Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293181

ABSTRACT

Caloric restriction promotes longevity in multiple animal models. Compounds modulating nutrient-sensing pathways have been suggested to reproduce part of the beneficial effect of caloric restriction on aging. However, none of the commonly studied caloric restriction mimetics actually produce a decrease in calories. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i) are a class of drugs which lower glucose by promoting its elimination through urine, thus inducing a net loss of calories. This effect promotes a metabolic shift at the systemic level, fostering ketones and fatty acids utilization as glucose-alternative substrates, and is accompanied by a modulation of major nutrient-sensing pathways held to drive aging, e.g., mTOR and the inflammasome, overall resembling major features of caloric restriction. In addition, preliminary experimental data suggest that SGLT-2i might also have intrinsic activities independent of their systemic effects, such as the inhibition of cellular senescence. Consistently, evidence from both preclinical and clinical studies have also suggested a marked ability of SGLT-2i to ameliorate low-grade inflammation in humans, a relevant driver of aging commonly referred to as inflammaging. Considering also the amount of data from clinical trials, observational studies, and meta-analyses suggesting a tangible effect on age-related outcomes, such as cardiovascular diseases, heart failure, kidney disease, and all-cause mortality also in patients without diabetes, here we propose a framework where at least part of the benefit provided by SGLT-2i is mediated by their ability to blunt the drivers of aging. To support this postulate, we synthesize available data relative to the effect of this class on: 1- animal models of healthspan and lifespan; 2- selected molecular pillars of aging in preclinical models; 3- biomarkers of aging and especially inflammaging in humans; and 4- COVID-19-related outcomes. The burden of evidence might prompt the design of studies testing the potential employment of this class as anti-aging drugs.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Animals , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Inflammasomes , Drug Repositioning , Diabetes Mellitus, Type 2/drug therapy , Aging , Glucose/therapeutic use , TOR Serine-Threonine Kinases , Sodium , Ketones/therapeutic use , Fatty Acids/therapeutic use
2.
Int J Mol Sci ; 23(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36232603

ABSTRACT

The interaction between selective nutrients and linked genes involving a specific organ reveals the genetic make-up of an individual in response to a particular nutrient. The interaction of genes with food opens opportunities for the addition of bioactive compounds for specific populations comprising identical genotypes. The slight difference in the genetic blueprints of humans is advantageous in determining the effect of nutrients and their metabolism in the body. The basic knowledge of emerging nutrigenomics and nutrigenetics can be applied to optimize health, prevention, and treatment of diseases. In addition, nutrient-mediated pathways detecting the cellular concentration of nutrients such as sugars, amino acids, lipids, and metabolites are integrated and coordinated at the organismal level via hormone signals. This review deals with the interaction of nutrients with various aspects of nutrigenetics and nutrigenomics along with pathways involved in nutrient sensing and regulation, which can provide a detailed understanding of this new leading edge in nutrition research and its potential application to dietetic practice.


Subject(s)
Diet , Nutrigenomics , Amino Sugars , Hormones , Humans , Lipids , Nutrients , Perception
3.
Prog Mol Subcell Biol ; 58: 217-242, 2019.
Article in English | MEDLINE | ID: mdl-30911895

ABSTRACT

Ageing is a complex and multifactorial process driven by genetic, environmental and stochastic factors that lead to the progressive decline of biological systems. Mechanisms of ageing have been extensively investigated in various model organisms and systems generating fundamental advances. Notably, studies on yeast ageing models have made numerous and relevant contributions to the progress in the field. Different longevity factors and pathways identified in yeast have then been shown to regulate molecular ageing in invertebrate and mammalian models. Currently the best candidates for anti-ageing drugs such as spermidine and resveratrol or anti-ageing interventions such as caloric restriction were first identified and explored in yeast. Yeasts have also been instrumental as models to study the cellular and molecular effects of proteins associated with age-related diseases such as Parkinson's, Huntington's or Alzheimer's diseases. In this chapter, a review of the advances on ageing and age-related diseases research in yeast models will be made. Particular focus will be placed on key longevity factors, ageing hallmarks and interventions that slow ageing, both yeast-specific and those that seem to be conserved in multicellular organisms. Their impact on the pathogenesis of age-related diseases will be also discussed.


Subject(s)
Aging/physiology , Longevity/physiology , Models, Biological , Neurodegenerative Diseases/physiopathology , Rejuvenation/physiology , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Aging/drug effects , Aging/genetics , Animals , Caloric Restriction , Humans , Longevity/drug effects , Longevity/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics
4.
J Cell Mol Med ; 22(10): 4807-4817, 2018 10.
Article in English | MEDLINE | ID: mdl-30117681

ABSTRACT

Acute myeloid leukaemia (AML) comprises a heterogeneous group of hematologic neoplasms characterized by diverse combinations of genetic, phenotypic and clinical features representing a major challenge for the development of targeted therapies. Metabolic reprogramming, mainly driven by deregulation of the nutrient-sensing pathways as AMPK, mTOR and PI3K/AKT, has been associated with cancer cells, including AML cells, survival and proliferation. Nevertheless, the role of these metabolic adaptations on the AML pathogenesis is still controversial. In this work, the metabolic status and the respective metabolic networks operating in different AML cells (NB-4, HL-60 and KG-1) and their impact on autophagy and survival was characterized. Data show that whereas KG-1 cells exhibited preferential mitochondrial oxidative phosphorylation metabolism with constitutive co-activation of AMPK and mTORC1 associated with increased autophagy, NB-4 and HL-60 cells displayed a dependent glycolytic profile mainly associated with AKT/mTORC1 activation and low autophagy flux. Inhibition of AKT is disclosed as a promising therapeutical target in some scenarios while inhibition of AMPK and mTORC1 has no major impact on KG-1 cells' survival. The results highlight an exclusive metabolic profile for each tested AML cells and its impact on determination of the anti-leukaemia efficacy and on personalized combinatory therapy with conventional and targeted agents.


Subject(s)
Autophagy/genetics , Energy Metabolism/genetics , Leukemia, Myeloid, Acute/metabolism , Mitochondria/genetics , AMP-Activated Protein Kinase Kinases , Glycolysis/genetics , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mechanistic Target of Rapamycin Complex 1/genetics , Metabolome/genetics , Mitochondria/metabolism , Molecular Targeted Therapy , Oncogene Protein v-akt/genetics , Oxidative Phosphorylation , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation , Protein Kinases/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics
5.
Exp Gerontol ; 178: 112221, 2023 07.
Article in English | MEDLINE | ID: mdl-37230336

ABSTRACT

The rise of life expectancy in current societies is not accompanied, to date, by a similar increase in healthspan, which represents a great socio-economic problem. It has been suggested that aging can be manipulated and then, the onset of all age-associated chronic disorders can be delayed because these pathologies share age as primary underlying risk factor. One of the most extended ideas is that aging is consequence of the accumulation of molecular damage. According to the oxidative damage theory, antioxidants should slow down aging, extending lifespan and healthspan. The present review analyzes studies evaluating the effect of dietary antioxidants on lifespan of different aging models and discusses the evidence on favor of their antioxidant activity as anti-aging mechanisms. Moreover, possible causes for differences between the reported results are evaluated.


Subject(s)
Antioxidants , Longevity , Longevity/genetics , Antioxidants/pharmacology , Diet , Genotype , Models, Theoretical
6.
Front Cell Dev Biol ; 10: 836196, 2022.
Article in English | MEDLINE | ID: mdl-35419363

ABSTRACT

Neurons are post-mitotic cells that allocate huge amounts of energy to the synthesis of new organelles and molecules, neurotransmission and to the maintenance of redox homeostasis. In neurons, autophagy is not only crucial to ensure organelle renewal but it is also essential to balance nutritional needs through the mobilization of internal energy stores. A delicate crosstalk between the pathways that sense nutritional status of the cell and the autophagic processes to recycle organelles and macronutrients is fundamental to guarantee the proper functioning of the neuron in times of energy scarcity. This review provides a detailed overview of the pathways and processes involved in the balance of cellular energy mediated by autophagy, which when defective, precipitate the neurodegenerative cascade of Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis or Alzheimer's disease.

7.
Nutrition ; 89: 111244, 2021 09.
Article in English | MEDLINE | ID: mdl-33930788

ABSTRACT

Lifestyle and genetic perturbation of circadian rhythm can trigger the incidence and severity of metabolic diseases. Time-restricted feeding (TRF) regulates the circadian rhythm of food intake that protects against metabolic disorders induced by adverse nutrient intake. TRF also executes host metabolism from nutrient availability to optimize nutrient utilization. Circadian clock and nutrient-sensing pathways coordinate to regulate metabolic health through the feeding/fasting cycle. Concurrently, TRF imposes diurnal rhythm in nutrient utilization, thereby preserving cellular homeostasis. However, modulation of daily feeding and fasting periods calibrates the circadian clock, which protects against the lethal effects of nutrient imbalance on metabolism. Therefore, TRF also improves and restores metabolic rhythms that ultimately lead to better fitness by reversing the alteration in genotype-specific gene expression. The aim of this review was to summarize that TRF is an emerging dietary approach that maintains robust circadian rhythms in support of a steady daily feeding and fasting cycle. TRF also encourages the coordination between circadian clock components and nutrient-sensing pathways via molecular effectors that exert a protective role in the prevention of metabolic diseases.


Subject(s)
Circadian Rhythm , Metabolic Diseases , Diet , Eating , Fasting , Feeding Behavior , Humans , Metabolic Diseases/prevention & control
8.
Geriatrics (Basel) ; 5(4)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228041

ABSTRACT

Both life span and health span are influenced by genetic, environmental and lifestyle factors. With the genetic influence on human life span estimated to be about 20-25%, epigenetic changes play an important role in modulating individual health status and aging. Thus, a main part of life expectance and healthy aging is determined by dietary habits and nutritional factors. Excessive or restricted food consumption have direct effects on health status. Moreover, some dietary interventions including a reduced intake of dietary calories without malnutrition, or a restriction of specific dietary component may promote health benefits and decrease the incidence of aging-related comorbidities, thus representing intriguing potential approaches to improve healthy aging. However, the relationship between nutrition, health and aging is still not fully understood as well as the mechanisms by which nutrients and nutritional status may affect health span and longevity in model organisms. The broad effect of different nutritional conditions on health span and longevity occurs through multiple mechanisms that involve evolutionary conserved nutrient-sensing pathways in tissues and organs. These pathways interacting each other include the evolutionary conserved key regulators mammalian target of rapamycin, AMP-activated protein kinase, insulin/insulin-like growth factor 1 pathway and sirtuins. In this review we provide a summary of the main molecular mechanisms by which different nutritional conditions, i.e., specific nutrient abundance or restriction, may affect health span and life span.

9.
Comput Struct Biotechnol J ; 17: 1151-1161, 2019.
Article in English | MEDLINE | ID: mdl-31462971

ABSTRACT

While the liver demonstrates remarkable resilience during aging, there is growing evidence that it undergoes all the cellular hallmarks of aging, which increases the risk of liver and systemic disease. The aging process in the liver is driven by alterations of the genome and epigenome that contribute to dysregulation of mitochondrial function and nutrient sensing pathways, leading to cellular senescence and low-grade inflammation. These changes promote multiple phenotypic changes in all liver cells (hepatocytes, liver sinusoidal endothelial, hepatic stellate and Küpffer cells) and impairment of hepatic function. In particular, age-related changes in the liver sinusoidal endothelial cells are a significant but under-recognized risk factor for the development of age-related cardiometabolic disease.

10.
Prog Mol Biol Transl Sci ; 155: 85-107, 2018.
Article in English | MEDLINE | ID: mdl-29653684

ABSTRACT

Metabolic changes are hallmarks of aging and genetic and pharmacologic alterations of relevant pathways can extend life span. In this review, we will outline how cellular biochemistry and energy homeostasis change during aging. We will highlight protein quality control, mitochondria, epigenetics, nutrient-sensing pathways, as well as the interplay between these systems with respect to their impact on cellular health.


Subject(s)
Aging/metabolism , Metabolism , Animals , Cell Nucleus/metabolism , Food , Humans , Mitochondria/metabolism , Proteostasis
11.
Trends Cell Biol ; 28(8): 662-672, 2018 08.
Article in English | MEDLINE | ID: mdl-29779866

ABSTRACT

The nucleolus is a prominent membraneless organelle residing within the nucleus. The nucleolus has been regarded as a housekeeping structure mainly known for its role in ribosomal RNA (rRNA) production and ribosome assembly. However, accumulating evidence has revealed its functions in numerous cellular processes that control organismal physiology, thereby taking the nucleolus much beyond its conventional role in ribosome biogenesis. Perturbations in nucleolar functions have been associated with severe diseases such as cancer and progeria. Recent studies have also uncovered the role of the nucleolus in development and aging. In this review we discuss major nucleolar functions that impact organismal aging.


Subject(s)
Aging/physiology , Cell Nucleolus/metabolism , Longevity/physiology , Animals , Humans , RNA, Ribosomal/metabolism , Ribosomes/metabolism
12.
Adv Drug Deliv Rev ; 135: 39-49, 2018 10.
Article in English | MEDLINE | ID: mdl-30248361

ABSTRACT

Age-related changes in liver function have a significant impact on systemic aging and susceptibility to age-related diseases. Nutrient sensing pathways have emerged as important targets for the development of drugs that delay aging and the onset age-related diseases. This supports a central role for the hepatic regulation of metabolism in the association between nutrition and aging. Recently, a role for liver sinusoidal endothelial cells (LSECs) in the relationship between aging and metabolism has also been proposed. Age-related loss of fenestrations within LSECs impairs the transfer of substrates (such as lipoproteins and insulin) between sinusoidal blood and hepatocytes, resulting in post-prandial hyperlipidemia and insulin resistance. Targeted drug delivery methods such as nanoparticles and quantum dots will facilitate the direct delivery of drugs that regulate fenestrations in LSECs, providing an innovative approach to ameliorating age-related diseases and increasing healthspan.


Subject(s)
Drug Delivery Systems , Liver/metabolism , Aged , Aged, 80 and over , Humans , Liver/chemistry
13.
Exp Suppl ; 109: 421-458, 2018.
Article in English | MEDLINE | ID: mdl-30535608

ABSTRACT

A complex network that embraces parasite-host intrinsic factors and the microenvironment regulated the interaction between a parasite and its host. Nutritional pressures exerted by both elements of this duet thus dictate this host-parasite niche. To survive and proliferate inside a host and a harsh nutritional environment, the parasites modulate different nutrient sensing pathways to subvert host metabolic pathways. Such mechanism is able to change the flux of distinct nutrients/metabolites diverting them to be used by the parasites. Apart from this nutritional strategy, the scavenging of nutrients, particularly host fatty acids, constitutes a critical mechanism to fulfil parasite nutritional requirements, ultimately defining the host metabolic landscape. The host metabolic alterations that result from host-parasite metabolic coupling can certainly be considered important targets to improve diagnosis and also for the development of future therapies. Metabolism is in fact considered a key element within this complex interaction, its modulation being crucial to dictate the final infection outcome.


Subject(s)
Host-Pathogen Interactions , Metabolic Networks and Pathways , Parasites/metabolism , Animals , Nutritional Physiological Phenomena
14.
Int Rev Cell Mol Biol ; 332: 1-42, 2017.
Article in English | MEDLINE | ID: mdl-28526131

ABSTRACT

Aging represents the major risk factor for cancer. Cancer and aging are characterized by a similar dysregulated metabolism consisting in upregulation of glycolysis and downmodulation of oxidative phosphorylation. In this respect, metabolic interventions can be viewed as promising strategies to promote longevity and to prevent or delay age-related disorders including cancer. In this review, we discuss the most promising metabolic approaches including chronic calorie restriction, periodic fasting/fasting-mimicking diets, and pharmacological interventions mimicking calorie restriction. Metabolic interventions can also be viewed as adjuvant anticancer strategies to be combined to standard cancer therapy (chemotherapeutic agents, ionizing radiation, and drugs with specific molecular target), whose major limiting factors are represented by toxicity against healthy cells but also limited efficacy easily circumvented by tumor cells. In fact, conventional cancer therapy is unable to distinguish normal and cancerous cells and thus causes toxic side effects including secondary malignancies, cardiovascular and respiratory complications, endocrinopathies, and other chronic conditions, that resemble and, in some cases, accelerate the age-related disorders and profoundly affect the quality of life. In this scenario, geroscience contributes to the understanding of the mechanisms of protection of normal cells against a cytotoxic agent and finding strategies focused on the preserving healthy cells while enhancing the efficacy of the treatment against malignant cells.


Subject(s)
Aging/metabolism , Carcinogenesis/metabolism , Animals , Geriatrics , Humans , Metabolic Networks and Pathways , Neoplasms/therapy , Signal Transduction
15.
Expert Opin Ther Targets ; 21(4): 371-380, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28281903

ABSTRACT

INTRODUCTION: In the present paper, the authors have discussed anti-aging strategies which aim to slow the aging process and to delay the onset of age-related diseases, focusing on nutrient sensing pathways (NSPs) as therapeutic targets. Indeed, several studies have already demonstrated that both in animal models and humans, dietary interventions might have a positive impact on the aging process through the modulation of these pathways. Areas covered: Achieving healthy aging is the main challenge of the twenty-first century because lifespan is increasing, but not in tandem with good health. The authors have illustrated different approaches that can act on NSPs, modulating the rate of the aging process. Expert opinion: Humanity's lasting dream is to reverse or, at least, postpone aging. In recent years, increasing attention has been devoted to anti-aging therapies. The subject is very popular among the general public, whose imagination runs wild with all the possible tools to delay aging and to gain immortality. Some approaches discussed in the present review should be able to substantially slow down the aging process, extending our productive, youthful lives, without frailty.


Subject(s)
Aging/physiology , Diet , Nutritional Physiological Phenomena/physiology , Age Factors , Animals , Dietary Supplements , Humans , Longevity/physiology
16.
Aging Cell ; 14(1): 17-24, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25470422

ABSTRACT

Many diets and nutritional advice are circulating, often based on short- or medium-term clinical trials and primary outcomes, like changes in LDL cholesterol or weight. It remains difficult to assess which dietary interventions can be effective in the long term to reduce the risk of aging-related disease and increase the (healthy) lifespan. At the same time, the scientific discipline that studies the aging process has identified some important nutrient-sensing pathways that modulate the aging process, such as the mTOR and the insulin/insulin-like growth factor signaling pathway. A thorough understanding of the aging process can help assessing the efficacy of dietary interventions aimed at reducing the risk of aging-related diseases. To come to these insights, a synthesis of biogerontological, nutritional, and medical knowledge is needed, which can be framed in a new discipline called 'nutrigerontology'.


Subject(s)
Aging/pathology , Diet , Geriatrics , Guidelines as Topic , Nutritional Physiological Phenomena , Humans , Risk Factors
17.
Mol Aspects Med ; 46: 46-62, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26297963

ABSTRACT

Glucose/glycogen metabolism is a primary metabolic pathway acting on a variety of cellular needs, such as proliferation, growth, and survival against stresses. The multiple regulatory mechanisms underlying a specific metabolic fate have been documented and explained the molecular basis of various pathophysiological conditions, including metabolic disorders and cancers. AMP-activated protein kinase (AMPK) has been appreciated for many years as a central metabolic regulator to inhibit energy-consuming pathways as well as to activate the compensating energy-producing programs. In fact, glucose starvation is a potent physiological AMPK activating condition, in which AMPK triggers various subsequent metabolic events depending on cells or tissues. Of note, the recent studies show bidirectional interplay between AMPK and glycogen. A growing number of studies have proposed additional level of metabolic regulation by a lysosome-dependent catabolic program, autophagy. Autophagy is a critical degradative pathway not only for maintenance of cellular homeostasis to remove potentially dangerous constituents, such as protein aggregates and dysfunctional subcellular organelles, but also for adaptive responses to metabolic stress, such as nutrient starvation. Importantly, many lines of evidence indicate that autophagy is closely connected with nutrient signaling modules, including AMPK, to fine-tune the metabolic pathways in response to many different cellular cues. In this review, we introduce the studies demonstrating the role of AMPK and autophagy in glucose/glycogen metabolism. Also, we describe the recent advances on their contributions to the metabolic disorders.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/physiology , Glucose/metabolism , Glycogen/metabolism , Animals , Energy Metabolism/physiology , Humans
18.
Microb Cell ; 1(4): 118-127, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-28357232

ABSTRACT

Ageing is a complex and multi-factorial process that results in the progressive accumulation of molecular alterations that disrupt different cellular functions. The budding yeast Saccharomyces cerevisiae is an important model organism that has significantly contributed to the identification of conserved molecular and cellular determinants of ageing. The nutrient-sensing pathways are well-recognized modulators of longevity from yeast to mammals, but their downstream effectors and outcomes on different features of ageing process are still poorly understood. A hypothesis that is attracting increased interest is that one of the major functions of these "longevity pathways" is to contribute to the maintenance of the proteome during ageing. In support of this hypothesis, evidence shows that TOR/Sch9 and Ras/PKA pathways are important regulators of autophagy that in turn are essential for healthy cellular ageing. It is also well known that mitochondria homeostasis and function regulate lifespan, but how mitochondrial dynamics, mitophagy and biogenesis are regulated during ageing remains to be elucidated. This review describes recent findings that shed light on how longevity pathways and metabolic status impact maintenance of the proteome in both yeast ageing paradigms. These findings demonstrate that yeast remain a powerful model system for elucidating these relationships and their influence on ageing regulation.

SELECTION OF CITATIONS
SEARCH DETAIL