Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.556
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(7): e2217835120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36757890

ABSTRACT

The amyloid aggregation of alpha-synuclein within the brain is associated with the pathogenesis of Parkinson's disease (PD) and other related synucleinopathies, including multiple system atrophy (MSA). Alpha-synuclein aggregates are a major therapeutic target for treatment of these diseases. We identify two small molecules capable of disassembling preformed alpha-synuclein fibrils. The compounds, termed CNS-11 and CNS-11g, disaggregate recombinant alpha-synuclein fibrils in vitro, prevent the intracellular seeded aggregation of alpha-synuclein fibrils, and mitigate alpha-synuclein fibril cytotoxicity in neuronal cells. Furthermore, we demonstrate that both compounds disassemble fibrils extracted from MSA patient brains and prevent their intracellular seeding. They also reduce in vivo alpha-synuclein aggregates in C. elegans. Both compounds also penetrate brain tissue in mice. A molecular dynamics-based computational model suggests the compounds may exert their disaggregating effects on the N terminus of the fibril core. These compounds appear to be promising therapeutic leads for targeting alpha-synuclein for the treatment of synucleinopathies.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Synucleinopathies , Mice , Animals , alpha-Synuclein/metabolism , Synucleinopathies/pathology , Caenorhabditis elegans/metabolism , Parkinson Disease/pathology , Multiple System Atrophy/pathology , Brain/metabolism , Amyloid/metabolism
2.
Brain ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696728

ABSTRACT

Multiple System Atrophy is characterized pathologically by the accumulation of alpha-synuclein (aSyn) into glial cytoplasmic inclusions (GCIs). The mechanism underlying the formation of GCIs is not well understood. In this study, correlative light and electron microscopy was employed to investigate aSyn pathology in the substantia nigra and putamen of post-mortem multiple system atrophy brain donors. Three distinct types of aSyn immuno-positive inclusions were identified in oligodendrocytes, neurons and dark cells presumed to be dark microglia. Oligodendrocytes contained fibrillar GCIs that were consistently enriched with lysosomes and peroxisomes, supporting the involvement of the autophagy pathway in aSyn aggregation in multiple system atrophy. Neuronal cytoplasmic inclusions exhibited ultrastructural heterogeneity resembling both fibrillar and membranous inclusions, linking multiple systems atrophy and Parkinson's disease. The novel aSyn pathology identified in the dark cells, displayed GCI-like fibrils or non-GCI-like ultrastructures suggesting various stages of aSyn accumulation in these cells. The observation of GCI-like fibrils within dark cells suggests these cells may be an important contributor to the origin or spread of pathological aSyn in multiple system atrophy. Our results suggest a complex interplay between multiple cell types that may underlie the formation of aSyn pathology in multiple system atrophy brain and highlight the need for further investigation into cell-specific disease pathologies in multiple system atrophy.

3.
Neuroimage ; 297: 120701, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38914210

ABSTRACT

Due to a high degree of symptom overlap in the early stages, with movement disorders predominating, Parkinson's disease (PD) and multiple system atrophy (MSA) may exhibit a similar decline in motor areas, yet they differ in their spread throughout the brain, ultimately resulting in two distinct diseases. Drawing upon neuroimaging analyses and altered motor cortex excitability, potential diffusion mechanisms were delved into, and comparisons of correlations across distinct disease groups were conducted in a bid to uncover significant pathological disparities. We recruited thirty-five PD, thirty-seven MSA, and twenty-eight matched controls to conduct clinical assessments, electromyographic recording, and magnetic resonance imaging scanning during the "on medication" state. Patients with neurodegeneration displayed a widespread decrease in electrophysiology in bilateral M1. Brain function in early PD was still in the self-compensatory phase and there was no significant change. MSA patients demonstrated an increase in intra-hemispheric function coupled with a decrease in diffusivity, indicating a reduction in the spread of neural signals. The level of resting motor threshold in healthy aged showed broad correlations with both clinical manifestations and brain circuits related to left M1, which was absent in disease states. Besides, ICF exhibited distinct correlations with functional connections between right M1 and left middle temporal gyrus in all groups. The present study identified subtle differences in the functioning of PD and MSA related to bilateral M1. By combining clinical information, cortical excitability, and neuroimaging intuitively, we attempt to bring light on the potential mechanisms that may underlie the development of neurodegenerative disease.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Humans , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/physiopathology , Male , Female , Middle Aged , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Aged , Magnetic Resonance Imaging/methods , Motor Cortex/diagnostic imaging , Motor Cortex/physiopathology , Electromyography , Neuroimaging/methods
4.
Neurobiol Dis ; 198: 106549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830476

