ABSTRACT
Amyloid ß (Aß) is a central contributor to neuronal damage and cognitive impairment in Alzheimer's disease (AD). Aß disrupts AMPA receptor-mediated synaptic plasticity, a key factor in early AD progression. Numerous studies propose that Aß oligomers hinder synaptic plasticity, particularly long-term potentiation (LTP), by disrupting GluA1 (encoded by GRIA1) function, although the precise mechanism remains unclear. In this study, we demonstrate that Aß mediates the accumulation of GM1 ganglioside in lipid raft domains of cultured cells, and GluA1 exhibits preferential localization in lipid rafts via direct binding to GM1. Aß enhances the raft localization of GluA1 by increasing GM1 in these areas. Additionally, chemical LTP stimulation induces lipid raft-dependent GluA1 internalization in Aß-treated neurons, resulting in reduced cell surface and postsynaptic expression of GluA1. Consistent with this, disrupting lipid rafts and GluA1 localization in rafts rescues Aß-mediated suppression of hippocampal LTP. These findings unveil a novel functional deficit in GluA1 trafficking induced by Aß, providing new insights into the mechanism underlying AD-associated cognitive dysfunction.
Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Hippocampus , Long-Term Potentiation , Membrane Microdomains , Receptors, AMPA , Amyloid beta-Peptides/metabolism , Receptors, AMPA/metabolism , Membrane Microdomains/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Hippocampus/metabolism , G(M1) Ganglioside/metabolism , Humans , Neurons/metabolism , Rats , Mice , Protein TransportABSTRACT
Styrene-maleic acid (SMA) and similar amphiphilic copolymers are known to cut biological membranes into lipid nanoparticles/nanodiscs containing membrane proteins apparently in their relatively native membrane lipid environment. Our previous work demonstrated that membrane raft microdomains resist such disintegration by SMA. The use of SMA in studying membrane proteins is limited by its heterogeneity and the inability to prepare defined derivatives. In the present paper, we demonstrate that some amphiphilic peptides structurally mimicking SMA also similarly disintegrate cell membranes. In contrast to the previously used copolymers, the simple peptides are structurally homogeneous. We found that their membrane-disintegrating activity increases with their length (reaching optimum at 24 amino acids) and requires a basic primary structure, that is, (XXD)n, where X represents a hydrophobic amino acid (optimally phenylalanine), D aspartic acid, and n is the number of repeats of these triplets. These peptides may provide opportunities for various well-defined potentially useful modifications in the study of membrane protein biochemistry. Our present results confirm a specific character of membrane raft microdomains.
Subject(s)
Membrane Proteins , Peptides , Animals , Humans , Cell Membrane/metabolism , Cell Membrane/chemistry , Maleates/chemistry , Membrane Microdomains/metabolism , Membrane Microdomains/chemistry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Peptides/chemistry , Polystyrenes/chemistry , Cell LineABSTRACT
Cellular functions, such as differentiation and migration, are regulated by the extracellular microenvironment, including the extracellular matrix (ECM). Cells adhere to ECM through focal adhesions (FAs) and sense the surrounding microenvironments. Although FA proteins have been actively investigated, little is known about the lipids in the plasma membrane at FAs. In this study, we examine the lipid composition at FAs with imaging and biochemical approaches. Using the cholesterol-specific probe D4 with total internal reflection fluorescence microscopy and super-resolution microscopy, we show an enrichment of cholesterol at FAs simultaneously with FA assembly. Furthermore, we establish a method to isolate the lipid from FA-rich fractions, and biochemical quantification of the lipids reveals that there is a higher content of cholesterol and phosphatidylcholine with saturated fatty acid chains in the lipids of the FA-rich fraction than in either the plasma membrane fraction or the whole-cell membrane. These results demonstrate that plasma membrane at FAs has a locally distinct lipid composition compared to the bulk plasma membrane.
Subject(s)
Focal Adhesions , Phosphatidylcholines , Focal Adhesions/metabolism , Phosphatidylcholines/metabolism , Cell Membrane/metabolism , Cholesterol/metabolism , Extracellular Matrix/metabolismABSTRACT
Lipid rafts are highly ordered membrane domains that are enriched in cholesterol and glycosphingolipids and serve as major platforms for signal transduction. Cell detachment from the extracellular matrix (ECM) triggers lipid raft disruption and anoikis, which is a barrier for cancer cells to metastasize. Compared to single circulating tumor cells (CTCs), our recent studies have demonstrated that CD44-mediatd cell aggregation enhances the stemness, survival and metastatic ability of aggregated cells. Here, we investigated whether and how lipid rafts are involved in CD44-mediated cell aggregation. We found that cell detachment, which mimics the condition when tumor cells detach from the ECM to metastasize, induced lipid raft disruption in single cells, but lipid raft integrity was maintained in aggregated cells. We further found that lipid raft integrity in aggregated cells was required for Rac1 activation to prevent anoikis. In addition, CD44 and γ-secretase coexisted at lipid rafts in aggregated cells, which promoted CD44 cleavage and generated CD44 intracellular domain (CD44 ICD) to enhance stemness of aggregated cells. Consequently, lipid raft disruption inhibited Rac1 activation, CD44 ICD generation, and metastasis. Our findings reveal two new pathways regulated by CD44-mediated cell aggregation via maintaining lipid raft integrity. These findings also suggest that targeting cell aggregation-mediated pathways could be a novel therapeutic strategy to prevent CTC cluster-initiated metastasis.
Subject(s)
Hyaluronan Receptors , Membrane Microdomains , Monomeric GTP-Binding Proteins , rac1 GTP-Binding Protein , Cell Aggregation , Extracellular Matrix/metabolism , Membrane Microdomains/metabolism , Monomeric GTP-Binding Proteins/metabolism , Signal Transduction , MDA-MB-231 Cells , Humans , Animals , Mice , Cell Line, Tumor , Mice, Inbred BALB C , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , Anoikis , Enzyme Activation , Neoplasm MetastasisABSTRACT
Lipid rafts are membrane microdomains rich in cholesterol, sphingolipids, glycosylphosphatidylinositol-anchored proteins (GPI-APs), and receptors. These lipid raft components are localized at the plasma membrane and are essential for signal transmission and organogenesis. However, few reports have been published on the specific effects of lipid rafts on tooth development. Using microarray and single-cell RNA sequencing methods, we found that a GPI-AP, lymphocyte antigen-6/Plaur domain-containing 1 (Lypd1), was specifically expressed in preodontoblasts. Depletion of Lypd1 in tooth germ using an ex vivo organ culture system and in mouse dental pulp (mDP) cells resulted in the inhibition of odontoblast differentiation. Activation of bone morphogenetic protein (BMP) signaling by BMP2 treatment in mDP cells promoted odontoblast differentiation via phosphorylation of Smad1/5/8, while this BMP2-mediated odontoblast differentiation was inhibited by depletion of Lypd1. Furthermore, we created a deletion construct of the C terminus containing the omega site in LYPD1; this site is necessary for localizing GPI-APs to the plasma membrane and lipid rafts. We identified that this site is essential for odontoblast differentiation and morphological change of mDP cells. These findings demonstrated that LYPD1 is a novel marker of preodontoblasts in the developing tooth; in addition, they suggest that LYPD1 is important for tooth development and that it plays a pivotal role in odontoblast differentiation by regulating Smad1/5/8 phosphorylation through its effect as a GPI-AP in lipid rafts.
Subject(s)
Cell Differentiation , GPI-Linked Proteins , Odontoblasts , Odontogenesis , Animals , Mice , Bone Morphogenetic Proteins/metabolism , Cell Membrane/metabolism , Gene Expression Regulation, Developmental , Glycosylphosphatidylinositols/metabolism , GPI-Linked Proteins/metabolism , Membrane Microdomains/metabolism , Odontoblasts/cytology , Odontoblasts/metabolism , Protein DomainsABSTRACT
Coronavirus disease 2019 (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2. The virus binds to angiotensinogen converting enzyme 2 (ACE2), which mediates viral entry into mammalian cells. COVID-19 is notably severe in the elderly and in those with underlying chronic conditions. The cause of selective severity is not well understood. Here we show cholesterol and the signaling lipid phosphatidyl-inositol 4,5 bisphosphate (PIP2) regulate viral infectivity through the localization of ACE2's into nanoscopic (<200 nm) lipid clusters. Uptake of cholesterol into cell membranes (a condition common to chronic disease) causes ACE2 to move from PIP2 lipids to endocytic ganglioside (GM1) lipids, where the virus is optimally located for viral entry. In mice, age and high-fat diet increase lung tissue cholesterol by up to 40%. And in smokers with chronic disease, cholesterol is elevated 2-fold, a magnitude of change that dramatically increases infectivity of virus in cell culture. We conclude increasing the ACE2 location near endocytic lipids increases viral infectivity and may help explain the selective severity of COVID-19 in aged and diseased populations.
Subject(s)
COVID-19 , Hypercholesterolemia , Animals , Mice , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Peptidyl-Dipeptidase A/metabolism , Cholesterol/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Mammals/metabolismABSTRACT
Phospholipids in biological membranes establish a chemical equilibrium between free phospholipids in the aqueous phase (CMC) and self-assembled phospholipids in vesicles, keeping the CMC constant. The CMC is different for each phospholipid, depends on the amount of cholesterol, and, according to the lipid-chaperone hypothesis, controls the interaction between free phospholipids and amyloidogenic proteins (such as amylin, amyloid-ß, and α-synuclein, all of which are, respectively, associated with a different proteinopathy), which governs the formation of a toxic complex between free lipids and proteins that leads to membrane destruction. Here, we provide quantitative measurements of CMCs and bilayer stability of pure phospholipids, lipid rafts, and their mixture with cholesterol by fluorescence methods (using pyrene as a probe) and light scattering techniques (resonance Rayleigh scattering and fixed-angle light scattering) performed on LUVs, as well as AFM to measure LUV dimensions. Also, we test the lipid-chaperone hypothesis on human IAPP interacting with different mixture of POPC cholesterol. Stated the importance of CMC in membrane stability and protein aggregation processes, these results could be a starting point for the development of a quantitative kinetic model for the lipid chaperone hypothesis.
ABSTRACT
Primary cilium is a specialized sensory organelle that transmits environmental information into cells. Its length is tightly controlled by various mechanisms such as the frequency or the cargo size of the intraflagellar transport trains which deliver the building materials such as tubulin subunits essential for the growing cilia. Here, we show the sialoglycan interacting galectin 8 regulates the process of primary ciliogenesis. As the epithelia become polarized, there are more galectin 8 being apically secreted and these extracellular galectin 8 molecules apparently bind to a lipid raft enriched domain at the base of the primary cilia through interacting with lipid raft components, such as GD3 ganglioside and scaffold protein caveolin 1. Furthermore, the binding of galectin 8 at this critical region triggers rapid growth of primary cilia by perturbing the barrier function of the transition zone (TZ). Our study also demonstrates the functionality of this barrier depends on intact organization of lipid rafts at the cilia as genetically knockout of Cav1 and pharmacologically inhibition of lipid raft both phenocopy the effect of apical addition of recombinant galectin 8; that is, rapid elongation of primary cilia and redistribution of cilia proteins from TZ to the growing axoneme. Indeed, as cilia elongated, endogenous galectin 8, caveolin 1, and TZ component, TMEM231, also transited from the TZ to the growing axoneme. We also noted that the interaction between caveolin 1 and TMEM231 could be perturbed by exogenous galectin 8. Taken together, we proposed that galectin 8 promoted primary cilia elongation through impeding the barrier function of the TZ by interfering with the interaction between caveolin 1 and TMEM231.
Subject(s)
Caveolin 1 , Cilia , Caveolin 1/metabolism , Cilia/metabolism , Biological Transport , Tubulin/metabolism , Membrane Microdomains/metabolismABSTRACT
Acetylcholine is the main neurotransmitter at the vertebrate neuromuscular junctions (NMJs). ACh exocytosis is precisely modulated by co-transmitter ATP and its metabolites. It is assumed that ATP/ADP effects on ACh release rely on activation of presynaptic Gi protein-coupled P2Y13 receptors. However, downstream signaling mechanism of ATP/ADP-mediated modulation of neuromuscular transmission remains elusive. Using microelectrode recording and fluorescent indicators, the mechanism underlying purinergic regulation was studied in the mouse diaphragm NMJs. Pharmacological stimulation of purinoceptors with ADP decreased synaptic vesicle exocytosis evoked by both low and higher frequency stimulation. This inhibitory action was suppressed by antagonists of P2Y13 receptors (MRS 2211), Ca2+ mobilization (TMB8), protein kinase C (chelerythrine) and NADPH oxidase (VAS2870) as well as antioxidants. This suggests the participation of Ca2+ and reactive oxygen species (ROS) in the ADP-triggered signaling. Indeed, ADP caused an increase in cytosolic Ca2+ with subsequent elevation of ROS levels. The elevation of [Ca2+]in was blocked by MRS 2211 and TMB8, whereas upregulation of ROS was prevented by pertussis toxin (inhibitor of Gi protein) and VAS2870. Targeting the main components of lipid rafts, cholesterol and sphingomyelin, suppressed P2Y13 receptor-dependent attenuation of exocytosis and ADP-induced enhancement of ROS production. Inhibition of P2Y13 receptors decreased ROS production and increased the rate of exocytosis during intense activity. Thus, suppression of neuromuscular transmission by exogenous ADP or endogenous ATP can rely on P2Y13 receptor/Gi protein/Ca2+/protein kinase C/NADPH oxidase/ROS signaling, which is coordinated in a lipid raft-dependent manner.
Subject(s)
Membrane Microdomains , Neuromuscular Junction , Oxidation-Reduction , Signal Transduction , Synaptic Transmission , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/drug effects , Membrane Microdomains/metabolism , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Mice , Signal Transduction/physiology , Signal Transduction/drug effects , Male , Reactive Oxygen Species/metabolism , Exocytosis/physiology , Exocytosis/drug effects , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Calcium/metabolismABSTRACT
Inflammation can impair intestinal barrier, while increased epithelial permeability can lead to inflammation. In this study, we found that the expression of Tspan8, a tetraspanin expressed specifically in epithelial cells, is downregulated in mouse model of ulcerative disease (UC) but correlated with those of cell-cell junction components, such as claudins and E-cadherin, suggesting that Tspan8 supports intestinal epithelial barrier. Tspan8 removal increases intestinal epithelial permeability and upregulates IFN-γ-Stat1 signaling. We also demonstrated that Tspan8 coalesces with lipid rafts and facilitates IFNγ-R1 localization at or near lipid rafts. As IFN-γ induces its receptor undergoing clathrin- or lipid raft-dependent endocytosis and IFN-γR endocytosis plays an important role in Jak-Stat1 signaling, our analysis on IFN-γR endocytosis revealed that Tspan8 silencing impairs lipid raft-mediated but promotes clathrin-mediated endocytosis of IFN-γR1, leading to increased Stat1 signaling. These changes in IFN-γR1 endocytosis upon Tspan8 silencing correlates with fewer lipid raft component GM1 at the cell surface and more clathrin heavy chain in the cells. Our findings indicate that Tspan8 determines the IFN-γR1 endocytosis route, to restrain Stat1 signaling, stabilize intestine epithelium, and subsequently prevent intestine from inflammation. Our finding also implies that Tspan8 is needed for proper endocytosis through lipid rafts.
Subject(s)
Intestinal Mucosa , Receptors, Interferon , Tetraspanins , Animals , Mice , Clathrin/metabolism , Endocytosis/physiology , Inflammation/metabolism , Interferons/metabolism , Intestinal Mucosa/metabolism , Receptors, Interferon/metabolism , Tetraspanins/genetics , Tetraspanins/metabolismABSTRACT
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/ß-catenin, TGF-ß/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Subject(s)
Phosphatidylinositol 3-Kinases , Signal Transduction , AC133 Antigen/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Membrane/metabolism , Neoplastic Stem Cells/metabolismABSTRACT
During respiratory syncytial virus (RSV) particle assembly, the mature RSV particles form as filamentous projections on the surface of RSV-infected cells. The RSV assembly process occurs at the / on the cell surface that is modified by a virus infection, involving a combination of several different host cell factors and cellular processes. This induces changes in the lipid composition and properties of these lipid microdomains, and the virus-induced activation of associated Rho GTPase signaling networks drives the remodeling of the underlying filamentous actin (F-actin) cytoskeleton network. The modified sites that form on the surface of the infected cells form the nexus point for RSV assembly, and in this review chapter, they are referred to as the RSV assembleome. This is to distinguish these unique membrane microdomains that are formed during virus infection from the corresponding membrane microdomains that are present at the cell surface prior to infection. In this article, an overview of the current understanding of the processes that drive the formation of the assembleome during RSV particle assembly is given.
Subject(s)
Respiratory Syncytial Virus, Human , Virus Diseases , Humans , Virus Assembly/physiology , Respiratory Syncytial Virus, Human/physiology , Cell Membrane/metabolism , Virus Diseases/metabolism , LipidsABSTRACT
The cholesterol of the host cell plasma membrane and viral M2 protein plays a crucial role in multiple stages of infection and replication of the influenza A virus. Cholesterol is required for the formation of heterogeneous membrane microdomains (or rafts) in the budozone of the host cell that serves as assembly sites for the viral components. The raft microstructures act as scaffolds for several proteins. Cholesterol may further contribute to the mechanical forces necessary for membrane scission in the last stage of budding and help to maintain the stability of the virus envelope. The M2 protein has been shown to cause membrane scission in model systems by promoting the formation of curved lipid bilayer structures that, in turn, can lead to membrane vesicles budding off or scission intermediates. Membrane remodeling by M2 is intimately linked with cholesterol as it affects local lipid composition, fluidity, and stability of the membrane. Thus, both cholesterol and M2 protein contribute to the efficient and proper release of newly formed influenza viruses from the virus-infected cells.
Subject(s)
Influenza A virus , Orthomyxoviridae , Influenza A virus/metabolism , Viral Proteins/metabolism , Cholesterol/metabolism , Membrane Microdomains/metabolism , Cell Membrane/metabolismABSTRACT
The cell membrane, also called the plasma membrane, is the membrane on the cytoplasmic surface that separates the extracellular from the intracellular. It is thin, about 10 nm thick when viewed with an electron microscope, and is composed of two monolayers of phospholipid membranes (lipid bilayers) containing many types of proteins. It is now known that this cell membrane not only separates the extracellular from the intracellular, but is also involved in sensory stimuli such as pain, itching, sedation, and excitement. Since the "Fluid mosaic model" was proposed for cell membranes, molecules have been thought to be homogeneously distributed on the membrane surface. Later, at the end of the twentieth century, the existence of "Phase-separated microdomain structures" consisting of ordered phases rich in saturated lipids and cholesterol was suggested, and these were termed "Lipid rafts." A model in which lipid rafts regulate cell signaling has been proposed and is the subject of active research.This chapter first outlines the physicochemical properties and thermodynamic models of membrane phase separation (lipid rafts), which play an important role in cell signaling. Next, how physiologically active molecules such as local anesthetics, cooling agents (menthol), and warming agents (capsaicin) interact with artificial cell membranes will be presented.It is undeniable that the plasma membrane contains many channels and receptors that are involved in the propagation of sensory stimuli. At the same time, however, it is important to understand that the membrane exerts a significant influence on the intensity and propagation of these stimuli.
Subject(s)
Membrane Microdomains , Membrane Microdomains/metabolism , Membrane Microdomains/chemistry , Humans , Animals , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Signal Transduction , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Thermodynamics , Cell Membrane/metabolism , Cell Membrane/chemistry , Biomimetics/methods , Cholesterol/chemistry , Cholesterol/metabolismABSTRACT
Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the analysis of membrane protein phase affinity is complicated by the size and temporal nature of ordered and disordered lipid domains. To overcome these limitations, we developed a method for delivering membrane proteins from transfected cells into phase-separated model membranes that combines optical trapping with thermoplasmonic-mediated membrane fusion and confocal imaging. Using this approach, we observed clear phase partitioning into the liquid disordered phase following the transfer of GFP-tagged influenza hemagglutinin and neuraminidase from transfected cell membranes to giant unilamellar vesicles. The generic platform presented here allows investigation of the phase affinity of any plasma membrane protein which can be labeled or tagged with a fluorescent marker.
Subject(s)
Influenza, Human , Spike Glycoprotein, Coronavirus , Humans , Membrane Fusion , Cell Membrane/metabolism , Membrane Proteins/metabolism , LipidsABSTRACT
The synapse is a piece of information transfer machinery replacing the electrical conduction of nerve impulses at the end of the neuron. Like many biological mechanisms, its functioning is heavily affected by time constraints. The solution selected by evolution is based on chemical communication that, in theory, cannot compete with the speed of nerve conduction. Nevertheless, biochemical and biophysical compensation mechanisms mitigate this intrinsic weakness: (i) through the high concentrations of neurotransmitters inside the synaptic vesicles; (ii) through the concentration of neurotransmitter receptors in lipid rafts, which are signaling platforms; indeed, the presence of raft lipids, such as gangliosides and cholesterol, allows a fine tuning of synaptic receptors by these lipids; (iii) through the negative electrical charges of the gangliosides, which generate an attractive (for cationic neurotransmitters, such as serotonin) or repulsive (for anionic neurotransmitters, such as glutamate) electric field. This electric field controls the flow of glutamate in the tripartite synapse involving pre- and post-synaptic neurons and the astrocyte. Changes in the expression of brain gangliosides can disrupt the functioning of the glutamatergic synapse, causing fatal diseases, such as Rett syndrome. In this review, we propose an in-depth analysis of the role of gangliosides in the glutamatergic synapse, highlighting the primordial and generally overlooked role played by the electric field of synaptic gangliosides.
Subject(s)
Brain , Gangliosides , Glutamic Acid , Static Electricity , Synapses , Gangliosides/metabolism , Gangliosides/chemistry , Humans , Synapses/metabolism , Animals , Brain/metabolism , Glutamic Acid/metabolism , Neurotransmitter Agents/metabolism , Neurons/metabolism , Synaptic TransmissionABSTRACT
The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.
Subject(s)
Sphingomyelin Phosphodiesterase , TRPM Cation Channels , beta-Cyclodextrins , Animals , Humans , Mice , Analgesics/pharmacology , Analgesics/therapeutic use , beta-Cyclodextrins/pharmacology , Cell Survival/drug effects , CHO Cells , Cholesterol/metabolism , Cricetulus , Disease Models, Animal , HEK293 Cells , Membrane Microdomains/metabolism , Membrane Microdomains/drug effects , Pain/chemically induced , Pain/drug therapy , Pain/metabolism , Pregnenolone/pharmacology , Sphingomyelin Phosphodiesterase/metabolism , Sphingomyelin Phosphodiesterase/pharmacology , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Pyrimidinones/pharmacologyABSTRACT
The molecular events of protein misfolding and self-aggregation of tau and amylin are associated with the progression of Alzheimer's and diabetes, respectively. Recent studies suggest that tau and amylin can form hetero-tau-amylin oligomers. Those hetero-oligomers are more neurotoxic than homo-tau oligomers. So far, the detailed interactions between the hetero-oligomers and the neuronal membrane are unknown. Using multiscale MD simulations, the lipid binding and protein folding behaviors of hetero-oligomers on asymmetric lipid nanodomains or raft membranes were examined. Our raft membranes contain phase-separated phosphatidylcholine (PC), cholesterol, and anionic phosphatidylserine (PS) or ganglioside (GM1) in one leaflet of the lipid bilayer. The hetero-oligomers bound more strongly to the PS and GM1 than other lipids via the hydrophobic and hydrophilic interactions, respectively, in the raft membranes. The hetero-tetramer disrupted the acyl chain orders of both PC and PS in the PS-containing raft membrane, but only the GM1 in the GM1-containing raft membrane as effectively as the homo-tau-tetramer. We discovered that the alpha-helical content in the heterodimer was greater than the sum of alpha-helical contents from isolated tau and amylin monomers on both raft membranes, indicative of a synergetic effect of tau-amylin interactions in surface-induced protein folding. Our results provide new molecular insights into understanding the cross-talk between Alzheimer's and diabetes.
Subject(s)
Alzheimer Disease , Diabetes Mellitus , Humans , Islet Amyloid Polypeptide/chemistry , Amyloid beta-Peptides/metabolism , G(M1) Ganglioside/chemistry , Lipid Bilayers/chemistry , PhosphatidylcholinesABSTRACT
Pentacyclic triterpenoids, including ursolic acid (UA), are bioactive compounds with multiple biological activities involving anti-inflammatory effects. However, the mode of their action on mast cells, key players in the early stages of allergic inflammation, and underlying molecular mechanisms remain enigmatic. To better understand the effect of UA on mast cell signaling, here we examined the consequences of short-term treatment of mouse bone marrow-derived mast cells with UA. Using IgE-sensitized and antigen- or thapsigargin-activated cells, we found that 15 min exposure to UA inhibited high affinity IgE receptor (FcεRI)-mediated degranulation, calcium response, and extracellular calcium uptake. We also found that UA inhibited migration of mouse bone marrow-derived mast cells toward antigen but not toward prostaglandin E2 and stem cell factor. Compared to control antigen-activated cells, UA enhanced the production of tumor necrosis factor-α at the mRNA and protein levels. However, secretion of this cytokine was inhibited. Further analysis showed that UA enhanced tyrosine phosphorylation of the SYK kinase and several other proteins involved in the early stages of FcεRI signaling, even in the absence of antigen activation, but inhibited or reduced their further phosphorylation at later stages. In addition, we show that UA induced changes in the properties of detergent-resistant plasma membrane microdomains and reduced antibody-mediated clustering of the FcεRI and glycosylphosphatidylinositol-anchored protein Thy-1. Finally, UA inhibited mobility of the FcεRI and cholesterol. These combined data suggest that UA exerts its effects, at least in part, via lipid-centric plasma membrane perturbations, hence affecting the functions of the FcεRI signalosome.
Subject(s)
Receptors, IgE , Triterpenes , Mice , Animals , Receptors, IgE/metabolism , Mast Cells/metabolism , Cell Degranulation , Calcium/metabolism , Triterpenes/pharmacology , Triterpenes/metabolism , Antigens/metabolism , Lipids/pharmacology , Ursolic AcidABSTRACT
The B-cell receptor (BCR), a complex comprised of a membrane-associated immunoglobulin and the Igα/ß heterodimer, is one of the most important immune receptors in humans and controls B-cell development, activity, selection, and death. BCR signaling plays key roles in autoimmune diseases and lymphoproliferative disorders, yet, despite the clinical significance of this protein complex, key regions (i.e., the transmembrane domains) have yet to be structurally characterized. The mechanism for BCR signaling also remains unclear and has been variously described by the mutually exclusive cross-linking and dissociation activation models. Common to these models is the significance of local plasma membrane composition, which implies that interactions between BCR transmembrane domains (TMDs) play a role in receptor functionality. Here we used an in vivo assay of TMD oligomerization called GALLEX alongside spectroscopic and computational methods to characterize the structures and interactions of human Igα and Igß TMDs in detergent micelles and natural membranes. We observed weak self-association of the Igß TMD and strong self-association of the Igα TMD, which scanning mutagenesis revealed was entirely stabilized by an E-X10-P motif. We also demonstrated strong heterotypic interactions between the Igα and Igß TMDs both in vitro and in vivo, which scanning mutagenesis and computational models suggest is multiconfigurational but can accommodate distinct interaction sites for self-interactions and heterotypic interactions of the Igα TMD. Taken together, these results demonstrate that the TMDs of the human BCR are sites of strong protein-protein interactions that may direct BCR assembly, endoplasmic reticulum retention, and immune signaling.