Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 893
Filter
Add more filters

Publication year range
1.
Immunity ; 46(2): 233-244, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28214225

ABSTRACT

Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzing the degradation of l-arginine and l-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity in dendritic cells (DCs). Despite considerable knowledge of their individual biology, no integrated functions of Arg1 and IDO1 have been reported yet. We found that IDO1 phosphorylation and consequent activation of IDO1 signaling in DCs was strictly dependent on prior expression of Arg1 and Arg1-dependent production of polyamines. Polyamines, either produced by DCs or released by bystander Arg1+ myeloid-derived suppressor cells, conditioned DCs toward an IDO1-dependent, immunosuppressive phenotype via activation of the Src kinase, which has IDO1-phosphorylating activity. Thus our data indicate that Arg1 and IDO1 are linked by an entwined pathway in immunometabolism and that their joint modulation could represent an important target for effective immunotherapy in several disease settings.


Subject(s)
Arginase/immunology , Dendritic Cells/immunology , Immune Tolerance/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Signal Transduction/immunology , Animals , Arginase/metabolism , Arginine/immunology , Arginine/metabolism , Blotting, Western , Dendritic Cells/metabolism , Female , Gene Expression Profiling , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Transcriptome , Tryptophan/immunology , Tryptophan/metabolism
2.
Plant J ; 118(5): 1603-1618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38441834

ABSTRACT

Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytosol , Dipeptidases , Glutathione , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/enzymology , Glutathione/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Dipeptidases/metabolism , Dipeptidases/genetics , Cytosol/metabolism , Dipeptides/metabolism , Sulfur/metabolism
3.
J Pathol ; 264(1): 101-111, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39022853

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition that often progresses to more advanced stages, such as metabolic dysfunction-associated steatohepatitis (MASH). MASH is characterized by inflammation and hepatocellular ballooning, in addition to hepatic steatosis. Despite the relatively high incidence of MASH in the population and its potential detrimental effects on human health, this liver disease is still not fully understood from a pathophysiological perspective. Deregulation of polyamine levels has been detected in various pathological conditions, including neurodegenerative diseases, inflammation, and cancer. However, the role of the polyamine pathway in chronic liver disorders such as MASLD has not been explored. In this study, we measured the expression of liver ornithine decarboxylase (ODC1), the rate-limiting enzyme responsible for the production of putrescine, and the hepatic levels of putrescine, in a preclinical model of MASH as well as in liver biopsies of patients with obesity undergoing bariatric surgery. Our findings reveal that expression of ODC1 and the levels of putrescine, but not spermidine nor spermine, are elevated in hepatic tissue of both diet-induced MASH mice and patients with biopsy-proven MASH compared with control mice and patients without MASH, respectively. Furthermore, we found that the levels of putrescine were positively associated with higher aspartate aminotransferase concentrations in serum and an increased SAF score (steatosis, activity, fibrosis). Additionally, in in vitro assays using human HepG2 cells, we demonstrate that elevated levels of putrescine exacerbate the cellular response to palmitic acid, leading to decreased cell viability and increased release of CK-18. Our results support an association between the expression of ODC1 and the progression of MASLD, which could have translational relevance in understanding the onset of this disease. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Disease Progression , Liver , Ornithine Decarboxylase , Putrescine , Animals , Humans , Putrescine/metabolism , Ornithine Decarboxylase/metabolism , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Fatty Liver/metabolism , Fatty Liver/pathology , Mice , Disease Models, Animal , Female , Middle Aged , Obesity/metabolism , Obesity/complications , Hep G2 Cells , Adult
4.
Mol Ther ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38981468

ABSTRACT

Recombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene. This combinatorial approach achieved correction of ornithine transcarbamylase deficiency in the neonatal Spfash mouse model following a single delivery to dividing hepatocytes in the newborn liver. Correction remained stable into adulthood, while a conventional rAAV approach resulted in a return to the disease state. In non-human primates, integration by transposition, mediated by this technology, improved gene expression 10-fold over conventional rAAV-mediated gene transfer while requiring 5-fold less vector. Additionally, integration site analysis confirmed a random profile while specifically targeting TA dinucleotides across the genome. Together, these findings demonstrate that transposable elements can improve rAAV-delivered therapies by lowering the vector dose requirement and associated toxicity while expanding target cell types.

5.
Proc Natl Acad Sci U S A ; 119(45): e2214900119, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36279426

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) are RORγT+ lymphocytes that are predominately enriched in mucosal tissues and produce IL-22 and IL-17A. They are the innate counterparts of Th17 cells. While Th17 lymphocytes utilize unique metabolic pathways in their differentiation program, it is unknown whether ILC3s make similar metabolic adaptations. We employed single-cell RNA sequencing and metabolomic profiling of intestinal ILC subsets to identify an enrichment of polyamine biosynthesis in ILC3s, converging on the rate-limiting enzyme ornithine decarboxylase (ODC1). In vitro and in vivo studies demonstrated that exogenous supplementation with the polyamine putrescine or its biosynthetic substrate, ornithine, enhanced ILC3 production of IL-22. Conditional deletion of ODC1 in ILC3s impaired mouse antibacterial defense against Citrobacter rodentium infection, which was associated with a decrease in anti-microbial peptide production by the intestinal epithelium. Furthermore, in a model of anti-CD40 colitis, deficiency of ODC1 in ILC3s markedly reduced the production of IL-22 and severity of inflammatory colitis. We conclude that ILC3-intrinsic polyamine biosynthesis facilitates efficient defense against enteric pathogens as well as exacerbates autoimmune colitis, thus representing an attractive target to modulate ILC3 function in intestinal disease.


Subject(s)
Colitis , Enterobacteriaceae Infections , Mice , Animals , Nuclear Receptor Subfamily 1, Group F, Member 3 , Interleukin-17 , Ornithine Decarboxylase/genetics , Immunity, Innate , Putrescine , Colitis/genetics , Enterobacteriaceae Infections/genetics , Th17 Cells/metabolism , Ornithine , Anti-Bacterial Agents , Interleukin-22
6.
J Biol Chem ; 299(8): 105005, 2023 08.
Article in English | MEDLINE | ID: mdl-37399976

ABSTRACT

S-adenosylmethionine decarboxylase (AdoMetDC/SpeD) is a key polyamine biosynthetic enzyme required for conversion of putrescine to spermidine. Autocatalytic self-processing of the AdoMetDC/SpeD proenzyme generates a pyruvoyl cofactor from an internal serine. Recently, we discovered that diverse bacteriophages encode AdoMetDC/SpeD homologs that lack AdoMetDC activity and instead decarboxylate L-ornithine or L-arginine. We reasoned that neofunctionalized AdoMetDC/SpeD homologs were unlikely to have emerged in bacteriophages and were probably acquired from ancestral bacterial hosts. To test this hypothesis, we sought to identify candidate AdoMetDC/SpeD homologs encoding L-ornithine and L-arginine decarboxylases in bacteria and archaea. We searched for the anomalous presence of AdoMetDC/SpeD homologs in the absence of its obligatory partner enzyme spermidine synthase, or the presence of two AdoMetDC/SpeD homologs encoded in the same genome. Biochemical characterization of candidate neofunctionalized genes confirmed lack of AdoMetDC activity, and functional presence of L-ornithine or L-arginine decarboxylase activity in proteins from phyla Actinomycetota, Armatimonadota, Planctomycetota, Melainabacteria, Perigrinibacteria, Atribacteria, Chloroflexota, Sumerlaeota, Omnitrophota, Lentisphaerota, and Euryarchaeota, the bacterial candidate phyla radiation and DPANN archaea, and the δ-Proteobacteria class. Phylogenetic analysis indicated that L-arginine decarboxylases emerged at least three times from AdoMetDC/SpeD, whereas L-ornithine decarboxylases arose only once, potentially from the AdoMetDC/SpeD-derived L-arginine decarboxylases, revealing unsuspected polyamine metabolic plasticity. Horizontal transfer of the neofunctionalized genes appears to be the more prevalent mode of dissemination. We identified fusion proteins of bona fide AdoMetDC/SpeD with homologous L-ornithine decarboxylases that possess two, unprecedented internal protein-derived pyruvoyl cofactors. These fusion proteins suggest a plausible model for the evolution of the eukaryotic AdoMetDC.


Subject(s)
Adenosylmethionine Decarboxylase , Carboxy-Lyases , Adenosylmethionine Decarboxylase/genetics , Adenosylmethionine Decarboxylase/metabolism , Archaea/genetics , Archaea/metabolism , Ornithine , Phylogeny , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Polyamines/metabolism , Bacteria/metabolism , Ornithine Decarboxylase/metabolism , Arginine/genetics
7.
Plant J ; 114(6): 1301-1318, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36932862

ABSTRACT

Cold stress is a major factor limiting the production and geographical distribution of rice (Oryza sativa) varieties. However, the molecular mechanisms underlying cold tolerance remain to be elucidated. Here, we report that ornithine δ-aminotransferase (OsOAT) contributes to cold tolerance during the vegetative and reproductive development of rice. osoat mutant was identified as a temperature-sensitive male sterile mutant with deformed floral organs and seedlings sensitive to cold stress. Comparative transcriptome analysis showed that OsOAT mutation and cold treatment of the wild-type plant led to similar changes in the global gene expression profiles in anthers. OsOAT genes in indica rice Huanghuazhan (HHZ) and japonica rice Wuyungeng (WYG) are different in gene structure and response to cold. OsOAT is cold-inducible in WYG but cold-irresponsive in HHZ. Further studies showed that indica varieties carry both WYG-type and HHZ-type OsOAT, whereas japonica varieties mostly carry WYG-type OsOAT. Cultivars carrying HHZ-type OsOAT are mainly distributed in low-latitude regions, whereas varieties carrying WYG-type OsOAT are distributed in both low- and high-latitude regions. Moreover, indica varieties carrying WYG-type OsOAT generally have higher seed-setting rates than those carrying HHZ-type OsOAT under cold stress at reproductive stage, highlighting the favorable selection for WYG-type OsOAT during domestication and breeding to cope with low temperatures.


Subject(s)
Oryza , Oryza/metabolism , Plant Breeding , Plant Development , Transaminases/metabolism , Fertility/genetics , Ornithine/metabolism , Cold Temperature
8.
Plant J ; 114(3): 482-498, 2023 05.
Article in English | MEDLINE | ID: mdl-36786691

ABSTRACT

Polyamines such as spermidine and spermine are essential regulators of cell growth, differentiation, maintenance of ion balance and abiotic stress tolerance. Their levels are controlled by the spermidine/spermine N1 -acetyltransferase (SSAT) via acetylation to promote either their degradation or export outside the cell as shown in mammals. Plant genomes contain at least one gene coding for SSAT (also named NATA for N-AcetylTransferase Activity). Combining kinetics, HPLC-MS and crystallography, we show that three plant SSATs, one from the lower plant moss Physcomitrium patens and two from the higher plant Zea mays, acetylate various aliphatic polyamines and two amino acids lysine (Lys) and ornithine (Orn). Thus, plant SSATs exhibit a broad substrate specificity, unlike more specific human SSATs (hSSATs) as hSSAT1 targets polyamines, whereas hSSAT2 acetylates Lys and thiaLys. The crystal structures of two PpSSAT ternary complexes, one with Lys and CoA, the other with acetyl-CoA and polyethylene glycol (mimicking spermine), reveal a different binding mode for polyamine versus amino acid substrates accompanied by structural rearrangements of both the coenzyme and the enzyme. Two arginine residues, unique among plant SSATs, hold the carboxyl group of amino acid substrates. The most abundant acetylated compound accumulated in moss was N6 -acetyl-Lys, whereas N5 -acetyl-Orn, known to be toxic for aphids, was found in maize. Both plant species contain very low levels of acetylated polyamines. The present study provides a detailed biochemical and structural basis of plant SSAT enzymes that can acetylate a wide range of substrates and likely play various roles in planta.


Subject(s)
Polyamines , Spermidine , Animals , Humans , Polyamines/metabolism , Spermine/metabolism , Zea mays/metabolism , Lysine/metabolism , Ornithine/metabolism , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Catalysis , Mammals/metabolism
9.
Genet Med ; 26(4): 101039, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38054409

ABSTRACT

PURPOSE: Liver transplantation (LTx) is performed in individuals with urea cycle disorders when medical management (MM) insufficiently prevents the occurrence of hyperammonemic events. However, there is a paucity of systematic analyses on the effects of LTx on health-related outcome parameters compared to individuals with comparable severity who are medically managed. METHODS: We investigated the effects of LTx and MM on validated health-related outcome parameters, including the metabolic disease course, linear growth, and neurocognitive outcomes. Individuals were stratified into "severe" and "attenuated" categories based on the genotype-specific and validated in vitro enzyme activity. RESULTS: LTx enabled metabolic stability by prevention of further hyperammonemic events after transplantation and was associated with a more favorable growth outcome compared with individuals remaining under MM. However, neurocognitive outcome in individuals with LTx did not differ from the medically managed counterparts as reflected by the frequency of motor abnormality and cognitive standard deviation score at last observation. CONCLUSION: Whereas LTx enabled metabolic stability without further need of protein restriction or nitrogen-scavenging therapy and was associated with a more favorable growth outcome, LTx-as currently performed-was not associated with improved neurocognitive outcomes compared with long-term MM in the investigated urea cycle disorders.


Subject(s)
Liver Transplantation , Urea Cycle Disorders, Inborn , Humans , Urea Cycle Disorders, Inborn/genetics , Urea Cycle Disorders, Inborn/surgery , Proteins , Outcome Assessment, Health Care
10.
Mol Genet Metab ; 143(1-2): 108542, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39053126

ABSTRACT

Gyrate atrophy of the choroid and retina (GACR) is caused by pathogenic biallelic variants in the gene encoding ornithine-δ-aminotransferase (OAT), and is characterized by progressive vision loss leading to blindness. OAT is a pyridoxal-5'-phosphate (PLP) dependent enzyme that is mainly involved in ornithine catabolism, and patients with a deficiency develop profound hyperornithinemia. Therapy is aimed at lowering ornithine levels through dietary arginine restriction and, in some cases, through enhancement of OAT activity via supraphysiological dosages of pyridoxine. In this study, we aimed to extend diagnostic practices in GACR by extensively characterizing the consequences of pathogenic variants on the enzymatic function of OAT, both at the level of the enzyme itself as well as the flux through the ornithine degradative pathway. In addition, we developed an in vitro pyridoxine responsiveness assay. We identified 14 different pathogenic variants, of which one variant was present in all patients of Dutch ancestry (p.(Gly353Asp)). In most patients the enzymatic activity of OAT as well as the rate of [14C]-ornithine flux was below the limit of quantification (LOQ). Apart from our positive control, only one patient cell line showed responsiveness to pyridoxine in vitro, which is in line with the reported in vivo pyridoxine responsiveness in this patient. None of the patients harboring the p.(Gly353Asp) substitution were responsive to pyridoxine in vivo or in vitro. In silico analysis and small-scale expression experiments showed that this variant causes a folding defect, leading to increased aggregation properties that could not be rescued by PLP. Using these results, we developed a diagnostic pipeline for new patients suspected of having GACR. Adding OAT enzymatic analyses and in vitro pyridoxine responsiveness to diagnostic practices will not only increase knowledge on the consequences of pathogenic variants in OAT, but will also enable expectation management for therapeutic modalities, thus eventually improving clinical care.

11.
J Exp Bot ; 75(3): 917-934, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37843921

ABSTRACT

Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.


Subject(s)
Arabidopsis , Pyrroles , Arabidopsis/metabolism , Proline Oxidase/chemistry , Proline Oxidase/metabolism , Mitochondria/metabolism , Glutamates/metabolism , Ornithine/metabolism , Proline/metabolism
12.
Crit Rev Biotechnol ; : 1-15, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39161061

ABSTRACT

The ornithine-urea cycle (OUC) in fungal cells has biotechnological importance and many physiological functions and is closely related to the acetyl glutamate cycle (AGC). Fumarate can be released from argininosuccinate under the catalysis of argininosuccinate lyase in OUC which is regulated by the Ca2+ signaling pathway and over 93.9 ± 0.8 g/L fumarate can be yielded by the engineered strain of Aureobasidium pullulans var. aubasidani in the presence of CaCO3. Furthermore, 2.1 ± 0.02 mg of L-ornithine (L-Orn)/mg of the protein also can be synthesized via OUC by the engineered strains of Aureobasidum melanogenum. Fumarate can be transformed into many drugs and amino acids and L-Orn can be converted into siderophores (1.7 g/L), putrescine (33.4 g/L) and L-piperazic acid (L-Piz) (3.0 g/L), by different recombinant strains of A. melanogenum. All the fumarate, L-Orn, siderophore, putrescine and L-Piz have many applications. As the yeast-like fungi and the promising chassis, Aureobasidium spp, have many advantages over any other fungal strains. Further genetic manipulation and bioengineering will enhance the biosynthesis of fumarate and L-Orn and their derivates.


OUC in fungal cells has biotechnological importance and many physiological functions; OUC is closely related to acetyl glutamate cycle (AGC). Fumarate, L-Orn, siderophore, putrescine and L-Piz produced from OUC have many applications.

13.
J Inherit Metab Dis ; 47(1): 50-62, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37026568

ABSTRACT

Urea cycle defects (UCDs) are severe inherited metabolic diseases with high unmet needs which present a permanent risk of hyperammonaemic decompensation and subsequent acute death or neurological sequelae, when treated with conventional dietetic and medical therapies. Liver transplantation is currently the only curative option, but has the potential to be supplanted by highly effective gene therapy interventions without the attendant need for life-long immunosuppression or limitations imposed by donor liver supply. Over the last three decades, pioneering genetic technologies have been explored to circumvent the consequences of UCDs, improve quality of life and long-term outcomes: adenoviral vectors, adeno-associated viral vectors, gene editing, genome integration and non-viral technology with messenger RNA. In this review, we present a summarised view of this historical path, which includes some seminal milestones of the gene therapy's epic. We provide an update about the state of the art of gene therapy technologies for UCDs and the current advantages and pitfalls driving future directions for research and development.


Subject(s)
Liver Transplantation , Ornithine Carbamoyltransferase Deficiency Disease , Urea Cycle Disorders, Inborn , Humans , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Quality of Life , Urea/metabolism , Living Donors , Genetic Therapy , Urea Cycle Disorders, Inborn/genetics , Urea Cycle Disorders, Inborn/therapy , Urea Cycle Disorders, Inborn/complications
14.
J Inherit Metab Dis ; 47(2): 220-229, 2024 03.
Article in English | MEDLINE | ID: mdl-38375550

ABSTRACT

Carbamoyl phosphate synthetase 1 (CPS1) and ornithine transcarbamylase (OTC) deficiencies are rare urea cycle disorders, which can lead to life-threatening hyperammonemia. Liver transplantation (LT) provides a cure and offers an alternative to medical treatment and life-long dietary restrictions with permanent impending risk of hyperammonemia. Nevertheless, in most patients, metabolic aberrations persist after LT, especially low plasma citrulline levels, with questionable clinical impact. So far, little is known about these alterations and there is no consensus, whether l-citrulline substitution after LT improves patients' symptoms and outcomes. In this multicentre, retrospective, observational study of 24 patients who underwent LT for CPS1 (n = 11) or OTC (n = 13) deficiency, 25% did not receive l-citrulline or arginine substitution. Correlation analysis revealed no correlation between substitution dosage and citrulline levels (CPS1, p = 0.8 and OTC, p = 1). Arginine levels after liver transplantation were normal after LT independent of citrulline substitution. Native liver survival had no impact on mental impairment (p = 0.67). Regression analysis showed no correlation between l-citrulline substitution and failure to thrive (p = 0.611) or neurological outcome (p = 0.701). Peak ammonia had a significant effect on mental impairment (p = 0.017). Peak plasma ammonia levels correlate with mental impairment after LT in CPS1 and OTC deficiency. Growth and intellectual impairment after LT are not significantly associated with l-citrulline substitution.


Subject(s)
Hyperammonemia , Liver Transplantation , Ornithine Carbamoyltransferase Deficiency Disease , Humans , Ornithine Carbamoyltransferase Deficiency Disease/surgery , Hyperammonemia/drug therapy , Citrulline , Carbamyl Phosphate/metabolism , Carbamyl Phosphate/therapeutic use , Ammonia/metabolism , Retrospective Studies , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Arginine/therapeutic use , Ornithine Carbamoyltransferase
15.
Appl Microbiol Biotechnol ; 108(1): 288, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587638

ABSTRACT

Escherichia coli is a common host for biotechnology and synthetic biology applications. During growth and fermentation, the microbes are often exposed to stress conditions, such as variations in pH or solvent concentrations. Bacterial membranes play a key role in response to abiotic stresses. Ornithine lipids (OLs) are a group of membrane lipids whose presence and synthesis have been related to stress resistance in bacteria. We wondered if this stress resistance could be transferred to bacteria not encoding the capacity to form OLs in their genome, such as E. coli. In this study, we engineered different E. coli strains to produce unmodified OLs and hydroxylated OLs by expressing the synthetic operon olsFC. Our results showed that OL formation improved pH resistance and increased biomass under phosphate limitation. Transcriptome analysis revealed that OL-forming strains differentially expressed stress- and membrane-related genes. OL-producing strains also showed better growth in the presence of the ionophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP), suggesting reduced proton leakiness in OL-producing strains. Furthermore, our engineered strains showed improved heterologous violacein production at phosphate limitation and also at low pH. Overall, this study demonstrates the potential of engineering the E. coli membrane composition for constructing robust hosts with an increased abiotic stress resistance for biotechnology and synthetic biology applications. KEY POINTS: • Ornithine lipid production in E. coli increases biomass yield under phosphate limitation. • Engineered strains show an enhanced production phenotype under low pH stress. • Transcriptome analysis and CCCP experiments revealed reduced proton leakage.


Subject(s)
Escherichia coli , Lipids , Ornithine/analogs & derivatives , Protons , Escherichia coli/genetics , Carbonyl Cyanide m-Chlorophenyl Hydrazone , Membrane Lipids , Phosphates
16.
Article in English | MEDLINE | ID: mdl-38847892

ABSTRACT

PURPOSE: Gyrate atrophy of the choroid and retina (GACR) is an autosomal recessive inherited metabolic disorder (IMD) characterised by progressive retinal degeneration, leading to severe visual impairment. The rapid developments in ophthalmic genetic therapies warrant knowledge on clinical phenotype of eligible diseases such as GACR to define future therapeutic parameters in clinical trials. METHODS: Retrospective chart analysis was performed in nineteen patients. Data were analysed using IBM SPSS Statistics version 28.0.1.1. RESULTS: Nineteen patients were included with a mean age of 32.6 years (range 8-58). Mean age at onset of ophthalmic symptoms was 7.9 years (range 3-16). Median logMAR of visual acuity at inclusion was 0.26 (range -0.18-3.00). Mean age at cataract surgery was 28.8 years (n = 11 patients). Mean spherical equivalent of the refractive error was -8.96 (range -20.87 to -2.25). Cystoid maculopathy was present in 68% of patients, with a loss of integrity of the foveal ellipsoid zone (EZ) in 24/38 eyes. Of the 14 patients treated with dietary protein restriction, the four patients who started the diet before age 10 showed most benefit. CONCLUSION: This study demonstrates the severe ophthalmic disease course associated with GACR, as well as possible benefit of early dietary treatment. In addition to visual loss, patients experience severe myopia, early-onset cataract, and CME. There is a loss of foveal EZ integrity at a young age, emphasising the need for early diagnosis enabling current and future therapeutic interventions.

17.
Eur J Appl Physiol ; 124(3): 827-836, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37707596

ABSTRACT

PURPOSE: Accumulation of ammonia causes central and peripheral fatigue. This study aimed to investigate the synergistic effect of tea catechins and low-dose ornithine in activating the urea cycle to reduce blood ammonia levels during exercise. METHODS: We used hepatocyte-like cells derived from human-induced pluripotent stem (iPS) cells to assess the effect of tea catechins combined with ornithine on urea cycle activity. The urea production and expression of key genes involved in the metabolism of urea were investigated. We then examined the synergistic improvement in ammonia metabolism by tea catechins in combination with ornithine in a human pilot study. RESULTS: Tea catechins combined with ornithine increased urea cycle activity in hepatocyte-like cells derived from human iPS cells. Intake of 538.6 mg of tea catechins with 1592 mg of ornithine for 2 consecutive days during exercise loading suppressed the exercise-induced increase in the blood ammonia concentration as well as stabilized blood glucose levels. CONCLUSION: Controlling the levels of ammonia, a toxic waste produced in the body, is important in a variety of situations, including exercise. The present study suggests that a heterogeneous combination of polyphenols and amino acids efficiently suppresses elevated ammonia during exercise in humans by a mechanism that includes urea cycle activation. TRIAL REGISTRATION: This study was registered in the University Hospital Medical Information Network Clinical Trial Registry (No. UMIN000035484, dated January 8, 2019).


Subject(s)
Catechin , Ornithine , Humans , Pilot Projects , Ornithine/pharmacology , Ornithine/metabolism , Catechin/pharmacology , Ammonia , Urea/metabolism , Tea/chemistry
18.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33419955

ABSTRACT

Horizontal gene transfer (HGT) is an important source of novelty in eukaryotic genomes. This is particularly true for the ochrophytes, a diverse and important group of algae. Previous studies have shown that ochrophytes possess a mosaic of genes derived from bacteria and eukaryotic algae, acquired through chloroplast endosymbiosis and from HGTs, although understanding of the time points and mechanisms underpinning these transfers has been restricted by the depth of taxonomic sampling possible. We harness an expanded set of ochrophyte sequence libraries, alongside automated and manual phylogenetic annotation, in silico modeling, and experimental techniques, to assess the frequency and functions of HGT across this lineage. Through manual annotation of thousands of single-gene trees, we identify continuous bacterial HGT as the predominant source of recently arrived genes in the model diatom Phaeodactylum tricornutum Using a large-scale automated dataset, a multigene ochrophyte reference tree, and mathematical reconciliation of gene trees, we note a probable elevation of bacterial HGTs at foundational points in diatom evolution, following their divergence from other ochrophytes. Finally, we demonstrate that throughout ochrophyte evolutionary history, bacterial HGTs have been enriched in genes encoding secreted proteins. Our study provides insights into the sources and frequency of HGTs, and functional contributions that HGT has made to algal evolution.


Subject(s)
Cyanobacteria/genetics , Diatoms/genetics , Gene Transfer, Horizontal/genetics , Phylogeny , Chloroplasts/genetics , DNA Fingerprinting/methods , Genome/genetics , Symbiosis/genetics
19.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000307

ABSTRACT

Hydronephrosis, the dilation of kidneys due to abnormal urine retention, occurs spontaneously in certain inbred mouse strains. In humans, its occurrence is often attributed to acquired urinary tract obstructions in adults, whereas in children, it can be congenital. However, the genetic factors underlying hydronephrosis pathogenesis remain unclear. We investigated the cause of hydronephrosis by analyzing tetraspanin 7 (Tspan7) gene-modified mice, which had shown a high incidence of hydronephrosis-like symptoms. We found that these mice were characterized by low liver weights relative to kidney weights and elevated blood ammonia levels, suggesting liver involvement in hydronephrosis. Gene expression analysis of the liver suggested that dysfunction of ornithine transcarbamylase (OTC), encoded by the X chromosome gene Otc and involved in the urea cycle, may contribute as a congenital factor in hydronephrosis. This OTC dysfunction may be caused by genomic mutations in X chromosome genes contiguous to Otc, such as Tspan7, or via the genomic manipulations used to generate transgenic mice, including the introduction of Cre recombinase DNA cassettes and cleavage of loxP by Cre recombinase. Therefore, caution should be exercised in interpreting the hydronephrosis phenotype observed in transgenic mice as solely a physiological function of the target gene.


Subject(s)
Hydronephrosis , Mice, Transgenic , Phenotype , Animals , Hydronephrosis/genetics , Mice , Tetraspanins/genetics , Tetraspanins/metabolism , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Liver/metabolism , Liver/pathology , Disease Models, Animal , Kidney/pathology , Kidney/metabolism , Male
20.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063173

ABSTRACT

The gyrate atrophy of the choroid and retina (GACR) is a rare genetic disease for which no definitive cure is available. GACR is due to the deficit of ornithine aminotransferase (hOAT), a pyridoxal 5'-phosphate-dependent enzyme responsible for ornithine catabolism. The hallmark of the disease is plasmatic ornithine accumulation, which damages retinal epithelium leading to progressive vision loss and blindness within the fifth decade. Here, we characterized the biochemical properties of tetrameric and dimeric hOAT and evaluated hOAT loaded in red blood cells (RBCs) as a possible enzyme replacement therapy (ERT) for GACR. Our results show that (i) hOAT has a relatively wide specificity for amino acceptors, with pyruvate being the most suitable candidate for ornithine catabolism within RBCs; (ii) both the tetrameric and dimeric enzyme can be loaded in RBC retaining their activity; and (iii) hOAT displays reduced stability in plasma, but is partly protected from inactivation upon incubation in a mixture mimicking the intracellular erythrocyte environment. Preliminary ex vivo experiments indicate that hOAT-loaded RBCs are able to metabolize extracellular ornithine at a concentration mimicking that found in patients, both in buffer and, although with lower efficiency, in plasma. Overall, our data provide a proof of concept that an RBC-mediated ERT is feasible and can be exploited as a new therapeutic approach in GACR.


Subject(s)
Enzyme Replacement Therapy , Erythrocytes , Gyrate Atrophy , Ornithine-Oxo-Acid Transaminase , Ornithine , Humans , Ornithine-Oxo-Acid Transaminase/metabolism , Ornithine-Oxo-Acid Transaminase/genetics , Gyrate Atrophy/drug therapy , Gyrate Atrophy/metabolism , Gyrate Atrophy/therapy , Erythrocytes/metabolism , Ornithine/metabolism , Enzyme Replacement Therapy/methods , Retina/metabolism , Retina/pathology , Choroid/metabolism , Choroid/pathology
SELECTION OF CITATIONS
SEARCH DETAIL