ABSTRACT
Maintaining the correct number of healthy red blood cells (RBCs) is critical for proper oxygenation of tissues throughout the body. Therefore, RBC homeostasis is a tightly controlled balance between RBC production and RBC clearance, through the processes of erythropoiesis and macrophage hemophagocytosis, respectively. However, during the inflammation associated with infectious, autoimmune, or inflammatory diseases this homeostatic process is often dysregulated, leading to acute or chronic anemia. In each disease setting, multiple mechanisms typically contribute to the development of inflammatory anemia, impinging on both sides of the RBC production and RBC clearance equation. These mechanisms include both direct and indirect effects of inflammatory cytokines and innate sensing. Here, we focus on common innate and adaptive immune mechanisms that contribute to inflammatory anemias using examples from several diseases, including hemophagocytic lymphohistiocytosis/macrophage activation syndrome, severe malarial anemia during Plasmodium infection, and systemic lupus erythematosus, among others.
Subject(s)
Anemia , Malaria , Humans , Animals , Anemia/complications , Erythropoiesis/physiology , Erythrocytes , Malaria/complications , MacrophagesABSTRACT
Plasmodium falciparum remains a serious public health problem and a continuous challenge for the immune system due to the complexity and diversity of the pathogen. Recent advances from several laboratories in the characterization of the antibody response to the parasite have led to the identification of critical targets for protection and revealed a new mechanism of diversification based on the insertion of host receptors into immunoglobulin genes, leading to the production of receptor-based antibodies. These advances have opened new possibilities for vaccine design and passive antibody therapies to provide sterilizing immunity and control blood-stage parasites.
Subject(s)
Antibodies, Protozoan/metabolism , Antibody Formation , Immunoglobulins/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/physiology , Animals , Host Specificity/genetics , Host-Pathogen Interactions , Humans , Life Cycle StagesABSTRACT
Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is the most advanced blood-stage malaria vaccine candidate and is being evaluated for efficacy in endemic regions, emphasizing the need to study the underlying antibody response to RH5 during natural infection, which could augment or counteract responses to vaccination. Here, we found that RH5-reactive B cells were rare, and circulating immunoglobulin G (IgG) responses to RH5 were short-lived in malaria-exposed Malian individuals, despite repeated infections over multiple years. RH5-specific monoclonal antibodies isolated from eight malaria-exposed individuals mostly targeted non-neutralizing epitopes, in contrast to antibodies isolated from five RH5-vaccinated, malaria-naive UK individuals. However, MAD8-151 and MAD8-502, isolated from two malaria-exposed Malian individuals, were among the most potent neutralizers out of 186 antibodies from both cohorts and targeted the same epitopes as the most potent vaccine-induced antibodies. These results suggest that natural malaria infection may boost RH5-vaccine-induced responses and provide a clear strategy for the development of next-generation RH5 vaccines.
Subject(s)
Antibodies, Neutralizing , Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Humans , Antibodies, Neutralizing/immunology , Plasmodium falciparum/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Malaria Vaccines/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Protozoan Proteins/immunology , Antibodies, Monoclonal/immunology , Adult , B-Lymphocytes/immunology , Epitopes/immunology , Female , Mali , Carrier Proteins/immunology , Male , AdolescentABSTRACT
The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.
Subject(s)
Antibodies, Monoclonal , Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Animals , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Carrier Proteins/immunology , Epitopes/immunology , Erythrocytes/parasitology , Erythrocytes/immunology , Immunoglobulin G/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Protozoan Proteins/immunologyABSTRACT
The formation and accumulation of crystalline material in tissues is a hallmark of many metabolic and inflammatory conditions. The discovery that the phase transition of physiologically soluble substances to their crystalline forms can be detected by the immune system and activate innate immune pathways has revolutionized our understanding of how crystals cause inflammation. It is now appreciated that crystals are part of the pathogenesis of numerous diseases, including gout, silicosis, asbestosis, and atherosclerosis. In this review we discuss current knowledge of the complex mechanisms of crystal formation in diseased tissues and their interplay with the nutrients, metabolites, and immune cells that account for crystal-induced inflammation.
Subject(s)
Asbestosis/immunology , Atherosclerosis/immunology , Crystallization , Gout/immunology , Immunity, Innate , Inflammation/metabolism , Silicosis/immunology , Animals , Humans , Interleukin-1/metabolism , Nanotechnology , Phase TransitionABSTRACT
Plasmodium species, the causative agent of malaria, rely on glucose for energy supply during blood stage. Inhibition of glucose uptake thus represents a potential strategy for the development of antimalarial drugs. Here, we present the crystal structures of PfHT1, the sole hexose transporter in the genome of Plasmodium species, at resolutions of 2.6 Å in complex with D-glucose and 3.7 Å with a moderately selective inhibitor, C3361. Although both structures exhibit occluded conformations, binding of C3361 induces marked rearrangements that result in an additional pocket. This inhibitor-binding-induced pocket presents an opportunity for the rational design of PfHT1-specific inhibitors. Among our designed C3361 derivatives, several exhibited improved inhibition of PfHT1 and cellular potency against P. falciparum, with excellent selectivity to human GLUT1. These findings serve as a proof of concept for the development of the next-generation antimalarial chemotherapeutics by simultaneously targeting the orthosteric and allosteric sites of PfHT1.
Subject(s)
Monosaccharide Transport Proteins/ultrastructure , Plasmodium falciparum/metabolism , Plasmodium falciparum/ultrastructure , Protozoan Proteins/ultrastructure , Amino Acid Sequence , Animals , Antimalarials , Biological Transport , Glucose/metabolism , Humans , Malaria , Malaria, Falciparum/parasitology , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/metabolism , Parasites , Plasmodium falciparum/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sugars/metabolismABSTRACT
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.
Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Protozoan/immunology , Erythrocytes/parasitology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Animals , Binding Sites , Carrier Proteins/immunology , Cross Reactions/immunology , Epitopes/immunology , Female , HEK293 Cells , Healthy Volunteers , Humans , Malaria, Falciparum/parasitology , Male , Merozoites/physiology , Middle Aged , Plasmodium falciparum/metabolism , Protozoan Proteins/immunology , Rabbits , Rats , Rats, Sprague-Dawley , Young AdultABSTRACT
Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.
Subject(s)
Genome, Protozoan , Life Cycle Stages/genetics , Liver/metabolism , Liver/parasitology , Plasmodium berghei/growth & development , Plasmodium berghei/genetics , Alleles , Amino Sugars/biosynthesis , Animals , Culicidae/parasitology , Erythrocytes/parasitology , Fatty Acid Synthases/metabolism , Fatty Acids/metabolism , Gene Knockout Techniques , Genotype , Models, Biological , Mutation/genetics , Parasites/genetics , Parasites/growth & development , Phenotype , Plasmodium berghei/metabolism , Ploidies , ReproductionABSTRACT
Many infections, including malaria, are associated with an increase in autoantibodies (AAbs). Prior studies have reported an association between genetic markers of susceptibility to autoimmune disease and resistance to malaria, but the underlying mechanisms are unclear. Here, we performed a longitudinal study of children and adults (n = 602) in Mali and found that high levels of plasma AAbs before the malaria season independently predicted a reduced risk of clinical malaria in children during the ensuing malaria season. Baseline AAb seroprevalence increased with age and asymptomatic Plasmodium falciparum infection. We found that AAbs purified from the plasma of protected individuals inhibit the growth of blood-stage parasites and bind P. falciparum proteins that mediate parasite invasion. Protected individuals had higher plasma immunoglobulin G (IgG) reactivity against 33 of the 123 antigens assessed in an autoantigen microarray. This study provides evidence in support of the hypothesis that a propensity toward autoimmunity offers a survival advantage against malaria.
Subject(s)
Autoantibodies , Immunoglobulin G , Malaria, Falciparum , Plasmodium falciparum , Humans , Plasmodium falciparum/immunology , Autoantibodies/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Child , Child, Preschool , Adult , Immunoglobulin G/immunology , Immunoglobulin G/blood , Female , Mali , Male , Adolescent , Antibodies, Protozoan/immunology , Longitudinal Studies , Infant , Antigens, Protozoan/immunology , Young Adult , Autoantigens/immunology , Seroepidemiologic Studies , Middle AgedABSTRACT
Malaria is a life-threatening disease of global health importance, particularly in sub-Saharan Africa. The growth inhibition assay (GIA) is routinely used to evaluate, prioritize, and quantify the efficacy of malaria blood-stage vaccine candidates but does not reliably predict either naturally acquired or vaccine-induced protection. Controlled human malaria challenge studies in semi-immune volunteers provide an unparalleled opportunity to robustly identify mechanistic correlates of protection. We leveraged this platform to undertake a head-to-head comparison of seven functional antibody assays that are relevant to immunity against the erythrocytic merozoite stage of Plasmodium falciparum. Fc-mediated effector functions were strongly associated with protection from clinical symptoms of malaria and exponential parasite multiplication, while the gold standard GIA was not. The breadth of Fc-mediated effector function discriminated clinical immunity following the challenge. These findings present a shift in the understanding of the mechanisms that underpin immunity to malaria and have important implications for vaccine development.
Subject(s)
Antibodies, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Humans , Plasmodium falciparum/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Adult , Immunoglobulin Fc Fragments/immunology , Merozoites/immunology , Erythrocytes/parasitology , Erythrocytes/immunology , Female , Male , Young AdultABSTRACT
Hereditary xerocytosis is thought to be a rare genetic condition characterized by red blood cell (RBC) dehydration with mild hemolysis. RBC dehydration is linked to reduced Plasmodium infection in vitro; however, the role of RBC dehydration in protection against malaria in vivo is unknown. Most cases of hereditary xerocytosis are associated with gain-of-function mutations in PIEZO1, a mechanically activated ion channel. We engineered a mouse model of hereditary xerocytosis and show that Plasmodium infection fails to cause experimental cerebral malaria in these mice due to the action of Piezo1 in RBCs and in T cells. Remarkably, we identified a novel human gain-of-function PIEZO1 allele, E756del, present in a third of the African population. RBCs from individuals carrying this allele are dehydrated and display reduced Plasmodium infection in vitro. The existence of a gain-of-function PIEZO1 at such high frequencies is surprising and suggests an association with malaria resistance.
Subject(s)
Anemia, Hemolytic, Congenital/pathology , Black People/genetics , Hydrops Fetalis/pathology , Ion Channels/genetics , Malaria/pathology , Alleles , Anemia, Hemolytic, Congenital/genetics , Animals , Dehydration , Disease Models, Animal , Erythrocytes/cytology , Erythrocytes/metabolism , Gene Deletion , Genotype , Humans , Hydrops Fetalis/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/deficiency , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Ion Channels/chemistry , Malaria/genetics , Malaria/parasitology , Malaria/prevention & control , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Plasmodium berghei/growth & development , Plasmodium berghei/pathogenicity , T-Lymphocytes/cytology , T-Lymphocytes/metabolismABSTRACT
Plasmodium replicates within the liver prior to reaching the bloodstream and infecting red blood cells. Because clinical manifestations of malaria only arise during the blood stage of infection, a perception exists that liver infection does not impact disease pathology. By developing a murine model where the liver and blood stages of infection are uncoupled, we showed that the integration of signals from both stages dictated mortality outcomes. This dichotomy relied on liver stage-dependent activation of Vγ4+ γδ T cells. Subsequent blood stage parasite loads dictated their cytokine profiles, where low parasite loads preferentially expanded IL-17-producing γδ T cells. IL-17 drove extra-medullary erythropoiesis and concomitant reticulocytosis, which protected mice from lethal experimental cerebral malaria (ECM). Adoptive transfer of erythroid precursors could rescue mice from ECM. Modeling of γδ T cell dynamics suggests that this protective mechanism may be key for the establishment of naturally acquired malaria immunity among frequently exposed individuals.
Subject(s)
Erythropoiesis , Malaria, Cerebral , Animals , Mice , Erythrocytes , Interleukin-17 , Liver/parasitology , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, gamma-delta , MalariaABSTRACT
Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 µg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.
Subject(s)
Culicidae , Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Humans , Plasmodium falciparum , Culicidae/metabolism , Protozoan Proteins , Antibodies, Monoclonal , Malaria, Falciparum/prevention & control , Antibodies, ProtozoanABSTRACT
Pfs230 is essential for Plasmodium falciparum transmission to mosquitoes and is the protein targeted by the most advanced malaria-transmission-blocking vaccine candidate. Prior understanding of functional epitopes on Pfs230 is based on two monoclonal antibodies (mAbs) with moderate transmission-reducing activity (TRA), elicited from subunit immunization. Here, we screened the B cell repertoire of two naturally exposed individuals possessing serum TRA and identified five potent mAbs from sixteen Pfs230 domain-1-specific mAbs. Structures of three potent and three low-activity antibodies bound to Pfs230 domain 1 revealed four distinct epitopes. Highly potent mAbs from natural infection recognized a common conformational epitope that is highly conserved across P. falciparum field isolates, while antibodies with negligible TRA derived from natural infection or immunization recognized three distinct sites. Our study provides molecular blueprints describing P. falciparum TRA, informed by contrasting potent and non-functional epitopes elicited by natural exposure and vaccination.
Subject(s)
Malaria Vaccines , Malaria, Falciparum , Humans , Animals , Plasmodium falciparum , Epitopes , Protozoan Proteins , Antigens, Protozoan , Antibodies, Monoclonal , Antibodies, Protozoan , Malaria, Falciparum/prevention & controlABSTRACT
Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission.
Subject(s)
Lysophosphatidylcholines/metabolism , Malaria/parasitology , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Animals , Female , Humans , Malaria/immunology , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Plasmodium berghei/physiology , ReproductionABSTRACT
Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life.
Subject(s)
Chlamydomonas/metabolism , Membrane Fusion Proteins/chemistry , Plant Proteins/chemistry , Plasmodium/metabolism , Protozoan Proteins/chemistry , Amino Acid Sequence , Biological Evolution , Chlamydomonas/cytology , Crystallography, X-Ray , Germ Cells/chemistry , Germ Cells/metabolism , Membrane Fusion Proteins/genetics , Membrane Fusion Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plasmodium/cytology , Protein Domains , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence AlignmentABSTRACT
Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25°C higher thermostability compared with the wild-type protein. Antibodies elicited in mice immunized with these engineered antigens displayed on liposome-based or protein nanoparticle-based vaccine platforms exhibited 1-2 orders of magnitude superior transmission-reducing activity, compared with immunogens bearing the wild-type antigen, driven by improved antibody quality. Our data provide the founding principles for using molecular stabilization solely from antibody structure-function information to drive improved immune responses against a parasitic vaccine target.
Subject(s)
Malaria Vaccines , Malaria, Falciparum , Animals , Antibodies, Blocking , Antibodies, Monoclonal , Antibodies, Protozoan , Antibody Formation , Antigens, Protozoan , Humans , Malaria, Falciparum/prevention & control , Membrane Glycoproteins , Mice , Plasmodium falciparum , Protozoan Proteins , VaccinationABSTRACT
Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines â¼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions.
Subject(s)
Apicomplexa/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Genome-Wide Association Study , Host-Parasite Interactions , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/genetics , Cells, Cultured , Claudins/genetics , Claudins/metabolism , Fibroblasts/parasitology , Genome, Protozoan/genetics , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/physiopathology , Plasmodium falciparum/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/physiopathologyABSTRACT
Repeat antigens, such as the Plasmodium falciparum circumsporozoite protein (PfCSP), use both sequence degeneracy and structural diversity to evade the immune response. A few PfCSP-directed antibodies have been identified that are effective at preventing malaria infection, including CIS43, but how these repeat-targeting antibodies might be improved has been unclear. Here, we engineered a humanized mouse model in which B cells expressed inferred human germline CIS43 (iGL-CIS43) B cell receptors and used both vaccination and bioinformatic analysis to obtain variant CIS43 antibodies with improved protective capacity. One such antibody, iGL-CIS43.D3, was significantly more potent than the current best-in-class PfCSP-directed antibody. We found that vaccination with a junctional epitope peptide was more effective than full-length PfCSP at recruiting iGL-CIS43 B cells to germinal centers. Structure-function analysis revealed multiple somatic hypermutations that combinatorically improved protection. This mouse model can thus be used to understand vaccine immunogens and to develop highly potent anti-malarial antibodies.
Subject(s)
B-Lymphocyte Subsets/immunology , Epitopes/immunology , Malaria Vaccines/immunology , Malaria/immunology , Plasmodium falciparum/physiology , Protozoan Proteins/immunology , Vaccines, DNA/immunology , Adoptive Transfer , Animals , Antibodies, Protozoan/metabolism , Disease Models, Animal , Epitopes/genetics , Genetic Engineering , Humans , Immune Evasion , Immunogenicity, Vaccine , Mice , Mice, SCID , Protozoan Proteins/genetics , Structure-Activity Relationship , VaccinationABSTRACT
Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice. Isothermal titration calorimetry and multiphoton microscopy showed that L9 and the other most protective mAbs bound PfCSP with two binding events and mediated protection by killing SPZ in the liver and by preventing their egress from sinusoids and traversal of hepatocytes. This study defines the subdominant PfCSP minor repeats as neutralizing epitopes, identifies an in vitro biophysical correlate of SPZ neutralization, and demonstrates that the liver is an important site for antibodies to prevent malaria.