Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Epidemiol Infect ; 152: e57, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506229

ABSTRACT

Current World Health Organization (WHO) reports claim a decline in COVID-19 testing and reporting of new infections. To discuss the consequences of ignoring severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, the endemic characteristics of the disease in 2023 with the ones estimated before using 2022 data sets are compared. The accumulated numbers of cases and deaths reported to the WHO by the 10 most infected countries and global figures were used to calculate the average daily numbers of cases DCC and deaths DDC per capita and case fatality rates (CFRs = DDC/DCC) for two periods in 2023. In some countries, the DDC values can be higher than the upper 2022 limit and exceed the seasonal influenza mortality. The increase in CFR in 2023 shows that SARS-CoV-2 infection is still dangerous. The numbers of COVID-19 cases and deaths per capita in 2022 and 2023 do not demonstrate downward trends with the increase in the percentages of fully vaccinated people and boosters. The reasons may be both rapid mutations of the coronavirus, which reduced the effectiveness of vaccines and led to a large number of re-infections, and inappropriate management.


Subject(s)
COVID-19 , Influenza Vaccines , Humans , SARS-CoV-2 , COVID-19 Testing , World Health Organization
2.
Vaccines (Basel) ; 11(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36679877

ABSTRACT

BACKGROUND: seasonal influenza in nursing homes is a major public health concern, since in EU 43,000 long term care (LTC) facilities host an estimated 2.9 million elderly residents. Despite specific vaccination campaigns, many outbreaks in such institutions are occasionally reported. We explored the dynamics of seasonal influenza starting from real data collected from a nursing home located in Italy and a mathematical model. Our aim was to identify the best vaccination strategy to minimize cases (and subsequent complications) among the guests. MATERIALS AND METHODS: after producing the contact matrices with surveys of both the health care workers (HCW) and the guests, we developed a mathematical model of the disease. The model consists of a classical SEIR part describing the spreading of the influenza in the general population and a stochastic agent based model that formalizes the dynamics of the disease inside the institution. After a model fit of a baseline scenario, we explored the impact of varying the HCW and guests parameters (vaccine uptake and vaccine efficacy) on the guest attack rates (AR) of the nursing home. RESULTS: the aggregate AR of influenza like illness in the nursing home was 36.4% (ward1 = 56%, ward2 = 33.3%, ward3 = 31.7%, ward4 = 34.5%). The model fit to data returned a probability of infection of the causal contact of 0.3 and of the shift change contact of 0.2. We noticed no decreasing or increasing AR trend when varying the HCW vaccine uptake and efficacy parameters, whereas the increase in both guests vaccine efficacy and uptake parameter was accompanied by a slight decrease in AR of all the wards of the LTC facility. CONCLUSION: from our findings we can conclude that a nursing home is still an environment at high risk of influenza transmission but the shift change room and the handover situation carry no higher relative risk. Therefore, additional preventive measures in this circumstance may be unnecessary. In a closed environment such as a LTC facility, the vaccination of guests, rather than HCWs, may still represent the cornerstone of an effective preventive strategy. Finally, we think that the extensive inclusion of real life data into mathematical models is promising and may represent a starting point for further applications of this methodology.

SELECTION OF CITATIONS
SEARCH DETAIL