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) and Parkinson's disease (PD) are neurodegenerative disorders characterized by α-synuclein pathology, disrupted iron homeostasis and impaired neurochemical transmission. Considering the critical role of iron in neurotransmitter synthesis and transport, our study aims to identify distinct patterns of whole-brain iron accumulation in MSA and PD, and to elucidate the corresponding neurochemical substrates. METHODS: A total of 122 PD patients, 58 MSA patients and 78 age-, sex-matched health controls underwent multi-echo gradient echo sequences and neurological evaluations. We conducted voxel-wise and regional analyses using quantitative susceptibility mapping to explore MSA or PD-specific alterations in cortical and subcortical iron concentrations. Spatial correlation approaches were employed to examine the topographical alignment of cortical iron accumulation patterns with normative atlases of neurotransmitter receptor and transporter densities. Furthermore, we assessed the associations between the colocalization strength of neurochemical systems and disease severity. RESULTS: MSA patients exhibited increased susceptibility in the striatal, midbrain, cerebellar nuclei, as well as the frontal, temporal, occipital lobes, and anterior cingulate gyrus. In contrast, PD patients displayed elevated iron levels in the left inferior occipital gyrus, precentral gyrus, and substantia nigra. The excessive iron accumulation in MSA or PD correlated with the spatial distribution of cholinergic, noradrenaline, glutamate, serotonin, cannabinoids, and opioid neurotransmitters, and the degree of this alignment was related to motor deficits. CONCLUSIONS: Our findings provide evidence of the interaction between iron accumulation and non-dopamine neurotransmitters in the pathogenesis of MSA and PD, which inspires research on potential targets for pharmacotherapy.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Humans , Multiple System Atrophy/metabolism , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Parkinson Disease/metabolism , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Male , Female , Middle Aged , Aged , Brain/metabolism , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Iron/metabolism , Neurotransmitter Agents/metabolism , Brain Mapping/methods
5.
Neurobiol Dis ; 197: 106535, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761956

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) is a primary oligodendroglial synucleinopathy, characterized by elevated iron burden in early-affected subcortical nuclei. Although neurotoxic effects of brain iron deposition and its relationship with α-synuclein pathology have been demonstrated, the exact role of iron dysregulation in MSA pathogenesis is unknown. Therefore, advancing the understanding of iron dysregulation at the cellular level is critical, especially in relation to α-synuclein cytopathology. METHODS: Iron burden in subcortical and brainstem regions were histologically mapped in human post-mortem brains of 4 MSA-parkinsonian (MSA-P), 4 MSA-cerebellar (MSA-C), and 1 MSA case with both parkinsonian and cerebellar features. We then performed the first cell type-specific evaluation of pathological iron deposition in α-synuclein-affected and -unaffected cells of the globus pallidus, putamen, and the substantia nigra, regions of highest iron concentration, using a combination of iron staining with immunolabelling. Selective regional and cellular vulnerability patterns of iron deposition were compared between disease subtypes. In 7 MSA cases, expression of key iron- and closely related oxygen-homeostatic genes were examined. RESULTS: MSA-P and MSA-C showed different patterns of regional iron burden across the pathology-related systems. We identified subcortical microglia to predominantly accumulate iron, which was more distinct in MSA-P. MSA-C showed relatively heterogenous iron accumulation, with greater or similar deposition in astroglia. Iron deposition was also found outside cellular bodies. Cellular iron burden associated with oligodendrocytic, and not neuronal, α-synuclein cytopathology. Gene expression analysis revealed dysregulation of oxygen homeostatic genes, rather than of cellular iron. Importantly, hierarchal cluster analysis revealed the pattern of cellular vulnerability to iron accumulation, distinctly to α-synuclein pathology load in the subtype-related systems, to distinguish MSA subtypes. CONCLUSIONS: Our comprehensive evaluation of iron deposition in MSA brains identified distinct regional, and for the first time, cellular distribution of iron deposition in MSA-P and MSA-C and revealed cellular vulnerability patterns to iron deposition as a novel neuropathological characteristic that predicts MSA clinical subtypes. Our findings suggest distinct iron-related pathomechanisms in MSA clinical subtypes that are therefore not a consequence of a uniform down-stream pathway to α-synuclein pathology, and inform current efforts in iron chelation therapies at the disease and cellular-specific levels.


Subject(s)
Iron , Multiple System Atrophy , alpha-Synuclein , Humans , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Iron/metabolism , Male , Aged , Female , Middle Aged , alpha-Synuclein/metabolism , Brain/metabolism , Brain/pathology , Aged, 80 and over , Oligodendroglia/metabolism , Oligodendroglia/pathology
6.
Neurobiol Dis ; 195: 106504, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38615913

ABSTRACT

OBJECTIVE: Freezing of gait (FOG), a specific survival-threatening gait impairment, needs to be urgently explored in patients with multiple system atrophy (MSA), which is characterized by rapid progression and death within 10 years of symptom onset. The objective of this study was to explore the topological organisation of both low- and high-order functional networks in patients with MAS and FOG. METHOD: Low-order functional connectivity (LOFC) and high-order functional connectivity FC (HOFC) networks were calculated and further analysed using the graph theory approach in 24 patients with MSA without FOG, 20 patients with FOG, and 25 healthy controls. The relationship between brain activity and the severity of freezing symptoms was investigated in patients with FOG. RESULTS: Regarding global topological properties, patients with FOG exhibited alterations in the whole-brain network, dorsal attention network (DAN), frontoparietal network (FPN), and default network (DMN), compared with patients without FOG. At the node level, patients with FOG showed decreased nodal centralities in sensorimotor network (SMN), DAN, ventral attention network (VAN), FPN, limbic regions, hippocampal network and basal ganglia network (BG), and increased nodal centralities in the FPN, DMN, visual network (VIN) and, cerebellar network. The nodal centralities of the right inferior frontal sulcus, left lateral amygdala and left nucleus accumbens (NAC) were negatively correlated with the FOG severity. CONCLUSION: This study identified a disrupted topology of functional interactions at both low and high levels with extensive alterations in topological properties in MSA patients with FOG, especially those associated with damage to the FPN. These findings offer new insights into the dysfunctional mechanisms of complex networks and suggest potential neuroimaging biomarkers for FOG in patients with MSA.


Subject(s)
Gait Disorders, Neurologic , Magnetic Resonance Imaging , Multiple System Atrophy , Nerve Net , Humans , Multiple System Atrophy/physiopathology , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/complications , Male , Female , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/diagnostic imaging , Middle Aged , Aged , Magnetic Resonance Imaging/methods , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging
7.
Neurobiol Dis ; 198: 106551, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839023

ABSTRACT

Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.


Subject(s)
Inclusion Bodies , Multiple System Atrophy , Nerve Tissue Proteins , Oligodendroglia , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Multiple System Atrophy/genetics , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , Humans , Oligodendroglia/metabolism , Oligodendroglia/pathology , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Inclusion Bodies/genetics , Aged , Female , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Aged, 80 and over
8.
Mod Pathol ; 37(8): 100533, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852813

ABSTRACT

Multiple system atrophy (MSA) is a neurodegenerative disorder with variable disease course and distinct constellations of clinical (cerebellar [MSA-C] or parkinsonism [MSA-P]) and pathological phenotypes, suggestive of distinct α-synuclein (αSyn) strains. Neuropathologically, MSA is characterized by the accumulation of αSyn in oligodendrocytic glial cytoplasmic inclusions (GCI). Using a novel computer-based method, this study quantified the size of GCIs, density of all αSyn pathology, density of only the GCIs, and number of GCIs in MSA cases (n = 20). The putamen and cerebellar white matter were immunostained with the disease-associated 5G4 anti-αSyn antibody. Following digital scanning and image processing, total 5G4-immunoreactive pathology (ie, neuronal, neuritic, and glial) and GCIs were optically dissected for inclusion size and density measurement and then evaluated applying a novel computer-based method using ImageJ. GCI size varied between cases and brain regions (P < .0001), and heterogeneity in the density of all αSyn pathology including the density and number of GCIs were observed between regions and across cases, where MSA-C cases had a significantly higher density of all αSyn pathology in the cerebellar white matter (P = .049). Some region-specific morphologic variables inversely correlated with the age of onset and death, suggestive of an underlying aging-related cellular mechanism. Unsupervised K-means cluster analysis classified MSA cases into 3 distinct groups based on region-specific morphologic variables. In conclusion, we developed a novel computer-based method that is easily accessible, providing a first step to developing artificial intelligence-based evaluation strategies for large scale comparative studies. Our observations on the variability of morphologic variables between brain regions and cases highlight (1) the importance of computer-based approaches to detect features not considered in the routine diagnostic practice, and (2) novel aspects for the identification of previously unrecognized MSA subtypes that do not necessarily reflect the current clinical classification of MSA-C or MSA-P.


Subject(s)
Multiple System Atrophy , alpha-Synuclein , Humans , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , alpha-Synuclein/analysis , alpha-Synuclein/metabolism , Aged , Female , Male , Middle Aged , Aged, 80 and over , Inclusion Bodies/pathology
9.
Neuropathol Appl Neurobiol ; 50(2): e12978, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634242

ABSTRACT

AIMS: Hirano bodies (HBs) are eosinophilic pathological structures with two morphological phenotypes commonly found in the hippocampal CA1 region in Alzheimer's disease (AD). This study evaluated the prevalence and distribution of HBs in AD and other neurodegenerative diseases. METHODS: This cross-sectional study systematically evaluated HBs in a cohort of 193 cases with major neurodegenerative diseases, including AD (n = 91), Lewy body disease (LBD, n = 87), progressive supranuclear palsy (PSP, n = 36), multiple system atrophy (MSA, n = 14) and controls (n = 26). The prevalence, number and morphology of HBs in the stratum lacunosum (HBL) and CA1 pyramidal cell layer were examined. In addition, we investigated the presence of HBs in five additional hippocampal subregions. RESULTS: The morphological types of HBs in CA1 were divided into three, including a newly discovered type, and were evaluated separately, with their morphology confirmed in three dimensions: (1) classic rod-shaped HB (CHB), (2) balloon-shaped HB (BHB) and the newly described (3) string-shaped HB (SHB). The prevalence of each HB type differed between disease groups: Compared with controls, for CHB in AD, AD + LBD, PSP and corticobasal degeneration, for BHB in AD + LBD and PSP, and SHB in AD + LBD and PSP were significantly increased. Regression analysis showed that CHBs were independently associated with higher Braak NFT stage, BHBs with LBD and TDP-43 pathology, SHBs with higher Braak NFT stage, PSP and argyrophilic grain disease and HBLs with MSA. CONCLUSIONS: This study demonstrates that HBs are associated with diverse neurodegenerative diseases and shows that morphological types appear distinctively in various conditions.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Multiple System Atrophy , Supranuclear Palsy, Progressive , Humans , Cross-Sectional Studies , Alzheimer Disease/pathology , Lewy Body Disease/pathology , Supranuclear Palsy, Progressive/pathology
10.
Acta Neuropathol ; 148(1): 4, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995454

ABSTRACT

Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by neuronal loss and gliosis, with oligodendroglial cytoplasmic inclusions (GCIs) containing α-synuclein being the primary pathological hallmark. Clinical presentations of MSA overlap with other parkinsonian disorders, such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP), posing challenges in early diagnosis. Numerous studies have reported alterations in DNA methylation in neurodegenerative diseases, with candidate loci being identified in various parkinsonian disorders including MSA, PD, and PSP. Although MSA and PSP present with substantial white matter pathology, alterations in white matter have also been reported in PD. However, studies comparing the DNA methylation architectures of white matter in these diseases are lacking. We therefore aimed to investigate genome-wide DNA methylation patterns in the frontal lobe white matter of individuals with MSA (n = 17), PD (n = 17), and PSP (n = 16) along with controls (n = 15) using the Illumina EPIC array, to identify shared and disease-specific DNA methylation alterations. Genome-wide DNA methylation profiling of frontal lobe white matter in the three parkinsonian disorders revealed substantial commonalities in DNA methylation alterations in MSA, PD, and PSP. We further used weighted gene correlation network analysis to identify disease-associated co-methylation signatures and identified dysregulation in processes relating to Wnt signaling, signal transduction, endoplasmic reticulum stress, mitochondrial processes, RNA interference, and endosomal transport to be shared between these parkinsonian disorders. Our overall analysis points toward more similarities in DNA methylation patterns between MSA and PD, both synucleinopathies, compared to that between MSA and PD with PSP, which is a tauopathy. Our results also highlight several shared DNA methylation changes and pathways indicative of converging molecular mechanisms in the white matter contributing toward neurodegeneration in all three parkinsonian disorders.


Subject(s)
DNA Methylation , Frontal Lobe , Multiple System Atrophy , Parkinson Disease , Supranuclear Palsy, Progressive , White Matter , Humans , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/pathology , DNA Methylation/genetics , Multiple System Atrophy/genetics , Multiple System Atrophy/pathology , White Matter/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Aged , Female , Male , Frontal Lobe/pathology , Frontal Lobe/metabolism , Middle Aged , Aged, 80 and over
11.
Eur J Nucl Med Mol Imaging ; 51(2): 468-480, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37807003

ABSTRACT

PURPOSE: Multiple system atrophy (MSA) is a rare neurodegenerative disease, often presented with orthostatic hypotension (OH), which is a disabling symptom but has not been very explored. Here, we investigated MSA patients with OH by using positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) and 11C-N-2-carbomethoxy-3-(4-fluorophenyl)-tropane (11C-CFT) for in vivo evaluation of the glucose metabolism and dopaminergic function of the brain. METHODS: Totally, 51 patients with MSA and 20 healthy controls (HC) who underwent 18F-FDG PET/CT were retrospectively enrolled, among which 24 patients also underwent 11C-CFT PET/CT. All patients were divided into MSA-OH(+) and MSA-OH(-) groups. Then, statistical parametric mapping (SPM) method was used to reveal the regional metabolic and dopaminergic characteristics of MSA-OH(+) compared with MSA-OH(-). Moreover, the metabolic networks of MSA-OH(+), MSA-OH(-) and HC groups were also constructed and analyzed based on graph theory to find possible network-level changes in MSA patients with OH. RESULTS: The SPM results showed significant hypometabolism in the pons and right cerebellar tonsil, as well as hypermetabolism in the left parahippocampal gyrus and left superior temporal gyrus in MSA-OH(+) compared with MSA-OH(-). A reduced 11C-CFT uptake in the left caudate was also shown in MSA-OH(+) compared with MSA-OH(-). In the network analysis, significantly reduced local efficiency and clustering coefficient were shown in MSA-OH(+) compared with HC, and decreased nodal centrality in the frontal gyrus was found in MSA-OH(+) compared with MSA-OH(-). CONCLUSION: In this study, the changes in glucose metabolism in the pons, right cerebellar tonsil, left parahippocampal gyrus and left superior temporal gyrus were found closely related to OH in MSA patients. And the decreased presynaptic dopaminergic function in the left caudate may contribute to OH in MSA. Taken together, this study provided in vivo pathophysiologic information on MSA with OH from neuroimaging approach, which is essential for a better understanding of MSA with OH.


Subject(s)
Hypotension, Orthostatic , Multiple System Atrophy , Humans , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/metabolism , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Retrospective Studies , Hypotension, Orthostatic/diagnostic imaging , Positron-Emission Tomography/methods , Glucose/metabolism
12.
Mov Disord ; 39(1): 119-129, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37933745

ABSTRACT

OBJECTIVE: To determine the rates of brain atrophy progression in vivo in patients with multiple system atrophy (MSA). BACKGROUND: Surrogate biomarkers of disease progression are a major unmet need in MSA. Small-scale longitudinal studies in patients with MSA using magnetic resonance imaging (MRI) to assess progression of brain atrophy have produced inconsistent results. In recent years, novel MRI post-processing methods have been developed enabling reliable quantification of brain atrophy in an automated fashion. METHODS: Serial 3D-T1-weighted MRI assessments (baseline and after 1 year of follow-up) of 43 patients with MSA were analyzed and compared to a cohort of early-stage Parkinson's disease (PD) patients and healthy controls (HC). FreeSurfer's longitudinal analysis stream was used to determine the brain atrophy rates in an observer-independent fashion. RESULTS: Mean ages at baseline were 64.4 ± 8.3, 60.0 ± 7.5, and 59.8 ± 9.2 years in MSA, PD patients and HC, respectively. A mean disease duration at baseline of 4.1 ± 2.5 years in MSA patients and 2.3 ± 1.4 years in PD patients was observed. Brain regions chiefly affected by MSA pathology showed progressive atrophy with annual rates of atrophy for the cerebellar cortex, cerebellar white matter, pons, and putamen of -4.24 ± 6.8%, -8.22 ± 8.8%, -4.67 ± 4.9%, and - 4.25 ± 4.9%, respectively. Similar to HC, atrophy rates in PD patients were minimal with values of -0.41% ± 1.8%, -1.47% ± 4.1%, -0.04% ± 1.8%, and -1.54% ± 2.2% for cerebellar cortex, cerebellar white matter, pons, and putamen, respectively. CONCLUSIONS: Patients with MSA show significant brain volume loss over 12 months, and cerebellar, pontine, and putaminal volumes were the most sensitive to change in mid-stage disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Humans , Multiple System Atrophy/pathology , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Atrophy/pathology , Diagnosis, Differential
13.
Mov Disord ; 39(2): 380-390, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37986699

ABSTRACT

BACKGROUND: Mixed pathology is common at autopsy for a number of age-associated neurodegenerative disorders; however, the frequency of comorbid pathologies in multiple system atrophy (MSA) and their clinical correlations are poorly understood. OBJECTIVE: We determined the frequency of comorbid pathologic processes in autopsy-confirmed MSA and assessed their clinical correlates. METHODS: This study included 160 neuropathologically established MSA from the Mayo Clinic brain bank. Clinical information, including age at onset or death, clinical subtype, initial symptoms, antemortem clinical diagnosis, and cognitive dysfunction was collected. We assessed comorbid pathologies including Alzheimer's disease neuropathologic change, Lewy-related pathology, argyrophilic grain disease, age-related τ astrogliopathy, transactive DNA-binding protein 43 pathology, cerebral amyloid angiopathy, and cerebrovascular small vessel disease and examined their clinical impact. RESULTS: The majority of MSA patients (62%) had no significant comorbid pathologies. There was a positive correlation between age at onset or death with the number of comorbid pathologies; however, even in the highest quartile group (average age at death 78 ± 6 years), the average number of comorbid pathologies was <2. Logistic regression analysis revealed that none of the assessed variables, including sex, age at onset, and the presence or absence of each comorbid pathology, were significantly associated with cognitive dysfunction. CONCLUSIONS: The majority of MSA patients do not have comorbid pathologies, even in advanced age, indicating that MSA is unique among neurodegenerative disorders in this regard. There was minimal clinical impact of comorbid pathologies in MSA. These findings warrant focusing on α-synuclein for the treatment strategy for MSA. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Multiple System Atrophy , Humans , Aged , Aged, 80 and over , Multiple System Atrophy/complications , Multiple System Atrophy/epidemiology , Multiple System Atrophy/diagnosis , Alzheimer Disease/metabolism , Brain/pathology , Comorbidity , Cognitive Dysfunction/complications
14.
Mov Disord ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847384

ABSTRACT

BACKGROUND: Multiple system atrophy is a neurodegenerative disease with α-synuclein aggregation in glial cytoplasmic inclusions, leading to dysautonomia, parkinsonism, and cerebellar ataxia. OBJECTIVE: The aim of this study was to validate the accuracy of the International Parkinson and Movement Disorder Society Multiple System Atrophy clinical diagnostic criteria, particularly considering the impact of the newly introduced brain magnetic resonance imaging (MRI) markers. METHODS: Diagnostic accuracy of the clinical diagnostic criteria for multiple system atrophy was estimated retrospectively in autopsy-confirmed patients with multiple system atrophy, Parkinson's disease, progressive supranuclear palsy, and corticobasal degeneration. RESULTS: We identified a total of 240 patients. Sensitivity of the clinically probable criteria was moderate at symptom onset but improved with disease duration (year 1: 9%, year 3: 39%, final ante mortem record: 77%), whereas their specificity remained consistently high (99%-100% throughout). Sensitivity of the clinically established criteria was low during the first 3 years (1%-9%), with mild improvement at the final ante mortem record (22%), whereas specificity remained high (99%-100% throughout). When MRI features were excluded from the clinically established criteria, their sensitivity increased considerably (year 1: 3%, year 3: 22%, final ante mortem record: 48%), and their specificity was not compromised (99%-100% throughout). CONCLUSIONS: The International Parkinson and Movement Disorder Society multiple system atrophy diagnostic criteria showed consistently high specificity and low to moderate sensitivity throughout the disease course. The MRI markers for the clinically established criteria reduced their sensitivity without improving specificity. Combining clinically probable and clinically established criteria, but disregarding MRI features, yielded the best sensitivity with excellent specificity and may be most appropriate to select patients for therapeutic trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

15.
Mov Disord ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101334

ABSTRACT

BACKGROUND: Pain is a frequent yet poorly characterized symptom of multiple system atrophy (MSA). Understanding the factors influencing pain and its burden is crucial for improving the symptomatic treatment and quality of life of MSA individuals. OBJECTIVE: This study aimed at assessing the prevalence, characteristics, and current treatment strategies for pain in MSA. METHODS: A community-based, online survey was conducted from February to May 2023. Invitations were extended to MSA individuals and informal MSA caregivers through patient advocacies and social media. RESULTS: We included 190 persons with MSA and 114 caregivers. Eighty-seven percent of MSA individuals reported pain, which was more prevalent among women (odds ratio [OR]: 6.38 [95% confidence interval, CI: 1.27-32.08], P = 0.025) and low-income groups (OR: 5.02 [95% CI: 1.32-19.08], P = 0.018). Neck and shoulders (58%), back (45%), and legs (45%) were mostly affected. In the neck and shoulders, pain was associated with MSA core features, like orthostatic intolerance (OR: 4.80 [95% CI: 1.92-12.02], P = 0.001) and antecollis (OR: 3.24 [95% CI: 1.54-6.82], P = 0.002). Seventy-six percent of individuals experiencing pain received treatment, mostly nonsteroidal anti-inflammatory drugs (47%), acetaminophen (39%), and opioids (28%). Only 53% of respondents reported at least partial satisfaction with their current pain management. Pain mostly impacted work, household activities, and hobbies of MSA individuals, and caregivers' social activities. CONCLUSIONS: Pain is more prevalent than previously reported in MSA and particularly affects women and low-income groups. Despite its frequency, pain management remains suboptimal, highlighting an urgent therapeutic need, likely entailing an optimized management of MSA core motor and non-motor features. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

16.
Mov Disord ; 39(4): 723-728, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38357858

ABSTRACT

BACKGROUND: The architecture and composition of glial (GCI) and neuronal (NCI) α-synuclein inclusions observed in multiple system atrophy (MSA) remain to be precisely defined to better understand the disease. METHODS: Here, we used stochastic optical reconstruction microscopy (STORM) to characterize the nanoscale organization of glial (GCI) and neuronal (NCI) α-synuclein inclusions in cryopreserved brain sections from MSA patients. RESULTS: STORM revealed a dense cross-linked internal structure of α-synuclein in all GCI and NCI. The internal architecture of hyperphosphorylated α-synuclein (p-αSyn) inclusions was similar in glial and neuronal cells, suggesting a common aggregation mechanism. A similar sequence of p-αSyn stepwise intracellular aggregation was defined in oligodendrocytes and neurons, starting from the perinuclear area and growing inside the cells. Consistent with this hypothesis, we found a higher mitochondrial density in GCI and NCI compared to oligodendrocytes and neurons from unaffected donors (P < 0.01), suggesting an active recruitment of the organelles during the aggregation process. CONCLUSIONS: These first STORM images of GCI and NCI suggest stepwise α-synuclein aggregation in MSA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Inclusion Bodies , Multiple System Atrophy , Neurons , alpha-Synuclein , Humans , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , alpha-Synuclein/metabolism , Inclusion Bodies/pathology , Inclusion Bodies/metabolism , Neurons/metabolism , Neurons/pathology , Female , Aged , Male , Middle Aged , Brain/pathology , Brain/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Oligodendroglia/pathology , Oligodendroglia/metabolism , Microscopy/methods
17.
Mov Disord ; 39(2): 391-399, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38155513

ABSTRACT

BACKGROUND: Neuroinflammation might contribute to the pathogenesis of multiple systemic atrophy (MSA). However, specific alterations in the peripheral inflammatory and immune profiles of patients with MSA remain unclear. OBJECTIVES: To determine the peripheral inflammatory and immune profiles of patients with MSA and their potential value as biomarkers for facilitating clinical diagnosis and monitoring disease severity. METHODS: This cross-sectional study included 235, 240, and 235 patients with MSA, patients with Parkinson's disease (PD), and healthy controls (HCs), respectively. Inflammatory and immune parameters were measured in peripheral blood, differences between groups were assessed, and clusters were analyzed. Associations between the parameters and clinical characteristics of MSA were assessed using Spearman and partial correlation analyses. RESULTS: Significant differences were observed especially in monocytes, neutrophils-to-lymphocyte ratio (NLR) and neutrophils-to-lymphocyte ratio (MPV) between MSA patients and HCs (P < 0.01). Monocytes and uric acid (UA) levels were also significantly different between the MSA and PD patients (P < 0.05). The combination of NLR and MPV distinguished MSA-P patients from HCs (areas under the curve = 0.824). In addition, complement components C4 and C3 were significantly correlated with the Scale Outcomes in PD for Autonomic Symptoms and Wexner scale, whereas immunoglobulin G (IgG) was significantly correlated with scores of Unified Multiple System Atrophy Rating Scale (P < 0.05). CONCLUSIONS: In MSA patients, monocytes, NLR and MPV might serve as potential diagnostic biomarkers, whereas MLR, C3, C4, and IgG significantly correlate with disease severity. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Humans , Multiple System Atrophy/diagnosis , Cross-Sectional Studies , Biomarkers , Immunoglobulin G
18.
Mov Disord ; 39(1): 130-140, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013497

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) clinically manifests with either predominant nigrostriatal or cerebellopontine degeneration. This corresponds to two different phenotypes, one with predominant Parkinson's symptoms (MSA-P [multiple system atrophy-parkinsonian subtype]) and one with predominant cerebellar deficits (MSA-C [multiple system atrophy-cerebellar subtype]). Both nigrostriatal and cerebellar degeneration can lead to impaired dexterity, which is a frequent cause of disability in MSA. OBJECTIVE: The aim was to disentangle the contribution of nigrostriatal and cerebellar degeneration to impaired dexterity in both subtypes of MSA. METHODS: We thus investigated nigrostriatal and cerebellopontine integrity using diffusion microstructure imaging in 47 patients with MSA-P and 17 patients with MSA-C compared to 31 healthy controls (HC). Dexterity was assessed using the 9-Hole Peg Board (9HPB) performance. RESULTS: Nigrostriatal degeneration, represented by the loss of cells and neurites, leading to a larger free-fluid compartment, was present in MSA-P and MSA-C when compared to HCs. Whereas no intergroup differences were observed between the MSAs in the substantia nigra, MSA-P showed more pronounced putaminal degeneration than MSA-C. In contrast, a cerebellopontine axonal degeneration was observed in MSA-P and MSA-C, with stronger effects in MSA-C. Interestingly, the degeneration of cerebellopontine fibers is associated with impaired dexterity in both subtypes, whereas no association was observed with nigrostriatal degeneration. CONCLUSION: Cerebellar dysfunction contributes to impaired dexterity not only in MSA-C but also in MSA-P and may be a promising biomarker for disease staging. In contrast, no significant association was observed with nigrostriatal dysfunction. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Humans , Multiple System Atrophy/complications , Multiple System Atrophy/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Cerebellum/diagnostic imaging , Substantia Nigra/diagnostic imaging
19.
FASEB J ; 37(7): e23017, 2023 07.
Article in English | MEDLINE | ID: mdl-37272890

ABSTRACT

Cell-to-cell spreading of misfolded α-synuclein (αSYN) is supposed to play a key role in the pathological progression of Parkinson's disease (PD) and other synucleinopathies. Receptor-mediated endocytosis has been shown to contributes to the uptake of αSYN in both neuronal and glial cells. To determine the receptor involved in αSYN endocytosis on the cell surface, we performed unbiased, and comprehensive screening using a membrane protein library of the mouse whole brain combined with affinity chromatography and mass spectrometry. The candidate molecules hit in the initial screening were validated by co-immunoprecipitation using cultured cells; sortilin, a vacuolar protein sorting 10 protein family sorting receptor, exhibited the strongest binding to αSYN fibrils. Notably, the intracellular uptake of fibrillar αSYN was slightly but significantly altered, depending on the expression level of sortilin on the cell surface, and time-lapse image analyses revealed the concomitant internalization and endosomal sorting of αSYN fibrils and sortilin. Domain deletion in the extracellular portion of sortilin revealed that the ten conserved cysteines (10CC) segment of sortilin was involved in the binding and endocytosis of fibrillar αSYN; importantly, pretreatment with a 10CC domain-specific antibody significantly hindered αSYN fibril uptake. The presence of sortilin in the core structure of Lewy bodies and glial cytoplasmic inclusions in the brain of synucleinopathy patients was confirmed via immunohistochemistry, and the expression level of sortilin in mesencephalic dopaminergic neurons may be altered with disease progression. These results provide compelling evidence that sortilin acts as an endocytic receptor for pathogenic form of αSYN, and yields important insight for the development of disease-modifying targets for synucleinopathies.


Subject(s)
Adaptor Proteins, Vesicular Transport , Parkinson Disease , Synucleinopathies , Animals , Mice , Adaptor Proteins, Vesicular Transport/metabolism , alpha-Synuclein/metabolism , Carrier Proteins , Parkinson Disease/metabolism
20.
Cerebellum ; 23(4): 1642-1650, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38227270

ABSTRACT

BACKGROUND: Patients with Multiple System Atrophy (MSA) frequently report non-motor symptoms, and several research groups have highlighted this. OBJECTIVE: We systematically searched for and reviewed papers assessing prevalence of non-motor symptoms (NMS) in MSA patients as reported in the scientific literature. METHODS: We performed a systematic review of studies of subjects with MSA (involving > 10 patients) who were assessed for NMS, published in the English literature in PUBMED and EMBASE databases from 1947-2022. RESULTS: 23 research papers, with data from 2648 clinically diagnosed and 171 pathologically verified cases of MSA were included, along with 238 controls. Mean age for MSA cases was 61.3 (9.2) years, mean disease duration 3.6 (2.7) years. 57.9% were male. Our analysis showed that the prevalence of cognitive issues in MSA varied widely (between 15-100%); dementia per se was uncommon, but assessment in advanced stages of MSA is impacted by unintelligible speech (which may be noted in a quarter of cases). The prevalence of depressive symptoms in MSA was between 44-88%. Sleep disturbances were reported by 17-89%, with REM-sleep behaviour disorder (RBD) rates as high as 75%. Pain was reported by 40-47% of patients: rheumatic or musculoskeletal sources of pain being commonest. Fatigue was reported by 29-60% of patients. Symptoms of autonomic failure in MSA were seen in 34-96.5% patients at baseline. CONCLUSION: In routine clinical practice, NMS in MSA are under-recognised by clinicians. These impact hugely on patient quality of life and contribute to their overall morbidity. A methodical ascertainment of these complaints will address an unmet need, and lead to a more holistic approach of care for individuals with MSA.


Subject(s)
Multiple System Atrophy , Multiple System Atrophy/epidemiology , Multiple System Atrophy/diagnosis , Humans , Prevalence , Sleep Wake Disorders/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL