Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
Add more filters

Publication year range
1.
Br J Haematol ; 204(4): 1344-1353, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479427

ABSTRACT

This study investigates the potential utility of IKZF1 deletion as an additional high-risk marker for paediatric acute lymphoblastic leukaemia (ALL). The prognostic impact of IKZF1 status, in conjunction with minimal/measurable residual disease (MRD), was evaluated within the MRD-guided TPOG-ALL-2013 protocol using 412 newly diagnosed B-ALL patients aged 1-18. IKZF1 status was determined using multiplex ligation-dependent probe amplification. IKZF1 deletions, when co-occurring with CDKN2A, CDKN2B, PAX5 or PAR1 region deletions in the absence of ERG deletions, were termed IKZF1plus. Both IKZF1 deletion (14.6%) and IKZF1plus (7.8%) independently predicted poorer outcomes in B-ALL. IKZF1plus was observed in 4.1% of Philadelphia-negative ALL, with a significantly lower 5-year event-free survival (53.9%) compared to IKZF1 deletion alone (83.8%) and wild-type IKZF1 (91.3%) (p < 0.0001). Among patients with Day 15 MRD ≥0.01%, provisional high-risk patients with IKZF1plus exhibited the worst outcomes in event-free survival (42.0%), relapse-free survival (48.0%) and overall survival (72.7%) compared to other groups (p < 0.0001). Integration of IKZF1plus and positive Day 15 MRD identified a subgroup of Philadelphia-negative B-ALL with a 50% risk of relapse. This study highlights the importance of assessing IKZF1plus alongside Day 15 MRD positivity to identify patients at increased risk of adverse outcomes, potentially minimizing overtreatment.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Gene Deletion , Ikaros Transcription Factor/genetics , Neoplasm Recurrence, Local , Neoplasm, Residual/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Risk Assessment , Transcription Factors , Infant , Child, Preschool , Adolescent
2.
Br J Haematol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934371

ABSTRACT

The ongoing or anticipated therapeutic advances as well as previous experience in other malignancies, including acute myeloid leukaemia, have made molecular monitoring a potential interesting tool for predicting outcomes and demonstrating treatment efficacy in patients with myelodysplastic syndromes (MDS). The important genetic heterogeneity in MDS has made challenging the establishment of recommendations. In this context, high-throughput/next-generation sequencing (NGS) has emerged as an attractive tool, especially in patients with high-risk diseases. However, its implementation in clinical practice still suffers from a lack of standardization in terms of sensitivity, bioinformatics and result interpretation. Data from literature, mostly gleaned from retrospective cohorts, show NGS monitoring when used appropriately could help clinicians to guide therapy, detect early relapse and predict disease evolution. Translating these observations into personalized patient management requires a prospective evaluation in clinical research and remains a major challenge for the next years.

3.
Br J Haematol ; 204(6): 2390-2399, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664918

ABSTRACT

In this multicentre, real-world study, we aimed to identify the clinical outcomes and safety of allogeneic haematopoietic stem cell transplantation (allo-HSCT) in T-lymphoblastic lymphoma (T-LBL). A total of 130 Ann Arbor stage III or IV T-LBL patients (>16 years) treated with allo-HSCT across five transplant centres were enrolled. The 2-year cumulative incidence of disease progression, the probabilities of progression-free survival (PFS), overall survival (OS) and non-relapse mortality (NRM) after allo-HSCT were 21.0%, 69.8%, 79.5% and 9.2% respectively. Patients with central nervous system (CNS) involvement had a higher cumulative incidence of disease progression compared with those without CNS involvement (57.1% vs. 18.9%, HR 3.78, p = 0.014). Patients receiving allo-HSCT in non-remission (NR) had a poorer PFS compared with those receiving allo-HSCT in complete remission (CR) or partial remission (49.2% vs. 72.7%, HR 2.21, p = 0.041). Particularly for patients with bone marrow involvement and achieving CR before allo-HSCT, measurable residual disease (MRD) positivity before allo-HSCT was associated with a poorer PFS compared with MRD negativity (62.7% vs. 86.8%, HR 1.94, p = 0.036). On multivariate analysis, CNS involvement at diagnosis and receiving allo-HSCT in NR were associated with disease progression. Thus, our real-world data suggested that allo-HSCT appeared to be an effective therapy for adult T-LBL patients with Ann Arbor stage III or IV disease.


Subject(s)
Hematopoietic Stem Cell Transplantation , Humans , Adult , Male , Female , Middle Aged , China/epidemiology , Adolescent , Young Adult , Transplantation, Homologous , Transplantation Conditioning/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Disease-Free Survival
4.
Br J Haematol ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39275899

ABSTRACT

Patients with AL amyloidosis can have persistent organ dysfunction despite achieving a haematological complete response (hemCR). We aimed to identify factors for organ non-response among 143 patients who achieved hemCR for ≥6 months. Kidney, heart and liver non-response were observed in 40/117 (34%), 19/68 (28%) and 3/17 (18%) patients respectively. Predisposing factors varied by organ system. Kidney non-responders had more advanced organ dysfunction at diagnosis, whereas heart non-responders had disproportionately more lambda-typic amyloidogenic light chains. Most patients without an apparent reason for organ non-response had detectable residual clonal disease. The interplay of factors impeding organ recovery in AL amyloidosis is complex.

5.
Br J Haematol ; 204(4): 1367-1374, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38444113

ABSTRACT

Literature regarding prognostic relevance of CD20 antigen expression among paediatric B-lineage acute lymphoblastic leukaemia (B-ALL) patients is sparse and contradictory. We analysed clinical laboratory parameters and survival characteristics pertinent to CD20 expression among 224 treatment-naïve paediatric B-ALL patients. 50% patients had CD20 expression (CD20+ B-ALL). There was no difference in the clinical & laboratory presentation and end of induction measurable residual disease (EOI-MRD) status according to CD20 expression. As compared to CD20- B-ALL patients, CD20+ B-ALL patients had two times more relapse (16% vs. 29%, p = 0.034), inferior relapse-free survival (79% vs. 66%, p = 0.025) but no difference in overall survival (75% vs. 69%, p = 0.126). Similar to high-risk NCI status and EOI-MRD positivity, CD20 expression was an independent predictor for inferior relapse-free survival (HR: 1.860, 95% CI: 1.008-3.432, p = 0.047). Compared to baseline, there was a significant increase in CD20-expressing EOI-residual blasts among CD20- B-ALL patients (5% vs. 13%, p = 0.001). EOI residual blasts of both CD20+ and CD20- patients had three times increased normalized CD20 expression intensity (nCD20), with the intensity among CD20- B-ALL patients reaching the pretreatment nCD20 of CD20+ B-ALL patients (4.9 vs. 3.6, p = 0.666). Rituximab can be considered in managing EOI-MRD-positive CD20- B-ALL patients as the residual blasts of these patients have quantitative and qualitative increases in CD20 expression.


Subject(s)
Lymphoma, B-Cell , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Antigens, CD20 , Neoplasm Recurrence, Local , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Rituximab/therapeutic use , Neoplasm, Residual
6.
Mod Pathol ; 37(9): 100534, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852814

ABSTRACT

The ability to detect low-level disease is key to our understanding of clonal heterogeneity in acute myeloid leukemia (AML) and residual disease that elude conventional assays and seed relapse. We developed a high-sensitivity next-generation sequencing (HS-NGS) clinical assay, able to reliably detect low levels (1 × 10-5) of FLT3-ITD, a frequent, therapeutically targetable and prognostically relevant mutation in AML. By applying this assay to 289 longitudinal samples from 62 patients at initial diagnosis and/or clinical follow-up (mean follow-up of 22 months), we reveal the frequent occurrence of FLT3-ITD subclones at diagnosis and demonstrate a significantly decreased relapse risk when FLT3-ITD is cleared after induction or thereafter. We perform pairwise sequencing of diagnosis and relapse samples from 23 patients to uncover more detailed patterns of FLT3-ITD clonal evolution at relapse than is detectable by less-sensitive assays. Finally, we show that rising ITD level during consecutive biopsies is a harbinger of impending relapse. Our findings corroborate the emerging clinical utility of high-sensitivity FLT3-ITD testing and expands our understanding of clonal dynamics in FLT3-ITD-positive AML.


Subject(s)
High-Throughput Nucleotide Sequencing , Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Humans , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Middle Aged , Male , Female , Adult , Aged , Tandem Repeat Sequences/genetics , Recurrence , Clonal Evolution , Mutation , Gene Duplication
7.
Cytometry A ; 105(7): 555-558, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38722042

ABSTRACT

To achieve high-sensitivity cell measurements (<1 in 105 cells) by flow cytometry (FCM), the minimum number of acquired cells must be considered and conventional immunophenotyping protocols fall short of these numbers. The bulk lysis (BL) assay is a standardized erythrocyte lysing approach that allows the analysis of the millions of cells required for high-sensitivity measurable residual disease (MRD) detection. However, this approach has been associated with significant cell loss, along with potential over or underestimates of rare cells when using this method. The aim of this study was to evaluate bulk lysis protocols and compare them with minimal sample perturbation (MSP) protocols, which are reported to better preserve the native cellular state and avoid significant cell loss due to washing steps. To achieve this purpose, we first generated an MRD model by spiking fresh peripheral blood with K562 cells, stably expressing EGFP, at known percentages of EGFP positive cells to leukocytes. Samples were then prepared with BL and MSP protocols and analyzed using FCM. For all percentages of K562 cells established and evaluated, a significant decrease of this population was detected in BL samples compared with MSP samples, even at low K562 cell percentages. Significant decreases for non-necrotic cells were also observed in BL samples relative to MSP samples. In conclusion, the evaluation of the potential effects of BL protocols in obtaining the final count is of great interest, especially for over- or under-estimation of target cells, as in the case of measurable residual disease. Since conventional flow cytometry or minimal sample perturbation assays fall short in obtaining the minimum numbers required to reach high sensitivity measurements, significant efforts may be needed to improve bulk lysis solution reagents.


Subject(s)
Flow Cytometry , Humans , Flow Cytometry/methods , K562 Cells , Immunophenotyping/methods , Neoplasm, Residual , Erythrocytes/cytology , Leukocytes/cytology , Cell Count/methods
8.
Cytometry A ; 105(3): 181-195, 2024 03.
Article in English | MEDLINE | ID: mdl-37984809

ABSTRACT

Multiparameter flow cytometry (MFC) has emerged as a standard method for quantifying measurable residual disease (MRD) in acute myeloid leukemia. However, the limited number of available channels on conventional flow cytometers requires the division of a diagnostic sample into several tubes, restricting the number of cells and the complexity of immunophenotypes that can be analyzed. Full spectrum flow cytometers overcome this limitation by enabling the simultaneous use of up to 40 fluorescent markers. Here, we used this approach to develop a good laboratory practice-conform single-tube 19-color MRD detection assay that complies with recommendations of the European LeukemiaNet Flow-MRD Working Party. We based our assay on clinically-validated antibody clones and evaluated its performance on an IVD-certified full spectrum flow cytometer. We measured MRD and normal bone marrow samples and compared the MRD data to a widely used reference MRD-MFC panel generating highly concordant results. Using our newly developed single-tube panel, we established reference values in healthy bone marrow for 28 consensus leukemia-associated immunophenotypes and introduced a semi-automated dimensionality-reduction, clustering and cell type identification approach that aids the unbiased detection of aberrant cells. In summary, we provide a comprehensive full spectrum MRD-MFC workflow with the potential for rapid implementation for routine diagnostics due to reduced cell requirements and ease of data analysis with increased reproducibility in comparison to conventional FlowMRD routines.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Flow Cytometry/methods , Reproducibility of Results , Leukemia, Myeloid, Acute/diagnosis , Bone Marrow/metabolism , Neoplasm, Residual/diagnosis
9.
Cancer Cell Int ; 24(1): 218, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918782

ABSTRACT

BACKGROUND: Assessment of measurable residual disease (MRD) is an essential prognostic tool for B-lymphoblastic leukaemia (B-ALL). In this study, we evaluated the utility of next-generation sequencing (NGS)-based MRD assessment in real-world clinical practice. METHOD: The study included 93 paediatric patients with B-ALL treated at our institution between January 2017 and June 2022. Clonality for IGH or IGK rearrangements was identified in most bone marrow samples (91/93, 97.8%) obtained at diagnosis. RESULTS: In 421 monitoring samples, concordance was 74.8% between NGS and multiparameter flow cytometry and 70.7% between NGS and reverse transcription-PCR. Elevated quantities of clones of IGH alone (P < 0.001; hazard ratio [HR], 22.2; 95% confidence interval [CI], 7.1-69.1), IGK alone (P = 0.011; HR, 5.8; 95% CI, 1.5-22.5), and IGH or IGK (P < 0.001; HR, 7.2; 95% CI, 2.6-20.0) were associated with an increased risk of relapse. Detection of new clone(s) in NGS was also associated with inferior relapse-free survival (P < 0.001; HR, 18.1; 95% CI, 3.0-108.6). Multivariable analysis confirmed age at diagnosis, BCR::ABL1-like mutation, TCF3::PBX1 mutation, and increased quantity of IGH or IGK clones during monitoring as unfavourable factors. CONCLUSION: In conclusion, this study highlights the usefulness of NGS-based MRD as a routine assessment tool for prognostication of paediatric patients with B-ALL.

10.
Hematol Oncol ; 42(1): e3251, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287528

ABSTRACT

Zinc finger protein 384 (ZNF384) rearrangement defined a novel subtype of B-cell acute lymphoblastic leukemia (B-ALL). The prognostic significance of ZNF384 fusion transcript levels represented measurable residual disease remains to be explored. ZNF384 fusions were screened out in 57 adult B-ALL patients at diagnosis by real-time quantitative polymerase chain reaction and their transcript levels were serially monitored during treatment. The reduction of ZNF384 fusion transcript levels at the time of achieving complete remission had no significant impact on survival, whereas its ≥2.5-log reduction were significantly associated with higher relapse free survival (RFS) and overall survival (OS) rates after course 1 consolidation (p = 0.022 and = 0.0083) and course 2 consolidation (p = 0.0025 and = 0.0008). Compared with chemotherapy alone, allogeneic hematopoietic stem cell transplantation (allo-HSCT) significantly improved RFS and OS of patients with <2.5-log reduction after course 1 consolidation (p < 0.0001 and = 0.0002) and course 2 consolidation (p = 0.0003 and = 0.019), whereas exerted no significant effects in patients with ≥2.5-log reduction (all p > 0.05). ZNF384 fusion transcript levels after course 1 and course 2 consolidation strongly predict relapse and survival and may guide whether receiving allo-HSCT in adult B-ALL.


Subject(s)
Hematopoietic Stem Cell Transplantation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Humans , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Transcription Factors , Neoplasm, Residual/diagnosis , Recurrence , Trans-Activators/metabolism , Trans-Activators/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL