Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Exp Bot ; 75(15): 4625-4640, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38364822

ABSTRACT

Foliar development involves successive phases of cell proliferation and expansion that determine the final leaf size, and is characterized by an early burst of reactive oxygen species generated in the photosynthetic electron transport chain (PETC). Introduction of the alternative PETC acceptor flavodoxin in tobacco chloroplasts led to a reduction in leaf size associated to lower cell expansion, without affecting cell number per leaf. Proteomic analysis showed that the biogenesis of the PETC proceeded stepwise in wild-type leaves, with accumulation of light-harvesting proteins preceding that of electron transport components, which might explain the increased energy and electron transfer to oxygen and reactive oxygen species build-up at this stage. Flavodoxin expression did not affect biogenesis of the PETC but prevented hydroperoxide formation through its function as electron sink. Mature leaves from flavodoxin-expressing plants were shown to contain higher levels of transcripts encoding components of the proteasome, a key negative modulator of organ size. Proteome profiling revealed that this differential accumulation was initiated during expansion and led to increased proteasomal activity, whereas a proteasome inhibitor reverted the flavodoxin-dependent size phenotype. Cells expressing plastid-targeted flavodoxin displayed lower endoreduplication, also associated to decreased organ size. These results provide novel insights into the regulation of leaf growth by chloroplast-generated redox signals, and highlight the potential of alternative electron shuttles to investigate the link(s) between photosynthesis and plant development.


Subject(s)
Chloroplasts , Nicotiana , Plant Leaves , Proteasome Endopeptidase Complex , Chloroplasts/metabolism , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/genetics , Proteasome Endopeptidase Complex/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Electron Transport , Photosynthesis , Flavodoxin/metabolism , Flavodoxin/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
2.
New Phytol ; 225(3): 1152-1165, 2020 02.
Article in English | MEDLINE | ID: mdl-30834533

ABSTRACT

Plants grow and transpire during the night. The aim of the present work was to assess the relative flows of carbon, water and solutes, and the energy involved, in sustaining night-time transpiration and leaf expansive growth under control and salt-stress conditions. Published and unpublished data were used, for barley plants grown in presence of 0.5-1 mM NaCl (control) and 100 mM NaCl. Night-time leaf growth presents a more efficient use of taken-up water compared with day-time growth. This efficiency increases several-fold with salt stress. Night-time transpiration cannot be supported entirely through osmotically driven uptake of water through roots under salt stress. Using a simple three- (root medium/cytosol/vacuole) compartment approach, the energy required to support cell expansion during the night is in the lower percentage region (0.03-5.5%) of the energy available through respiration, under both, control and salt-stress conditions. Use of organic (e.g. hexose equivalents) rather than inorganic (e.g. Na+ , Cl- , K+ ) solutes for generation of osmotic pressure in growing cells, increases the energy demand by orders of magnitude, yet requires only a small portion of carbon assimilated during the day. Night-time transpiration and leaf expansive growth should be considered as a potential acclimation mechanism to salinity.


Subject(s)
Crops, Agricultural/physiology , Energy Metabolism/physiology , Hordeum/physiology , Plant Transpiration/physiology , Salt Tolerance/physiology , Carbon/metabolism , Carbon Dioxide/metabolism , Salinity , Stress, Physiological , Water , Xylem/physiology
SELECTION OF CITATIONS
SEARCH DETAIL