Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.147
Filter
Add more filters

Publication year range
1.
Cell ; 187(3): 782-796.e23, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38244547

ABSTRACT

The rapid kinetics of biological processes and associated short-lived conformational changes pose a significant challenge in attempts to structurally visualize biomolecules during a reaction in real time. Conventionally, on-pathway intermediates have been trapped using chemical modifications or reduced temperature, giving limited insights. Here, we introduce a time-resolved cryo-EM method using a reusable PDMS-based microfluidic chip assembly with high reactant mixing efficiency. Coating of PDMS walls with SiO2 virtually eliminates non-specific sample adsorption and ensures maintenance of the stoichiometry of the reaction, rendering it highly reproducible. In an operating range from 10 to 1,000 ms, the device allows us to follow in vitro reactions of biological molecules at resolution levels in the range of 3 Å. By employing this method, we show the mechanism of progressive HflX-mediated splitting of the 70S E. coli ribosome in the presence of the GTP via capture of three high-resolution reaction intermediates within 140 ms.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Ribosomes , Cryoelectron Microscopy/methods , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , GTP-Binding Proteins/metabolism , Microfluidics/methods , Ribosomes/metabolism , Silicon Dioxide/analysis
2.
Cell ; 184(9): 2430-2440.e16, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33784496

ABSTRACT

Genomically minimal cells, such as JCVI-syn3.0, offer a platform to clarify genes underlying core physiological processes. Although this minimal cell includes genes essential for population growth, the physiology of its single cells remained uncharacterized. To investigate striking morphological variation in JCVI-syn3.0 cells, we present an approach to characterize cell propagation and determine genes affecting cell morphology. Microfluidic chemostats allowed observation of intrinsic cell dynamics that result in irregular morphologies. A genome with 19 genes not retained in JCVI-syn3.0 generated JCVI-syn3A, which presents morphology similar to that of JCVI-syn1.0. We further identified seven of these 19 genes, including two known cell division genes, ftsZ and sepF, a hydrolase of unknown substrate, and four genes that encode membrane-associated proteins of unknown function, which are required together to restore a phenotype similar to that of JCVI-syn1.0. This result emphasizes the polygenic nature of cell division and morphology in a genomically minimal cell.


Subject(s)
Bacterial Proteins/genetics , Chromosomes, Bacterial/genetics , DNA, Bacterial/genetics , Genome, Bacterial , Mycoplasma/genetics , Synthetic Biology/methods , Bacterial Proteins/antagonists & inhibitors , CRISPR-Cas Systems , Genetic Engineering
3.
Annu Rev Biochem ; 86: 333-356, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28654324

ABSTRACT

Many biochemical systems are spatially heterogeneous and exhibit nonlinear behaviors, such as state switching in response to small changes in the local concentration of diffusible molecules. Systems as varied as blood clotting, intracellular calcium signaling, and tissue inflammation are all heavily influenced by the balance of rates of reaction and mass transport phenomena including flow and diffusion. Transport of signaling molecules is also affected by geometry and chemoselective confinement via matrix binding. In this review, we use a phenomenon referred to as patchy switching to illustrate the interplay of nonlinearities, transport phenomena, and spatial effects. Patchy switching describes a change in the state of a network when the local concentration of a diffusible molecule surpasses a critical threshold. Using patchy switching as an example, we describe conceptual tools from nonlinear dynamics and chemical engineering that make testable predictions and provide a unifying description of the myriad possible experimental observations. We describe experimental microfluidic and biochemical tools emerging to test conceptual predictions by controlling transport phenomena and spatial distribution of diffusible signals, and we highlight the unmet need for in vivo tools.


Subject(s)
Adenocarcinoma/metabolism , Gene Regulatory Networks , Lung Neoplasms/metabolism , Metabolic Networks and Pathways/genetics , Multiple Sclerosis/metabolism , Nonlinear Dynamics , Osteoporosis/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Biological Transport , Diffusion , Humans , Lab-On-A-Chip Devices , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Microfluidics/instrumentation , Microfluidics/methods , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Osteoporosis/genetics , Osteoporosis/pathology , Signal Transduction
4.
Mol Cell ; 78(5): 915-925.e7, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32392469

ABSTRACT

Transcriptional memory of gene expression enables adaptation to repeated stimuli across many organisms. However, the regulation and heritability of transcriptional memory in single cells and through divisions remains poorly understood. Here, we combined microfluidics with single-cell live imaging to monitor Saccharomyces cerevisiae galactokinase 1 (GAL1) expression over multiple generations. By applying pedigree analysis, we dissected and quantified the maintenance and inheritance of transcriptional reinduction memory in individual cells through multiple divisions. We systematically screened for loss- and gain-of-memory knockouts to identify memory regulators in thousands of single cells. We identified new loss-of-memory mutants, which affect memory inheritance into progeny. We also unveiled a gain-of-memory mutant, elp6Δ, and suggest that this new phenotype can be mediated through decreased histone occupancy at the GAL1 promoter. Our work uncovers principles of maintenance and inheritance of gene expression states and their regulators at the single-cell level.


Subject(s)
Galactokinase/genetics , Gene Expression Regulation, Fungal/genetics , Transcription, Genetic/genetics , Galactose/metabolism , Gene Expression/genetics , Genes, Fungal/genetics , Heredity/genetics , Histones/metabolism , Promoter Regions, Genetic/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Single-Cell Analysis/methods
5.
EMBO J ; 42(9): e113008, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36939020

ABSTRACT

Activation of the Arp2/3 complex by VCA-motif-bearing actin nucleation-promoting factors results in the formation of "daughter" actin filaments branching off the sides of pre-existing "mother" filaments. Alternatively, when stimulated by SPIN90, Arp2/3 directly nucleates "linear" actin filaments. Uncovering the similarities and differences between these two mechanisms is fundamental to understanding how actin cytoskeleton dynamics are regulated. Here, analysis of individual filaments reveals that, unexpectedly, the VCA motifs of WASP, N-WASP, and WASH destabilize existing branches, as well as SPIN90-Arp2/3 at linear filament ends. Furthermore, branch stabilizer cortactin and destabilizer GMF each have a similar impact on SPIN90-activated Arp2/3. However, unlike branch junctions, SPIN90-Arp2/3 at the ends of linear filaments is not destabilized by piconewton forces and does not become less stable with time. It thus appears that linear and branched Arp2/3-generated filaments respond similarly to the regulatory proteins we have tested, albeit with some differences, but significantly differ in their responses to aging and mechanical stress. These kinetic differences likely reflect the small conformational differences recently reported between Arp2/3 in branch junctions and linear filaments and suggest that their turnover in cells may be differently regulated.


Subject(s)
Actin Cytoskeleton , Actin-Related Protein 2-3 Complex , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Cytoskeleton/metabolism , Actins/metabolism
6.
Mol Cell ; 73(1): 130-142.e5, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30472192

ABSTRACT

Since its establishment in 2009, single-cell RNA sequencing (RNA-seq) has been a major driver behind progress in biomedical research. In developmental biology and stem cell studies, the ability to profile single cells confers particular benefits. Although most studies still focus on individual tissues or organs, the recent development of ultra-high-throughput single-cell RNA-seq has demonstrated potential power in characterizing more complex systems or even the entire body. However, although multiple ultra-high-throughput single-cell RNA-seq systems have attracted attention, no systematic comparison of these systems has been performed. Here, with the same cell line and bioinformatics pipeline, we developed directly comparable datasets for each of three widely used droplet-based ultra-high-throughput single-cell RNA-seq systems, inDrop, Drop-seq, and 10X Genomics Chromium. Although each system is capable of profiling single-cell transcriptomes, their detailed comparison revealed the distinguishing features and suitable applications for each system.


Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Microfluidic Analytical Techniques , RNA/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome , Automation, Laboratory , Base Sequence , Cell Line , Computational Biology , Cost-Benefit Analysis , DNA Barcoding, Taxonomic , Gene Expression Profiling/economics , High-Throughput Nucleotide Sequencing/economics , Humans , Microfluidic Analytical Techniques/economics , Reproducibility of Results , Sequence Analysis, RNA/economics , Single-Cell Analysis/economics , Workflow
7.
Proc Natl Acad Sci U S A ; 121(17): e2315361121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621130

ABSTRACT

Biofilms inhabit a range of environments, such as dental plaques or soil micropores, often characterized by noneven surfaces. However, the impact of surface irregularities on the population dynamics of biofilms remains elusive, as most experiments are conducted on flat surfaces. Here, we show that the shape of the surface on which a biofilm grows influences genetic drift and selection within the biofilm. We culture Escherichia coli biofilms in microwells with a corrugated bottom surface and observe the emergence of clonal sectors whose size corresponds to that of the corrugations, despite no physical barrier separating different areas of the biofilm. The sectors are remarkably stable and do not invade each other; we attribute this stability to the characteristics of the velocity field within the biofilm, which hinders mixing and clonal expansion. A microscopically detailed computer model fully reproduces these findings and highlights the role of mechanical interactions such as adhesion and friction in microbial evolution. The model also predicts clonal expansion to be limited even for clones with a significant growth advantage-a finding which we confirm experimentally using a mixture of antibiotic-sensitive and antibiotic-resistant mutants in the presence of sublethal concentrations of the antibiotic rifampicin. The strong suppression of selection contrasts sharply with the behavior seen in range expansion experiments in bacterial colonies grown on agar. Our results show that biofilm population dynamics can be affected by patterning the surface and demonstrate how a better understanding of the physics of bacterial growth can be used to control microbial evolution.


Subject(s)
Anti-Bacterial Agents , Biofilms , Bacteria , Rifampin/pharmacology , Escherichia coli/genetics , Bacterial Adhesion
8.
Proc Natl Acad Sci U S A ; 121(42): e2403953121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39388273

ABSTRACT

Droplets of one fluid in a second, immiscible fluid are typically spherical in shape due to the interfacial tension between the two fluids. Shear forces can lead to droplet deformation when they are subjected to flow, and these effects can be further modified when the droplet is stabilized by a surfactant due to a flow-induced gradients in the surfactant concentration. An alternative method of stabilizing droplets is through the use of colloidal particles, whose stabilization behavior is intrinsically different from molecular surfactants. Under the same flow condition, a gradient of particle concentration can result in the jamming of particles in regions with a high packing density, making the interface solid-like, albeit only under compression and not tension. However, how this asymmetry in the surfactant properties alters the droplet shape under shear is unknown. Here, we show that shear of particle-stabilized droplets can lead to a remarkable array of shape deformations as the droplets flow through a constrained microchannel. The shear-induced migration of particles on the surface results in the formation of an elastic shell at the back of the droplet, which can wrinkle and invaginate, ultimately leading to a unique core-shell structure. The shapes depend on the Peclet number of the flow, reflecting the balance of shear forces that drive the particles and diffusion that randomizes them. These findings highlight the consequences of the asymmetry in the forces between the particles and provide a unique method to controllably create droplets with a vast array of different shapes.

9.
Proc Natl Acad Sci U S A ; 121(42): e2406688121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39383001

ABSTRACT

Surface-attached cells can sense and respond to shear flow, but planktonic (free-swimming) cells are typically assumed to be oblivious to any flow that carries them. Here, we find that planktonic bacteria can transcriptionally respond to flow, inducing expression changes that are beneficial in flow. Specifically, we use microfluidic experiments and quantitative modeling to show that in the presence of flow, planktonic Pseudomonas aeruginosa induce shear rate-dependent genes that promote growth in low-oxygen environments. Untangling this mechanism revealed that in flow, motile P. aeruginosa spatially redistribute, leading to cell density changes that activate quorum sensing, which in turn enhances the oxygen uptake rate. In diffusion-limited environments, including those commonly encountered by bacteria, flow-induced cell density gradients also independently generate oxygen gradients that alter gene expression. Mutants deficient in this flow-responsive mechanism exhibit decreased fitness in flow, suggesting that this dynamic coupling of biological and mechanical processes can be physiologically significant.


Subject(s)
Gene Expression Regulation, Bacterial , Oxygen , Pseudomonas aeruginosa , Quorum Sensing , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/metabolism , Oxygen/metabolism , Quorum Sensing/physiology , Quorum Sensing/genetics , Transcription, Genetic , Plankton/genetics , Models, Biological
10.
Proc Natl Acad Sci U S A ; 121(11): e2316500121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442157

ABSTRACT

Evaluating the ability of cytotoxic T lymphocytes (CTLs) to eliminate tumor cells is crucial, for instance, to predict the efficiency of cell therapy in personalized medicine. However, the destruction of a tumor by CTLs involves CTL migration in the extra-tumoral environment, accumulation on the tumor, antigen recognition, and cooperation in killing the cancer cells. Therefore, identifying the limiting steps in this complex process requires spatio-temporal measurements of different cellular events over long periods. Here, we use a cancer-on-a-chip platform to evaluate the impact of adenomatous polyposis coli (APC) mutation on CTL migration and cytotoxicity against 3D tumor spheroids. The APC mutated CTLs are found to have a reduced ability to destroy tumor spheroids compared with control cells, even though APC mutants migrate in the extra-tumoral space and accumulate on the spheroids as efficiently as control cells. Once in contact with the tumor however, mutated CTLs display reduced engagement with the cancer cells, as measured by a metric that distinguishes different modes of CTL migration. Realigning the CTL trajectories around localized killing cascades reveals that all CTLs transition to high engagement in the 2 h preceding the cascades, which confirms that the low engagement is the cause of reduced cytotoxicity. Beyond the study of APC mutations, this platform offers a robust way to compare cytotoxic cell efficiency of even closely related cell types, by relying on a multiscale cytometry approach to disentangle complex interactions and to identify the steps that limit the tumor destruction.


Subject(s)
Adenomatous Polyposis Coli , Neoplasms , Humans , Neoplasms/genetics , T-Lymphocytes, Cytotoxic , Mutation , Lab-On-A-Chip Devices
11.
Proc Natl Acad Sci U S A ; 121(39): e2403510121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39288179

ABSTRACT

Multispecies microbial communities drive most ecosystems on Earth. Chemical and biological interactions within these communities can affect the survival of individual members and the entire community. However, the prohibitively high number of possible interactions within a microbial community has made the characterization of factors that influence community development challenging. Here, we report a Microbial Community Interaction (µCI) device to advance the systematic study of chemical and biological interactions within a microbial community. The µCI creates a combinatorial landscape made up of an array of triangular wells interconnected with circular wells, which each contains either a different chemical or microbial strain, generating chemical gradients and revealing biological interactions. Bacillus cereus UW85 containing green fluorescent protein provided the "target" readout in the triangular wells, and antibiotics or microorganisms in adjacent circular wells are designated the "variables." The µCI device revealed that gentamicin and vancomycin are antagonistic to each other in inhibiting the target B. cereus UW85, displaying weaker inhibitory activity when used in combination than alone. We identified three-member communities constructed with isolates from the plant rhizosphere that increased or decreased the growth of B. cereus. The µCI device enables both strain-level and community-level insight. The scalable geometric design of the µCI device enables experiments with high combinatorial efficiency, thereby providing a simple, scalable platform for systematic interrogation of three-factor interactions that influence microorganisms in solitary or community life.


Subject(s)
Bacillus cereus , Microbial Interactions/physiology , Microbiota/physiology , Anti-Bacterial Agents/pharmacology , Vancomycin/pharmacology , Rhizosphere , Gentamicins/pharmacology , Lab-On-A-Chip Devices , Green Fluorescent Proteins/metabolism
12.
Proc Natl Acad Sci U S A ; 121(31): e2403585121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042685

ABSTRACT

Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria toward a small number of cellulose overproducers from an initial pool of 40,000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms toward a specific phenotype and to unravel genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of new strains for the sustainable manufacturing of materials.


Subject(s)
Cellulose , Directed Molecular Evolution , Cellulose/metabolism , Cellulose/biosynthesis , Directed Molecular Evolution/methods , Acetobacteraceae/metabolism , Acetobacteraceae/genetics , Phenotype , Mutation
13.
Proc Natl Acad Sci U S A ; 121(33): e2306182121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102543

ABSTRACT

Microvortices are emerging components that impart functionality to microchannels by exploiting inertia effects such as high shear stress, effective fluid diffusion, and large pressure loss. Exploring the dynamic generation of vortices further expands the scope of microfluidic applications, including cell stimulation, fluid mixing, and transport. Despite the crucial role of vortices' development within sub-millisecond timescales, previous studies in microfluidics did not explore the modulation of the Reynolds number (Re) in the range of several hundred. In this study, we modulated high-speed flows (54 < [Formula: see text] < 456) within sub-millisecond timescales using a piezo-driven on-chip membrane pump. By applying this method to microchannels with asymmetric geometries, we successfully controlled the spatiotemporal development of vortices, adjusting their behavior in response to oscillatory flow directions. These different vortices induced different pressure losses, imparting the microchannels with direction-dependent flow resistance, mimicking a diode-like behavior. Through precise control of vortex development, we managed to regulate this direction-dependent resistance, enabling the rectification of oscillatory flow resembling a diode and the ability to switch its rectification direction. This component facilitated bidirectional flow control without the need for mechanical valves. Moreover, we demonstrated its application in microfluidic cell pipetting, enabling the isolation of single cells. Consequently, based on modulating high-speed flow, our approach offers precise control over the spatiotemporal development of vortices in microstructures, thereby introducing innovative microfluidic functionalities.

14.
Proc Natl Acad Sci U S A ; 121(28): e2402331121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959044

ABSTRACT

Directional transport of liquids is of great importance in energy saving, chemical/biomedical engineering, and microfluidics applications. Despite considerable progress in engineering different open surfaces to achieve liquid manipulation, the realization of diode-like liquid transport in enclosed spaces is still challenging. Here, a flexible diode microtube is presented for directional liquid transport within confined spaces using pulsed microfluidics. The microtubes exhibit sophisticated microstructures on the inner wall, replicated from a precisely controlled flow configuration in the microfluidic channel. Under the effect of asymmetric pinning and unbalanced Laplace pressure, such microtubes enable directional liquid transport in closed channels. More importantly, by integrating in situ flow lithography with the microfluidic system, segmented liquid diodes are fabricated as assembly units for the construction of fluidic-electronic circuits that perform logic operations. These results demonstrate the capacity of the present liquid-diode microtubes for flexible, directional, and programmable liquid transport. We believe that it can open an avenue for designing advanced fluidic circuit-based devices toward versatile practical applications.

15.
Proc Natl Acad Sci U S A ; 121(28): e2401318121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968103

ABSTRACT

Mineral precipitation caused by fluid mixing presents complex control and predictability challenges in a variety of natural and engineering processes, including carbon mineralization, geothermal energy, and microfluidics. Precipitation dynamics, particularly under the influence of fluid flow, remain poorly understood. Combining microfluidic experiments and three-dimensional reactive transport simulations, we demonstrate that fluid inertia controls mineral precipitation and clogging at flow intersections, even in laminar flows. We observe distinct precipitation regimes as a function of Reynolds number (Re). At low Reynolds numbers (Re < 10), precipitates form a thin, dense layer along the mixing interface, which shuts precipitation off, while at high Reynolds numbers (Re > 50), strong three-dimensional flows significantly enhance precipitation over the entire intersection, resulting in rapid clogging. When injection rates from two inlets are uneven, flow symmetry-breaking leads to unexpected flow bifurcation phenomena, which result in enhanced concurrent precipitation in both downstream channels. Finally, we extend our findings to rough channel networks and demonstrate that the identified inertial effects on precipitation at the intersection scale are also present and even more dramatic at the network scale. This study sheds light on the fundamental mechanisms underlying mixing-induced mineral precipitation and provides a framework for designing and optimizing processes involving mineral precipitation.

16.
Proc Natl Acad Sci U S A ; 121(12): e2303679121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38478687

ABSTRACT

There are many fields where it is of interest to measure the elastic moduli of tiny fragile fibers, such as filamentous bacteria, actin filaments, DNA, carbon nanotubes, and functional microfibers. The elastic modulus is typically deduced from a sophisticated tensile test under a microscope, but the throughput is low and limited by the time-consuming and skill-intensive sample loading/unloading. Here, we demonstrate a simple microfluidic method enabling the high-throughput measurement of the elastic moduli of microfibers by rope coiling using a localized compression, where sample loading/unloading are not needed between consecutive measurements. The rope coiling phenomenon occurs spontaneously when a microfiber flows from a small channel into a wide channel. The elastic modulus is determined by measuring either the buckling length or the coiling radius. The throughput of this method, currently 3,300 fibers per hour, is a thousand times higher than that of a tensile tester. We demonstrate the feasibility of the method by testing a nonuniform fiber with axially varying elastic modulus. We also demonstrate its capability for in situ inline measurement in a microfluidic production line. We envisage that high-throughput measurements may facilitate potential applications such as screening or sorting by mechanical properties and real-time control during production of microfibers.

17.
Proc Natl Acad Sci U S A ; 121(19): e2315168121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683997

ABSTRACT

Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.


Subject(s)
Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Microfluidics/methods , Single-Cell Analysis/methods , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/blood , Phenotype , Cell Line, Tumor , Immunotherapy/methods , Gene Expression Profiling/methods , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/blood , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation
18.
Proc Natl Acad Sci U S A ; 121(37): e2405382121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39231205

ABSTRACT

Stereolithography enables the fabrication of three-dimensional (3D) freeform structures via light-induced polymerization. However, the accumulation of ultraviolet dose within resin trapped in negative spaces, such as microfluidic channels or voids, can result in the unintended closing, referred to as overcuring, of these negative spaces. We report the use of injection continuous liquid interface production to continuously displace resin at risk of overcuring in negative spaces created in previous layers with fresh resin to mitigate the loss of Z-axis resolution. We demonstrate the ability to resolve 50-µm microchannels, breaking the historical relationship between resin properties and negative space resolution. With this approach, we fabricated proof-of-concept 3D free-form microfluidic devices with improved design freedom over device material selection and resulting properties.

19.
Proc Natl Acad Sci U S A ; 121(31): e2404727121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39052829

ABSTRACT

Characterizing unknown viruses is essential for understanding viral ecology and preparing against viral outbreaks. Recovering complete genome sequences from environmental samples remains computationally challenging using metagenomics, especially for low-abundance species with uneven coverage. We present an experimental method for reliably recovering complete viral genomes from complex environmental samples. Individual genomes are encapsulated into droplets and amplified using multiple displacement amplification. A unique gene detection assay, which employs an RNA-based probe and an exonuclease, selectively identifies droplets containing the target viral genome. Labeled droplets are sorted using a microfluidic sorter, and genomes are extracted for sequencing. We demonstrate this method's efficacy by spiking two known viral genomes, Simian virus 40 (SV40, 5,243 bp) and Human Adenovirus 5 (HAd5, 35,938 bp), into a sewage sample with a final abundance in the droplets of around 0.1% and 0.015%, respectively. We achieve 100% recovery of the complete sequence of the spiked-in SV40 genome with uniform coverage distribution. For the larger HAd5 genome, we cover approximately 99.4% of its sequence. Notably, genome recovery is achieved with as few as one sorted droplet, which enables the recovery of any desired genomes in complex environmental samples, regardless of their abundance. This method enables single-genome whole-genome amplification and targeting characterizations of rare viral species and will facilitate our ability to access the mutational profile in single-virus genomes and contribute to an improved understanding of viral ecology.


Subject(s)
Genome, Viral , Simian virus 40 , Genome, Viral/genetics , Simian virus 40/genetics , Simian virus 40/isolation & purification , Metagenomics/methods , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/isolation & purification , Sewage/virology
20.
Proc Natl Acad Sci U S A ; 121(37): e2405342121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39240970

ABSTRACT

Droplet microfluidics has become a very powerful tool in high-throughput screening, including antibody discovery. Screens are usually carried out by physically sorting droplets hosting cells of the desired phenotype, breaking them, recovering the encapsulated cells, and sequencing the paired antibody light and heavy chain genes at the single-cell level. This series of multiple consecutive manipulation steps of rare screening hits is complex and challenging, resulting in a significant loss of clones with the desired phenotype or large fractions of cells with incomplete antibody information. Here, we present fluorescence-activated droplet sequencing, in which droplets showing the desired phenotype are selectively picoinjected with reagents for RT-PCR. Subsequently, light and heavy chain genes are natively paired, fused into a single-chain fragment variant format, and amplified before off-chip transfer and downstream nanopore sequencing. This workflow is sufficiently sensitive for obtaining different paired full-length antibody sequences from as little as five droplets, fulfilling the desired phenotype. Replacing physical sorting by specific sequencing overcomes a general bottleneck in droplet microfluidic screening and should be compatible with many more applications.


Subject(s)
Antibodies , Humans , Microfluidics/methods , High-Throughput Screening Assays/methods , High-Throughput Nucleotide Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL