ABSTRACT
Ulcerative colitis (UC) is a chronic or relapsing inflammatory disease with limited therapeutic outcomes. Pterostilbene (PSB) is a polyphenol-based anti-oxidant that has received extensive interest for its intrinsic anti-inflammatory and anti-oxidative activities. This work aims to develop a reactive oxygen species (ROS)-responsive, folic acid (FA)-functionalized nanoparticle (NP) for efficient PSB delivery to treat UC. The resulting PSB@NP-FA had a nano-scaled diameter of 231 nm and a spherical shape. With ROS-responsive release and ROS-scavenging properties, PSB@NP could effectively scavenge H2O2, thereby protecting cells from H2O2-induced oxidative damage. After FA modification, the resulting PSB@NP-FA could be internalized by RAW 264.7 and Colon-26 cells efficiently and preferentially localized to the inflamed colon. In dextran sulfate sodium (DSS)-induced colitis models, PSB@NP-FA showed a prominent ROS-scavenging capacity and anti-inflammatory activity, therefore relieving murine colitis effectively. Mechanism results suggested that PSB@NP-FA ameliorated colitis by regulating dendritic cells (DCs), promoting macrophage polarization, and regulating T cell infiltration. Both innate and adaptive immunity were involved. More importantly, the combination of the PSB and dexamethasone (DEX) enhanced the therapeutic efficacy of colitis. This ROS-responsive and ROS-scavenging nanocarrier represents an alternative therapeutic approach to UC. It can also be used as an enhancer for classic anti-inflammatory drugs.
Subject(s)
Colitis, Ulcerative , Colitis , Mice , Animals , Reactive Oxygen Species , Hydrogen Peroxide/pharmacology , Disease Models, Animal , Colitis/chemically induced , Colitis/drug therapy , Colon , Colitis, Ulcerative/chemically induced , Adaptive Immunity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Dextran Sulfate/adverse effectsABSTRACT
Inflammatory bowel disease (IBD) is a chronic, multifactorial and inflammatory disease occurring in the colon tract. Bioactive polysaccharides from natural resources have attracted extensive attention due to their safety, accessibility and good bioactivities. In recent years, a variety of natural bioactive polysaccharides have been proven to possess anti-inflammatory effects on treating acute colitis. The objective of this review was to give an up-to-date review on the anti-inflammatory effects and mechanisms of natural polysaccharides on acute colitis. The anti-inflammatory effects of natural polysaccharides on acute colitis concerning clinical symptoms amelioration, colon tissue repairment, anti-oxidative stress alleviation, anti-inflammation, immune regulation, and gut microbiota modulation were comprehensively summarized. In addition, inducible murine models for assessing the anti-inflammatory effects of natural polysaccharides on acute colitis were also concluded. This review will offer the comprehensive understanding of anti-inflammatory mechanisms of natural polysaccharides in acute colitis, and render theoretical basis for the development and application of natural polysaccharides in drug and functional food.
Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Colitis/drug therapy , Inflammatory Bowel Diseases/drug therapy , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disease Models, AnimalABSTRACT
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal intestinal tract and has characteristic hypertrophic adipose changes observed in the mesentery. To better understand the role of the mesentery in the pathophysiology of Crohn's disease (CD), we evaluated the immunomodulatory potential of mesenchymal stem cells (MSCs) and their secreted extracellular vesicles (EVs) derived from Crohn's patients. MSCs and EVs were isolated from the mesentery and subcutaneous tissues of CD patients and healthy individuals subcutaneous tissues, and were analysed for differentiation, cytokine expression, self-renewal and proliferation. The varying capacity of these tissue-derived MSCs and EVs to attenuate T-cell activation was measured in in vitro and an in vivo murine model. RNA sequencing of inflamed Crohn's disease mesentery tissue revealed an enrichment of T-cell activation compared to non-inflamed subcutaneous tissue. MSCs and MSC-derived EVs isolated from Crohn's mesentery lose their ability to attenuate DSS-induced colitis compared to subcutaneous tissue-derived cell or EV therapy. We found that treatment with subcutaneous isolated MSCs and their EV product compared to Crohn's mesentery MSCs or EVs, the inhibition of T-cell proliferation and IFN-γ, IL-17a production increased, suggesting a non-inflamed microenvironment allows for T-cell inhibition by MSCs/EVs. Our results demonstrate that Crohn's patient-derived diseased mesentery tissue MSCs lose their immunosuppressive capacity in the treatment of colitis by distinct regulation of pathogenic T-cell responses and/or T-cell infiltration into the colon.
Subject(s)
Colitis , Crohn Disease , Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Colitis/pathology , Crohn Disease/pathology , Crohn Disease/therapy , Cytokines/metabolism , Extracellular Vesicles/metabolism , Humans , Interleukin-17/metabolism , Mesenchymal Stem Cells/metabolism , Mesentery/metabolism , Mesentery/pathology , Mice , T-Lymphocytes/metabolismABSTRACT
Statins, widely prescribed as cholesterol-lowering drugs, have recently been extensively studied for their pleiotropic effects on immune systems, especially their beneficial effects on autoimmune and inflammatory disorders. However, the mechanism of statin-induced immunosuppression is far from understood. Here, we found that atorvastatin promoted the expansion of myeloid-derived suppressor cells (MDSCs) both in vitro and in vivo. Atorvastatin-derived MDSCs suppressed T-cell responses by nitric oxide production. Addition of mevalonate, a downstream metabolite of 3-hydroxy-3-methylglutaryl coenzyme A reductase, almost completely abrogated the effect of atorvastatin on MDSCs, indicating that the mevalonate pathway was involved. Along with the amelioration of dextran sodium sulphate (DSS) -induced murine acute and chronic colitis, we observed a higher MDSC level both in spleen and intestine tissue compared with that from DSS control mice. More importantly, transfer of atorvastatin-derived MDSCs attenuated DSS acute colitis and T-cell transfer of chronic colitis. Hence, our data suggest that the expansion of MDSCs induced by statins may exert a beneficial effect on autoimmune diseases. In summary, our study provides a novel potential mechanism for statins-based treatment in inflammatory bowel disease and perhaps other autoimmune diseases.
Subject(s)
Anti-Inflammatory Agents/therapeutic use , Atorvastatin/therapeutic use , Colitis/drug therapy , Myeloid-Derived Suppressor Cells/drug effects , T-Lymphocytes/immunology , Animals , Cells, Cultured , Colitis/chemically induced , Dextran Sulfate , Humans , Immunosuppression Therapy , Mevalonic Acid/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/physiology , Nitric Oxide/metabolismABSTRACT
Nimbolide is a limonoid extracted from neem tree (Azadirachta indica) that has antiinflammatory properties. The effect of nimbolide on the nuclear factor-kappa B (NF-κB) pathway in intestinal epithelial cells (IECs), macrophages and in murine colitis models was investigated. The IEC COLO 205, the murine macrophage cell line RAW 264.7, and peritoneal macrophages from interleukin-10-deficient (IL-10-/- ) mice were preconditioned with nimbolide and then stimulated with tumor necrosis factor-α (TNF-α) or lipopolysaccharide. Dextran sulfate sodium-induced acute colitis model and chronic colitis model in IL-10-/- mice were used for in vivo experiments. Nimbolide significantly suppressed the expression of inflammatory cytokines (IL-6, IL-8, IL-12, and TNF-α) and inhibited the phosphorylation of IκBα and the DNA-binding affinity of NF-κB in IECs and macrophages. Nimbolide ameliorated weight loss, colon shortening, disease activity index score, and histologic scores in dextran sulfate sodium colitis. It also improved histopathologic scores in the chronic colitis of IL-10-/- mice. Staining for phosphorylated IκBα was significantly decreased in the colon tissue after treatment with nimbolide in both models. Nimbolide inhibits NF-κB signaling in IECs and macrophages and ameliorates experimental colitis in mice. These results suggest nimbolide could be a potentially new treatment for inflammatory bowel disease. Copyright © 2016 John Wiley & Sons, Ltd.
Subject(s)
Colitis/chemically induced , Herbal Medicine/methods , Inflammatory Bowel Diseases/drug therapy , Limonins/chemistry , Macrophages/metabolism , NF-kappa B/metabolism , Animals , Colitis/pathology , Epithelial Cells/drug effects , Inflammatory Bowel Diseases/pathology , Mice , Mice, Inbred C57BLABSTRACT
Inflammatory bowel diseases (IBDs) are recurrent intestinal pathologies characterized by a compromised epithelial barrier and an exaggerated immune activation. Mediators of immune cell infiltration may represent new therapeutic opportunities. Metallothioneins (MTs) are stress-responsive proteins with immune-modulating functions. Metallothioneins have been linked to IBDs, but their role in intestinal inflammation is inconclusive. We investigated MT expression in colonic biopsies from IBDs and acute infectious colitis patients and healthy controls and evaluated MT's role in experimental colitis using MT knockout mice and anti-MT antibodies. Antibody potential to target extracellular MT and its mechanism was tested in vitro. Biopsies of patients with active colitis showed infiltration of MT-positive cells in a pattern that correlated with the grade of inflammation. MT knockout mice displayed less severe acute dextran sulphate sodium (DSS)-induced colitis compared to congenic wild-type mice based on survival, weight loss, colon length, histological inflammation and leukocyte infiltration. Chronic DSS-colitis confirmed that Mt1 and Mt2 gene disruption enhances clinical outcome. Blockade of extracellular MT with antibodies reduced F4/80-positive macrophage infiltration in DSS- and trinitrobenzene sulphonic acid-colitis, with a tendency towards a better outcome. Whole-body single-photon emission computer tomography of mice injected with radioactive anti-MT antibodies showed antibody accumulation in the colon during colitis and clearance during recovery. Necrotic and not apoptotic cell death resulted in western blot MT detection in HT29 cell supernatant. In a Boyden chamber migration assay, leukocyte attraction towards the necrotic cell supernatant could be abolished with anti-MT antibody, indicating the chemotactic potential of endogenous released MT. Our results show that human colitis is associated with infiltration of MT-positive inflammatory cells. Since antibody blockade of extracellular MT can reduce colitis in mice, MT may act as a danger signal and may represent a novel target for reducing leukocyte infiltration and inflammation in IBD patients.
Subject(s)
Colitis/metabolism , Colon/metabolism , Metallothionein/metabolism , Signal Transduction , Acute Disease , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies/pharmacology , Apoptosis , Biopsy , Case-Control Studies , Chemotaxis, Leukocyte , Chronic Disease , Colitis/chemically induced , Colitis/genetics , Colitis/immunology , Colitis/pathology , Colitis/prevention & control , Colon/drug effects , Colon/immunology , Colon/pathology , Dextran Sulfate , Disease Models, Animal , Female , HT29 Cells , Humans , Macrophages/immunology , Macrophages/metabolism , Male , Metallothionein/antagonists & inhibitors , Metallothionein/deficiency , Metallothionein/genetics , Metallothionein/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Necrosis , Severity of Illness Index , Time Factors , Trinitrobenzenesulfonic Acid , Young AdultABSTRACT
A novel Gram-negative, obligate anaerobe, non-motile, flagella-lacking, catalase- and oxidase-negative, coccobacilli-shaped bacterial strain designated AGMB02718T was isolated from swine feces. The 16S rRNA gene analysis indicated that strain AGMB02718T belonged to the genus Mesosutterella with the highest similarity to M. multiformis 4NBBH2T (= DSM 106860T) (sequence similarity of 96.2%), forming a distinct phylogenetic lineage. Its growth occurred at 25-45°C (optimal 37°C) and in 0.5-1% NaCl (optimal 0.5%). Strain AGMB02718T was asaccharolytic and contained menaquinone 6 (MK-6) and methylmenaquinone 6 (MMK-6) as the predominant respiratory quinones. The major cellular fatty acids in the isolate were C18:1ω9c and C16:0. Based on the whole-genome sequencing analysis, strain AGMB02718T had a 2,606,253 bp circular chromosome with a G + C content of 62.2%. The average nucleotide identity value between strain AGMB02718T and M. multiformis 4NBBH2T was 72.1%, while the digital DNA-DNA hybridization value was 20.9%. Interestingly, genome analysis suggested that strain AGMB02718T possessed a low-toxicity lipopolysaccharide (LPS) because the genome of the isolate does not include lpxJ and lpxM genes for Kdo2-Lipid A (KLA) assembly, which confers high toxicity to LPS. Moreover, in vitro macrophage stimulation assay confirmed that AGMB02718T produced LPS with low toxicity. Because the low-toxicity LPS produced by the Sutterellaceae family is involved in regulating host immunity and low-toxicity LPS-producing strains can help maintain host immune homeostasis, we evaluated the anti-inflammatory activity of strain AGMB02718T against inflammatory bowel disease (IBD). As a result, strain AGMB02718T was able to prevent the inflammatory response in a dextran sulfate sodium (DSS)-induced colitis model. Therefore, this strain represents a novel species of Mesosutterella that has a protective effect against DSS-induced colitis, and the proposed name is Mesosutterella faecium sp. nov. The type strain is AGMB02718T (=GDMCC 1.2717T = KCTC 25541T).
ABSTRACT
Objective: Probiotics are beneficial to the intestinal barrier, but few studies have investigated probiotics from giant pandas. This study aims to explore the preventive effects of giant panda-derived Clostridium butyricum on dextran sodium sulfate (DSS)-induced colitis in mice. Methods: Clostridium butyricum was administered to mice 14 days before administering DSS treatment to induce enteritis. Results: Clostridium butyricum B14 could more effectively prevent colitis in mice than C. butyricum B13. C. butyricum B14 protected the mouse colon by decreasing the histology index and serum interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels, which improved intestinal inflammation-related symptoms. In addition, the treatment led to the regulation of the expression of Tifa, Igkv12-89, and Nr1d1, which in turn inhibited immune pathways. The expression of Muc4, Lama3, Cldn4, Cldn3, Ocln, Zo1, Zo2, and Snai is related the intestinal mucosal barrier. 16S sequencing shows that the C. butyricum B14 significantly increased the abundance of certain intestinal probiotics. Overall, C. butyricum B14 exerted a preventive effect on colitis in mice by inhibiting immune responses, enhancing the intestinal barrier and increasing the abundance of probiotic species. Thus, C. butyricum B14 administration helps regulate the balance of the intestinal microecology. It can suppress immune pathways and enhance barrier-protective proteins.
ABSTRACT
PURPOSE: Inflammatory bowel disease (IBD) can be imaged with positron emission tomography (PET), but existing PET radiopharmaceuticals have limited diagnostic accuracy. Vascular adhesion protein-1 (VAP-1) is an endothelial cell surface molecule that controls leukocyte extravasation into sites of inflammation. However, the role of inflammation-induced VAP-1 expression in IBD is still unclear. Therefore, this study investigated the utility of VAP-1-targeted [68Ga]Ga-DOTA-Siglec-9 positron emission tomography/computed tomography (PET/CT) for assessing inflammation in two mouse models of IBD. PROCEDURES: Studies were performed using K8-/- mice that develop a chronic colitis-phenotype and C57Bl/6NCrl mice with acute intestinal inflammation chemically-induced using 2.5% dextran sodium sulfate (DSS) in drinking water. In both diseased and control mice, uptake of the VAP-1-targeting peptide [68Ga]Ga-DOTA-Siglec-9 was assessed in intestinal regions of interest using in vivo PET/CT, after which ex vivo gamma counting, digital autoradiography, and histopathological analyses were performed. Immunofluorescence staining was performed to determine VAP-1-expression in the intestine, including in samples from patients with ulcerative colitis. RESULTS: Intestinal inflammation could be visualized by [68Ga]Ga-DOTA-Siglec-9 PET/CT in two murine models of IBD. In both models, the in vivo PET/CT and ex vivo studies of [68Ga]Ga-DOTA-Siglec-9 uptake were significantly higher than in control mice. The in vivo uptake was increased on average 1.4-fold in the DSS model and 2.0-fold in the K8-/- model. Immunofluorescence staining revealed strong expression of VAP-1 in the inflamed intestines of both mice and patients. CONCLUSIONS: This study suggests that the VAP-1-targeting [68Ga]Ga-DOTA-Siglec-9 PET tracer is a promising tool for non-invasive imaging of intestinal inflammation. Future studies in patients with IBD and evaluation of the potential value of [68Ga]Ga-DOTA-Siglec-9 in diagnosis and monitoring of the disease are warranted.
Subject(s)
Heterocyclic Compounds, 1-Ring , Inflammatory Bowel Diseases , Positron Emission Tomography Computed Tomography , Humans , Mice , Animals , Positron Emission Tomography Computed Tomography/methods , Gallium Radioisotopes/chemistry , Disease Models, Animal , Positron-Emission Tomography/methods , Inflammation , Sialic Acid Binding Immunoglobulin-like Lectins/chemistry , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/pharmacologyABSTRACT
The uncontrolled abnormal intestinal immune responses play important role in eliciting inflammatory bowel disease (IBD), yet the molecular events regulating intestinal inflammation during IBD remain poorly understood. Here, we describe an endogenous, homeostatic pattern that controls inflammatory responses in experimental murine colitis. We show that Spink7 (serine peptidase inhibitor, kazal type 7), the ortholog of human SPINK7, is significantly upregulated in dextran sodium sulfate (DSS)-induced murine colitis model. Spink7-deficient mice showed highly susceptible to experimental colitis characterized by enhanced weight loss, shorter colon length, higher disease activity index and increased colonic tissue destruction. Bone marrow reconstitution experiments demonstrated that expression of Spink7 in the immune compartment makes main contribution to its protective role in colitis. What's more, neutrophils are the primary sources of Spink7 in experimental murine colitis. Loss of Spink7 leads to augmented productions of multiple chemokines and cytokines in colitis. In summary, this study identifies neutrophils-derived endogenous Spink7-mediated control of chemokines/cytokines production as a molecular mechanism contributing to inflammation resolution during colitis.
Subject(s)
Chemokines/metabolism , Colitis/prevention & control , Cytokines/metabolism , Dextran Sulfate/toxicity , Neutrophils/metabolism , Serine Peptidase Inhibitors, Kazal Type/physiology , Serine Proteinase Inhibitors/pharmacology , Animals , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Mice , Mice, Inbred C57BL , Mice, KnockoutABSTRACT
BACKGROUND: Mesenchymal stem cells (MSCs) are a well-established immunomodulatory agent which can also promote tissue repair and regeneration. Recent studies have demonstrated MSCs as a novel therapeutic for inflammatory bowel disease (IBD), a chronic idiopathic inflammatory disorder of the gastrointestinal tract. However, the precise role of MSCs in regulating immune responses is controversial, and its significance in the pathogenesis remains IBD undefined. In addition, MSCs' acellular product, extracellular vesicles (EVs), may also play an important role in the armamentarium of therapeutics, but how EVs compare to MSCs remains unknown due to the lack of side-by-side comparative investigation. We herein compared MSCs and MSC-derived EVs for the treatment of IBD using a DSS-induced colitis model. METHODS: A DSS-induced colitis model was used. At day 4, mice received adipose-derived MSCs, MSC-derived EVs, or placebo. Weight loss, stool consistency, and hematochezia was charted. At day 8, murine colons were harvested, histologic analysis performed, and serum/tissue cytokine analysis conducted. RESULTS: MSCs and EVs demonstrated equivalent immunosuppressive function in DSS-treated mice through decreased colonic lymphocyte infiltration and attenuated disease severity after both MSC and EV treatment. Furthermore, both MSCs and EVs have an equivalent ability to inhibit inflammation in the DSS colitis model by inhibiting JAK, JNK 1/2, and STAT3 signaling. CONCLUSIONS: These results suggest that (i) both MSCs and EVs are effective therapeutic candidates for a DSS-induced mouse colitis model, (ii) MSCs and EVs have similar immunosuppressive and anti-inflammatory functions, and (iii) EVs may present a novel future therapeutic for the treatment of IBD.
Subject(s)
Colitis , Extracellular Vesicles , Inflammatory Bowel Diseases , Mesenchymal Stem Cells , Animals , Colitis/chemically induced , Colitis/therapy , Cytokines , Inflammatory Bowel Diseases/therapy , MiceABSTRACT
AIM: To develop IL-18 peptide-based virus-like particle vaccines that elicit autoantibodies against IL-18 and to evaluate the in vivo effects of the vaccines in murine colitis. METHODS: Recombinant IL-18 vaccines were constructed, and the effects of the vaccines were evaluated in trinitrobenzene sulfonic acid-induced acute and chronic colitis in mice. RESULTS: Two murine IL-18 peptide-based vaccines (A and D) were developed, which induced relative long-lasting specific antibodies against IL-18. Vaccine-immunized mouse antisera could partially block IL-18-induced IFN-γ production in vitro. Mice receiving vaccine D, not vaccine A, had a significant decrease in intestinal inflammation, collagen deposition and pro-inflammatory cytokine levels in colon tissue. CONCLUSION: IL-18 vaccine may provide a potential therapeutic approach in the treatment of Crohn's disease.
ABSTRACT
Necroptosis, a novel form of programmed cell death, was recently shown to be strongly associated with intestinal inflammation in mice and in pediatric patients with inflammatory bowel disease (IBD). Persistent inflammation of the colon is an important risk factor for colorectal cancer. Necrostatin-1 (Nec-1), known as a specific inhibitor of necroptosis, through preventing the receptor-interacting protein (RIP) 1 and RIP3 interaction. In the present study, the anti-inflammatory and antitumorigenic efficacy of necrostatin-1 was studied in mouse models of colitis and colitis-associated cancer (CAC). We found that in acute dextran sulfate sodium (DSS)-induced colitis, treatment with necrostatin-1 significantly suppressed colitis symptoms in mice, including weight loss, colon shortening, colonic mucosa damage and severity, and excessive production of interleukin-6. Necrostatin-1 administration inhibited the upregulation of RIP1 and RIP3 and enhanced the expression of caspase-8 in DSS-induced colitis. In addition, the anti-inflammatory effect of necrostatin-1 was confirmed by in vitro analyses. Necrostatin-1 treatment reduced the production of proinflammatory cytokine and extracellular HMGB1 release in HT-29 cells in active necroptosis. Furthermore, In a mouse model of colitis-associated tumorigenesis, necrostatin-1 administration significantly suppressed tumor growth and development through inhibiting JNK/c-Jun signaling. Taken together, these findings suggest that necrostatin-1 might be a promising therapeutic option for the treatment of colitis-associated colorectal cancer in patients with IBD.
ABSTRACT
The understanding of the intestinal inflammation occurring in the inflammatory bowel diseases (IBD) has been immeasurably advanced by the development of the now numerous murine models of intestinal inflammation. The usefulness of this research tool in IBD studies has been enabled by our improved knowledge of mucosal immunity and thus our improved ability to interpret the complex responses of mice with various causes of colitis; in addition, it has been powered by the availability of models in which the mice have specific genetic and/or immunologic defects that can be related to the origin of the inflammation. Finally, and more recently, it has been enhanced by our newly acquired ability to define the intestinal microbiome under various conditions and thus to understand how intestinal microorganisms impact on inflammation. In this brief review of murine models of intestinal inflammation we focus mainly on the most often used models that are, not incidentally, also the models that have yielded major insights into IBD pathogenesis.
ABSTRACT
AIMS: Ursolic acid (UA), a natural pentacyclic triterpenoid acid, has been reported to show immunomodulatory activity. This study investigated the effects of UA on nuclear factor-kappa B (NF-κB) signaling in cells and experimental murine colitis. MAIN METHODS: Human intestinal epithelial cells (IECs) COLO 205 and peritoneal macrophages from IL-10-deficient (IL-10(-/-)) mice were pretreated with UA and then stimulated with tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS), respectively. The expression of pro-inflammatory cytokines was determined by real-time RT-PCR and ELISA. The effect of UA on NF-κB signaling was examined by immunoblot analysis to detect IκBα phosphorylation/degradation and electrophoretic mobility shift assay to assess the DNA binding activity of NF-κB. For in vivo studies, dextran sulfate sodium (DSS)-induced acute colitis in C57BL/6 wild-type mice and chronic colitis in IL-10(-/-) mice were treated with or without UA. Colitis was quantified by histopathologic evaluation. Immunohistochemical staining for phosphorylated IκBα was performed in the colonic tissue. KEY FINDINGS: UA significantly inhibited the production of pro-inflammatory cytokines, IκBα phosphorylation/degradation and NF-κB DNA binding activity in both IEC and IL-10(-/-) peritoneal macrophages stimulated with TNF-α and LPS, respectively. UA significantly reduced the severity of DSS-induced murine colitis, as assessed by the disease activity index, colon length, and histopathology. UA also significantly ameliorated the severity of colitis in IL-10(-/-) mice. Furthermore, UA suppressed IκBα phosphorylation in the colonic tissue. SIGNIFICANCE: UA inhibits NF-κB activation in both IECs and macrophages, and attenuates experimental murine colitis. These results suggest that UA is a potential therapeutic agent for inflammatory bowel disease.
Subject(s)
Colitis/drug therapy , Interleukin-10/genetics , Intestinal Mucosa/drug effects , NF-kappa B/metabolism , Triterpenes/pharmacology , Animals , Cell Line , Colitis/physiopathology , Cytokines/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , I-kappa B Proteins/metabolism , Intestinal Mucosa/pathology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-KappaB Inhibitor alpha , Phosphorylation/drug effects , Severity of Illness Index , Signal Transduction/drug effects , Ursolic AcidABSTRACT
UNLABELLED: In patients with inflammatory bowel disease (IBD) and in murine IBD models, mucosal disease activity is routinely assessed by endoscopy and histologic evaluation. This information is valuable for monitoring treatment response, with mucosal healing being a major treatment goal. The aim of this study was to evaluate the translational potential of noninvasive (18)F-FDG PET/CT for the assessment of mucosal damage in murine dextran sodium sulfate (DSS) colitis and human IBD. METHODS: After induction of DSS colitis, (18)F-FDG uptake was serially assessed from colonic volumes of interest defined on PET/CT scans and intraindividually correlated to histologic findings and to infiltrating cell types. In addition, (18)F-FDG PET/CT scans of 25 Crohn disease patients were analyzed, and colonic (18)F-FDG uptake was correlated to endoscopically assessed damage. RESULTS: At days 4 and 7 after DSS induction, colonic (18)F-FDG uptake was significantly increased, with a distinct peak in the medial colon. (18)F-FDG uptake strongly correlated with histologic epithelial damage. Additionally, (18)F-FDG uptake increased in the bone marrow in the course of the disease, correlating with an increase in intestinal (18)F-FDG uptake. Histology and fluorescence-activated cell sorting analysis of the bone marrow of DSS mice revealed an increased number of immature neutrophils, whereas mucosal polymerase chain reaction suggested a correlation of (18)F-FDG uptake to T cell infiltration. In accordance with the results of (18)F-FDG PET/CT in DSS colitis, an increased (18)F-FDG uptake was found in 87% of deep mucosal ulcerations in IBD patients, whereas mild endoscopic lesions were detected only by (18)F-FDG PET/CT in about 50% of patients assessed. CONCLUSION: (18)F-FDG PET/CT is a noninvasive method for evaluation of both experimental colitis and Crohn disease patients and thereby offers promising translational potential.
Subject(s)
Colitis/diagnostic imaging , Fluorodeoxyglucose F18 , Multimodal Imaging , Positron-Emission Tomography , Tomography, X-Ray Computed , Animals , Colitis/chemically induced , Colitis/immunology , Dextran Sulfate/adverse effects , Endoscopy, Gastrointestinal , Granulocytes/immunology , Humans , Mice , Mice, Inbred C57BLABSTRACT
MDSCs, a heterogeneous population of cells that expand during many pathogenic conditions, have remarkable abilities to suppress T cell responses. Their role in murine colitis, induced by TNBS and therapeutic application, remains unclear. Murine colitis was induced through intrarectally administrating TNBS, twice. MDSCs in spleen and colonic LPMCs were identified using flow cytometric analysis. In adoptive transfer, MDSCs were isolated from spleen after TNBS challenges by using microbeads or generated in vitro by coculturing bone marrow cells with HSCs and then transferred into naïve mice. Two hours later, mice were then challenged with TNBS, once/week for 2 weeks. The mice were killed four days after the second TNBS delivery, and intestinal inflammation and cytokine levels and MDSC percentages were evaluated. The percentages of CD11b+Gr-1+MDSCs and subsets (CD11b+Ly6C+ and CD11b+Ly6G+MDSCs) were increased in spleen and/or colonic LPMCs in colitis mice and also correlated with the severity of intestinal inflammation. MDSCs isolated from colitis mice suppressed the proliferation of splenocytes in vitro. Adoptive transfer of MDSCs, isolated from colitis mice or generated in vitro, decreased intestinal inflammation, levels of IFN-γ, IL-17, and TNF, and percentages of spleen MDSCs when compared with controls. MDSCs that have inhibitory function in vitro and in vivo are increased and correlated with intestinal inflammation, suggesting that they may be used as a biomarker of disease activity and a cell-based biotherapy in IBD.
Subject(s)
Colitis/therapy , Myeloid Cells/transplantation , Adoptive Transfer , Animals , Body Weight , Cell Proliferation , Cell Separation , Cell Shape , Colitis/chemically induced , Colitis/pathology , Cytokines/metabolism , Dextran Sulfate , Female , Hepatic Stellate Cells/pathology , Intestinal Mucosa/pathology , Mice , Mice, Inbred BALB C , Myeloid Cells/metabolism , Spleen/pathology , Trinitrobenzenesulfonic AcidABSTRACT
AIM: To evaluate the concomitant effects of appendectomy and oral tolerance on colitis. METHODS: Delayed-type hypersensitivity (DTH) was investigated at a 7-d interval after ovalbumin (OVA) administration and immunization under normal and colitis conditions in appendectomized or sham-operated mice. Pathological scores for the colon were graded after ingestion of colon-extracted protein (CEP) and induction of dextran sulfate sodium (DSS) colitis in appendectomized or sham-operated mice. Thereafter, Th1 and Th2 in Peyer's patches and spleen lymphocytes were detected in CEP-treated and bovine serum albumin (BSA)-treated control mice. RESULTS: In appendectomized mice, DTH was not inhibited at day 7 after OVA administration and at the initial phase of DSS colitis, whereas it was inhibited at day 14 and day 21. However, in sham-operated mice, it was inhibited during the whole procedure and the onset of DSS colitis. The protective role of CEP against DSS colitis was present in sham-operated mice, with predominant improvement of colonic pathological changes, while vanished in the appendectomized mice. A shift from Th1 to Th2 in Peyer's patches resulted from a decrease of Th1 cells with the ingestion of CEP. Compared with BSA in the sham-operated group, no predominant changes were observed in the appendectomized mice. CONCLUSION: Appendectomy interferes with the protective role of CEP in DSS colitis via a shift from Th2 to Th1 during oral tolerance induction.