrazine ring motif remained so far unknown. Therefore, the biosynthetic pathway to IBMP was investigated by feeding experiments with stable-isotope labeled precursors. For the first time it could be shown that l-serine plays a key role in the pyrazine ring construction of 3-alkyl-2-methoxypyrazines (MPs). Based on HS-SPME-GCxGC-TOF-MS analysis, it is shown that the biosynthetic pathway to IBMP is closely linked to photorespiratory derived l-serine.


Subject(s)
Capsicum , Capsicum/metabolism , Fruit/chemistry , Fruit/metabolism , Pyrazines , Odorants/analysis
17.
Chemphyschem ; 24(16): e202300206, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37306393

ABSTRACT

Methods which induce site-specificity and sensitivity enhancement in solid-state magic-angle spinning NMR spectroscopy become more important for structural biology due to the increasing size of molecules under investigation. Recently, several strategies have been developed to increase site specificity and thus reduce signal overlap. Under dynamic nuclear polarization (DNP) for NMR signal enhancement, it is possible to use cross-relaxation transfer induced by select dynamic groups within the molecules which is exploited by SCREAM-DNP (Specific Cross Relaxation Enhancement by Active Motions under DNP). Here, we present an approach where we additionally reintroduce the homonuclear dipolar coupling with rotational resonance (R2 ) during SCREAM-DNP to further boost the selectivity of the experiment. Detailed analysis of the polarization buildup dynamics of 13 C-methyl polarization source and 13 C-carbonyl target in 2-13 C-ethyl 1-13 C-acetate provides information about the sought-after and spurious transfer pathways. We show that dipolar-recoupled transfer rates greatly exceed the DNP buildup dynamics in our model system, indicating that significantly larger distances can be selectively and efficiently hyperpolarized.

18.
Mol Cell Proteomics ; 20: 100054, 2021.
Article in English | MEDLINE | ID: mdl-32576592

ABSTRACT

Growing implications of glycosylation in physiological occurrences and human disease have prompted intensive focus on revealing glycomic perturbations through absolute and relative quantification. Empowered by seminal methodologies and increasing capacity for detection, identification, and characterization, the past decade has provided a significant increase in the number of suitable strategies for glycan and glycopeptide quantification. Mass-spectrometry-based strategies for glycomic quantitation have grown to include metabolic incorporation of stable isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, workflows have been designed to harness instrument capability for label-free quantification, and numerous software packages have been developed to facilitate reliable spectrum scoring. In this review, we present and highlight the most recent advances in chemical labeling and associated techniques for glycan and glycopeptide quantification.


Subject(s)
Glycomics/methods , Glycopeptides/analysis , Polysaccharides/analysis , Animals , Humans
19.
J Integr Plant Biol ; 65(4): 881-887, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36377737

ABSTRACT

The phytohormone salicylic acid (SA) regulates biotic and abiotic stress responses in plants. Two distinct biosynthetic pathways for SA have been well documented in plants: the isochorismate (IC) pathway in the chloroplast and the phenylalanine ammonia-lyase (PAL) pathway in the cytosol. However, there has been no solid evidence that the PAL pathway contributes to SA biosynthesis. Here, we report that feeding Arabidopsis thaliana with Ring-13 C-labeled phenylalanine (13 C6 -Phe) resulted in incorporation of the 13 C label not into SA, but into its isomer 4-hydroxybenzoic acid (4-HBA) instead. We obtained similar results when feeding 13 C6 -Phe to the SA-deficient ics1 ics2 mutant and the SA-hyperaccumulating mutant s3h s5h. Notably, we detected 13 C6 -SA when 13 C6 -benzoic acid (BA) was provided, suggesting that SA can be synthesized from BA. Furthermore, despite the substantial accumulation of SA upon pathogen infection, we did not observe incorporation of 13 C label from Phe into SA. We also did not detect 13 C6 -SA in PAL-overexpressing lines in the kfb01 kfb02 kfb39 kfb50 background after being fed 13 C6 -Phe, although endogenous PAL levels were dramatically increased. Based on these combined results, we propose that SA biosynthesis is not from Phe in Arabidopsis. These results have important implications for our understanding of the SA biosynthetic pathway in land plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Phenylalanine/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Salicylic Acid/metabolism
20.
Angew Chem Int Ed Engl ; 62(11): e202217128, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36629490

ABSTRACT

The fields of RNA modification and RNA damage both exhibit a plethora of non-canonical nucleoside structures. While RNA modifications have evolved to improve RNA function, the term RNA damage implies detrimental effects. Based on stable isotope labelling and mass spectrometry, we report the identification and characterisation of 2-methylthio-1,N6-ethenoadenosine (ms2 ϵA), which is related to 1,N6-ethenoadenine, a lesion resulting from exposure of nucleic acids to alkylating chemicals in vivo. In contrast, a sophisticated isoprene labelling scheme revealed that ms2 ϵA biogenesis involves cleavage of a prenyl moiety in the known transfer RNA (tRNA) modification 2-methylthio-N6-isopentenyladenosine (ms2 i6 A). The relative abundance of ms2 ϵA in tRNAs from translating ribosomes suggests reduced function in comparison to its parent RNA modification, establishing the nature of the new structure in a newly perceived overlap of the two previously separate fields, namely an RNA modification damage.


Subject(s)
Adenosine , Nucleosides , Adenosine/chemistry , RNA, Transfer/chemistry , RNA , RNA, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL