Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Chemistry ; 30(2): e202302458, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37861104

ABSTRACT

As a crucial class of functional molecules in organosilicon chemistry, silanols are found valuable applications in the fields of modern science and will be a potentially powerful framework for biologically active compounds or functional materials. It has witnessed an increasing demand for non-natural organosilanols, as well as the progress in the synthesis of these structural features. From the classic preparative methods to the catalytic selective oxidation of hydrosilanes, electrochemical hydrolysis of hydrosilanes, and then the construction of the most challenging silicon-stereogenic silanols. This review summarized the progress in the catalyzed synthesis of silanols via hydroxylation of hydrosilanes in the last decade, with a particular emphasis on the latest elegant developments in the desymmetrization strategy for the enantioselective synthesis of silicon-stereogenic silanols from dihydrosilanes.

2.
Molecules ; 29(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398563

ABSTRACT

We synthesized six new camphor-derived homochiral thioureas 1-6, from commercially available (1R)-(-)-camphorquinone. These new compounds 1-6 were evaluated as asymmetric organocatalysts in the stereoselective formation of glycosidic bonds, with 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl and 2,3,4,6-tetra-O-benzyl-D-galactopyranosyl trichloroacetimidates as donors, and several alcohols as glycosyl acceptors, such as methanol, ethanol, 1-propanol, 1-butanol, 1-octanol, iso-propanol, tert-butanol, cyclohexanol, phenol, 1-naphtol, and 2-naphtol. Optimization of the asymmetric glycosylation reaction was achieved by modifying reaction conditions such as solvent, additive, loading of catalyst, temperature, and time of reaction. The best result was obtained with 2,3,4,6-tetra-O-benzyl-D-galactopyranosyl trichloroacetimidates, using 15 mol% of organocatalyst 1, in the presence of 2 equiv of MeOH in solvent-free conditions at room temperature for 1.5 h, affording the glycosidic compound in a 99% yield and 1:73 α:ß stereoselectivity; under the same reaction conditions, without using a catalyst, the obtained stereoselectivity was 1:35 α:ß. Computational calculations prior to the formation of the products were modeled, using density functional theory, M06-2X/6-31G(d,p) and M06-2X/6-311++G(2d,2p) methods. We observed that the preference for ß glycoside formation, through a stereoselective inverted substitution, relies on steric effects and the formation of hydrogen bonds between thiourea 1 and methanol in the complex formed.

3.
Beilstein J Org Chem ; 20: 1236-1245, 2024.
Article in English | MEDLINE | ID: mdl-38887585

ABSTRACT

Organic photocatalysts frequently possess dual singlet and triplet photoreactivity and a thorough photochemical characterization is essential for efficient light-driven applications. In this article, the mode of action of a polyazahelicene catalyst (Aza-H) was investigated using laser flash photolysis (LFP). The study revealed that the chromophore can function as a singlet-state photoredox catalyst in the sulfonylation/arylation of styrenes and as a triplet sensitizer in energy transfer catalysis. The singlet lifetime is sufficiently long to exploit the exceptional excited state reduction potential for the activation of 4-cyanopyridine. Photoinduced electron transfer generating the radical cation was directly observed confirming the previously proposed mechanism of a three-component reaction. Several steps of the photoredox cycle were investigated separately, providing deep insights into the complex mechanism. The triplet-excited Aza-H, which was studied with quantitative LFP, is formed with a quantum yield of 0.34. The pronounced triplet formation was exploited for the isomerization reaction of (E)-stilbene to the Z-isomer and the cyclization of cinnamyl chloride. Catalyst degradation mainly occurs through the long-lived Aza-H triplet (28 µs), but the photostability is greatly increased when the triplet efficiently reacts in a catalytic cycle such that turnover numbers exceeding 4400 are achievable with this organocatalyst.

4.
Chemistry ; 29(45): e202300675, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37276362

ABSTRACT

Herein, organocatalytically achieved polarity reversal of cationic bromine is presented. The proven bromocation source N-bromosuccinimide (NBS) was converted to a superior bromoanion reagent by H/Br exchange with a secondary amine, substantiated with spectroscopic and computational evidence. The concept has further been used in a successfully accelerated organocatalyzed dibromination of olefins in a non-hazardous, commercially viable process with a wide range of substrate scope. The reactivity of key entities observed through NMR kinetics and reaction acceleration using only 10 mol % of catalyst account for its major success. The nucleophilicity of the bromoanion was found to be superior in comparison to other nucleophiles such as MeOH and H2 O also the protocol dominates over the competing allylic bromination reaction.

5.
Chemistry ; 29(40): e202301093, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37147185

ABSTRACT

Substituted quinolines, tricyclic and tetracyclic molecules with a quinoline moiety are synthesized by a domino reaction from dicyanoalkenes and 3-aryl-pent-2-en-4-ynals in one pot. We established two methods: one is catalyzed by chiral diphenylprolinol silyl ether, and the other is catalyzed by di(2-ethyl)hexylamine, in combination with p-nitrophenol. A wide variety of dicyanoalkenes can be employed. As the catalysts are secondary amines, and water is the only by-product, this is an environmentally benign synthetic method for the preparation of substituted quinolines.

6.
Chem Rec ; 23(7): e202200159, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35896950

ABSTRACT

The aldol reaction is one of the most important carbon-carbon bond-forming reactions in organic chemistry. Asymmetric direct cross-aldol reaction of two different aldehydes has been regarded as a difficult reaction because of the side reactions such as self-aldol reaction and over reaction. We found that trifluoromethyl-substituted diarylprolinol, α,α-bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol (1), is an effective organocatalyst that promotes several cross-aldol reactions of aldehydes with excellent diastereo- and enantioselectivities. Acetaldehyde can be employed as a suitable nucleophilic aldehyde. Successful electrophilic aldehydes are ethyl glyoxylate, chloroacetaldehyde, dichloroacetaldehyde, chloral, α-alkyl-α-oxo aldehyde, trifluoroacetaldehyde, glyoxal, alkenyl aldehyde, alkynyl aldehyde, and formaldehyde. Some of the aldehydes are commercially available as a polymer solution, an aqueous solution, or in the hydrated form. They can be used directly in the asymmetric aldol reaction as a commercially available form, which is a synthetic advantage. Given that the obtained aldol products possess several functional groups along with a formyl moiety, they are synthetically useful chiral building blocks.


Subject(s)
Aldehydes , Water , Catalysis , Carbon
7.
Chem Rec ; 23(7): e202300030, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36949010

ABSTRACT

This account describes our recent work on developing guanidinium hypoiodite- catalysts for oxidative carbon-nitrogen and carbon-carbon bond-forming reactions. These reactions proceeded smoothly using guanidinium hypoiodite generated in situ by treating 1,3,4,6,7-hexahydro-2H-pyrimido[1,2-a]pyrimidine hydroiodide salts with an oxidant. In this approach, the ionic interaction and hydrogen bonding ability of the guanidinium cations enable bond-forming reactions that have been difficult with conventional methods. Enantioselective oxidative carbon-carbon bond-forming reaction was also achieved by using a chiral guanidinium organocatalyst.


Subject(s)
Iodine Compounds , Guanidine , Catalysis , Oxidation-Reduction
8.
Chem Rec ; 23(7): e202200200, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36163471

ABSTRACT

Three-dimensional organic structures containing sp3 carbons bearing four non-hydrogen substituents can provide drug-like molecules. Although such complex structures are challenging targets in synthetic organic chemistry, efficient synthetic approaches will open a new chemical space for pharmaceutical candidates. This review provides an account of our recent achievements in developing organocatalytic approaches to attractive molecular platforms based on optically active sp3 carbons integrating four different functional groups. These methodologies include asymmetric cycloetherification and cyanation of multifunctional ketones, both of which take advantage of the mild characteristics of organocatalytic activation. Enzyme-like but non-enzymatic organocatalytic systems can be used to precisely manufacture molecules containing complex chiral structures without substrate specificity problems. In addition, these catalytic systems control not only stereoselectivity but also site-selectivity and do not induce side reactions even from substrates with rich functionality.


Subject(s)
Carbon , Carbon/chemistry , Catalysis
9.
Chem Rec ; 23(7): e202200286, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36850022

ABSTRACT

In this personal account, we describe our recent advances in the three types of phase-transfer catalysis for various transformations including asymmetric induction: Firstly, asymmetric phase-transfer catalysis with Maruoka-type C2 -symmetric chiral biaryl-modified tetraalkylammonium salts and phosphonium salts; Secondly, asymmetric phase-transfer catalysis under base-free and neutral conditions; Thirdly, hydrogen-bonding catalysis using tetraalkylammonium and trialkylsulfonium salts. These three different strategies are illustrated by using various phase-transfer catalyzed transformations.


Subject(s)
Salts , Catalysis
10.
Chem Rec ; 23(7): e202300061, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37042453

ABSTRACT

This account summarizes our recent efforts in the enantioselective organocatalytic synthesis of chiral halogenated compounds. The enantioselective α-halogenation of aldehydes, decarboxylative chlorination of ß-keto acids, and enantioselective C-C bond formation at the trifluoromethylated prochiral carbon to yield the corresponding organohalides with chlorinated, fluorinated, or trifluoromethylated chiral stereogenic centers are discussed. We applied common organocatalysts, such as Jørgensen-Hayashi catalyst and cinchona alkaloid-derivatived catalyst, and developed novel chiral amine catalysts for these reactions. This account also discusses stereospecific derivatizations of the resulting chiral halogenated compounds via nucleophilic substitution. Thus, we synthesized many novel chiral compounds that have not been reported, even as racemates.


Subject(s)
Amines , Keto Acids , Stereoisomerism , Amines/chemistry , Catalysis , Aldehydes/chemistry
11.
Mol Divers ; 27(4): 1843-1851, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36070160

ABSTRACT

This study deals with the synthesis of the regioselective and facile domino one-pot four-component reaction of 2-chloroquinoline-3-carbaldehydes, 1, 3-cyclodione compounds (as cyclic active methylene), ethyl acetoacetate (as ß-keto ester), and hydrazine hydrate in the presence of DABCO as a homogeneous organocatalyst yielding a novel series of 4H-pyrano[2, 3-b]quinolones. This multicomponent reaction has some advantages; the significant one is C-O bond formation under metal-free conditions. Other benefits include simple procedure, mild and green condition, high yield, easy purification, and excellent regioselectivity. All polycyclic products (7a-k, 11 new compounds) were characterized by IR, 1H NMR, 13C NMR, and mass spectra.


Subject(s)
Piperazines , Quinolines , Piperazines/chemistry
12.
Chirality ; 35(3): 178-188, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36625735

ABSTRACT

Cinchona urea compounds having 3,5-diiodophenyl moieties were subjected to Yamamoto coupling polymerization to afford the chiral urea polymers. These polymers showed high activities as heterogeneous catalysts in asymmetric Michael reactions comparable with those of the corresponding monomeric catalyst in solution systems. Furthermore, the polymeric catalysts are easily recovered from their reaction mixtures due to their insolubility and can be reused several times without loss of catalytic activity.

13.
Chem Biodivers ; 20(10): e202300836, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37702294

ABSTRACT

Fused coumarins, because of their remarkable biological and therapeutic properties, particularly pyranocoumarins, have caught the interest of synthetic organic chemists, leading to the development of more efficient and environmentally friendly protocols for synthesizing pyranocoumarin derivatives. These compounds are the most promising heterocycles discovered in both natural and synthetic sources, with anti-inflammatory, anti-HIV, antitubercular, antihyperglycemic, and antibacterial properties. This review employed the leading scientific databases Scopus, Web of Science, Google Scholar, and PubMed up to the end of 2022, as well as the combining terms pyranocoumarins, synthesis, isolation, structural elucidation, and biological activity. Among the catalysts employed, acidic magnetic nanocatalysts, transition metal catalysts, and carbon-based catalysts have all demonstrated improved reaction yields and facilitated reactions under milder conditions. Herein, the present review discusses the various multicomponent synthetic strategies for pyranocoumarins catalyzed by transition metal-based catalysts, transition metal-based nanocatalysts, transition metal-free catalysts, carbon-based nanocatalysts, and their potential pharmacological activities.

14.
Molecules ; 28(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38067563

ABSTRACT

Bifunctional thioureas and, for the first time, bifunctional thiosquaramides as organocatalysts were used in the asymmetric Betti reaction involving 1-, 2-naphthols and hydroxyquinoline with N-tosylimine and ketimine. The described methodology affords direct access to chiral aminoarylnaphthols in excellent yield (up to 98%) with high enantioselectivity (up to 80% ee) and enantioenriched 3-amino-2-oxindoles (up to 78% yield, up to 98% ee).

15.
Molecules ; 28(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37241836

ABSTRACT

The tropylium ion is a non-benzenoid aromatic species that works as a catalyst. This chemical entity brings about a large number of organic transformations, such as hydroboration reactions, ring contraction, the trapping of enolates, oxidative functionalization, metathesis, insertion, acetalization, and trans-acetalization reactions. The tropylium ion also functions as a coupling reagent in synthetic reactions. This cation's versatility can be seen in its role in the synthesis of macrocyclic compounds and cage structures. Bearing a charge, the tropylium ion is more prone to nucleophilic/electrophilic reactions than neutral benzenoid equivalents. This ability enables it to assist in a variety of chemical reactions. The primary purpose of using tropylium ions in organic reactions is to replace transition metals in catalysis chemistry. It outperforms transition-metal catalysts in terms of its yield, moderate conditions, non-toxic byproducts, functional group tolerance, selectivity, and ease of handling. Furthermore, the tropylium ion is simple to synthesize in the laboratory. The current review incorporates the literature reported from 1950 to 2021; however, the last two decades have witnessed a phenomenal upsurge in the utilization of the tropylium ion in the facilitation of organic conversions. The importance of the tropylium ion as an environmentally safe catalyst in synthesis and a comprehensive summary of some important reactions catalyzed via tropylium cations are described.

16.
J Environ Sci (China) ; 126: 408-422, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36503768

ABSTRACT

A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO2 and propylene oxide (PO). The simultaneous presence of halide ions in conjunction with acidic- and basic-functional groups on the surface of the nanoparticles makes them highly active for the production of propylene carbonate (PC). The effects of variables such as catalyst loading, reaction temperature, and structure of substituents are discussed. The proposed catalysts were characterized by different techniques, including Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy/energy dispersive X-ray microanalysis (FESEM/EDX), thermogravimetric analysis (TGA), elemental analysis, atomic force microscopy (AFM), and ultraviolet-visible (UV-Vis) spectroscopy. Under optimal reaction conditions, 3-bromopropionic acid (BPA) immobilized on N-GQD showed a remarkable activity, affording the highest yield of 98% at 140°C and 106 Pa without any co-catalyst or solvent. These new metal-free catalysts have the advantage of easy separation and reuse several times. Based on the experimental data, a plausible reaction mechanism is suggested, where the hydrogen bonding donors and halogen ion can activate the epoxide, and amine functional groups play a vital role in CO2 adsorption.


Subject(s)
Carbon , Graphite , Nitrogen , Carbon Dioxide , Carbonates , Epoxy Compounds
17.
Angew Chem Int Ed Engl ; 62(25): e202303315, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37073925

ABSTRACT

Chemoselective terpolymerization can produce polymer materials with diverse compositions and sequential structures, and thus have attracted considerable attention in the field of polymer synthesis. However, the intrinsic complexity of three-component system also brings great chanllenge, in regard to the reactivity and selectivity of different monomers. Herein, we report the terpolymerization of CO2 /epoxide/anhydride by a binary organocatalytic C3 N3 -Py-P3 /TEB (triethylborane) system. Both the activity and chemoselectivity were highly dependent upon the molar ratio of C3 N3 -Py-P3 to TEB, and sequence-controlled poly(ester-carbonate) copolymers were readily synthesized through one-pot/one-step methodology by tuning the stoichiometric ratio of phosphazene/TEB. In particular, C3 N3 -Py-P3 /TEB with a molar ratio of 1/0.5 exhibited an unprecedentedly high chemoselectivity for ring-opening alternating copolymerization (ROAC) of cyclohexene oxide (CHO) and phthalic anhydride (PA) first and then ROAC of CO2 /CHO. Thus, well-defined triblock polycarbonate-b-polyester-b-polycarbonate copolymers can be produced from the mixture of CO2 , CHO and PA using a bifunctional initiator. With C3 N3 -Py-P3 /TEB=1/1, tapered copolymers were obtained, while random copolymers with high content of polycarbonate (PC) were synthesized with further increasing the amount of TEB. The mechanism of the unexpected chemoselectivity was further investigated by DFT calculations.


Subject(s)
Boranes , Carbon Dioxide , Carbon Dioxide/chemistry , Polymers/chemistry , Carbonates
18.
Molecules ; 27(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35566109

ABSTRACT

Thiourea was introduced into (R,R)-1,2-diphenylethylenediamine as an organocatalyst to promote the reaction between isobutyraldehydes and maleimides. Enantioselective Michael addition reaction was carried out as an eco-friendly method using water as the solvent. As a result of the reaction between isobutyraldehyde and maleimide, ≥97% yield and 99% enantioselectivity were obtained at a low catalyst loading of 0.01 mol%. The solvent effect can be explained by theoretical calculations that indicate the participation of a transition state, in which the CF3 substituent of the catalyst is a hydrogen bond activated by the surrounding water molecules. This discovery enabled the use of low catalyst loading in the organic reactions of chiral substances for pharmaceutical applications. Furthermore, a solvent effect for Michael reaction of the organocatalysts was proposed, and the organic reaction mechanisms were determined through quantum calculations.


Subject(s)
Water , Aldehydes , Maleimides/chemistry , Solvents , Stereoisomerism
19.
Angew Chem Int Ed Engl ; 61(16): e202201407, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35150037

ABSTRACT

The development of chemically recyclable polymers presents the most appealing solution to address the plastics' end-of-use problem. Despite the recent advancements, it is highly desirable to develop chemically recyclable polymers from commercially available monomers to avoid the costly and time-consuming commercialization. In this contribution, we achieve the controlled ring-opening polymerization (ROP) of bio-sourced δ-caprolactone (δCL) using strong base/urea binary catalysts. The obtained PδCL is capable of chemical recycling to δCL in an almost quantitative yield by thermolysis. Sequential ROP of δCL and l-lactide (l-LA) affords well-defined PLLA-b-PδCL-b-PLLA triblock copolymers, which behave as thermoplastic elastomers with excellent elastic recovery, tensile strength and ultimate elongation. The upcycling of PLLA-b-PδCL-b-PLLA to recover ethyl lactate and δCL with high yields is achieved by refluxing with ethanol and then distillation under reduced pressure.


Subject(s)
Elastomers , Polyesters , Caproates , Lactones , Polymerization
20.
Chemistry ; 27(43): 11216-11220, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34028101

ABSTRACT

N-terminal thiourea-modified l-Leu-based peptide {(3,5-diCF3 Ph)NHC(=S)-(l-Leu-l-Leu-Ac5 c)2 -OMe} with five-membered ring α,α-disubstituted α-amino acids (Ac5 c) catalyzed a highly enantioselective 1,4-addition reaction between ß-nitrostyrene and dimethyl malonate. The enantioselective reaction required only 0.5 mol % chiral peptide-catalyst in the presence of i Pr2 EtN (2.5 equiv.), and gave a 1,4-adduct with 93 % ee of an 85 % yield. As Michael acceptors, various ß-nitrostyrene derivatives such as methyl, p-fluoro, p-bromo, and p-methoxy substituents on the phenyl group, 2-furyl, 2-thiophenyl, and naphthyl ß-nitroethylenes could be applied. Furthermore, various alkyl malonates and cyclic ß-keto-esters could be used as Michael donors. It became clear that the length of the peptide chain, a right-handed helical structure, amide N-Hs, and the N-terminal thiourea moiety play crucial roles in asymmetric induction.


Subject(s)
Amino Acids, Cyclic , Thiourea , Catalysis , Peptides , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL