Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 292
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(7): e2201946119, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745797

ABSTRACT

Plants will experience considerable changes in climate within their geographic ranges over the next several decades. They may respond by exhibiting niche flexibility and adapting to changing climates. Alternatively, plant taxa may exhibit climate fidelity, shifting their geographic distributions to track their preferred climates. Here, we examine the responses of plant taxa to changing climates over the past 18,000 y to evaluate the extent to which the 16 dominant plant taxa of North America have exhibited climate fidelity. We find that 75% of plant taxa consistently exhibit climate fidelity over the past 18,000 y, even during the times of most extreme climate change. Of the four taxa that do not consistently exhibit climate fidelity, three-elm (Ulmus), beech (Fagus), and ash (Fraxinus)-experience a long-term shift in their realized climatic niche between the early Holocene and present day. Plant taxa that migrate longer distances better maintain consistent climatic niches across transition periods during times of the most extreme climate change. Today, plant communities with the highest climate fidelity are found in regions with high topographic and microclimate heterogeneity that are expected to exhibit high climate resilience, allowing plants to shift distributions locally and adjust to some amount of climate change. However, once the climate change buffering of the region is exceeded, these plant communities will need to track climates across broader landscapes but be challenged to do so because of the low habitat connectivity of the regions.


Subject(s)
Climate Change , Plants , Ecosystem , North America , Microclimate
2.
Proc Natl Acad Sci U S A ; 120(42): e2307520120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37816056

ABSTRACT

Isolation of the Caribbean Sea from the tropical Eastern Pacific by uplift of the Isthmus of Panama in the late Pliocene was associated with major, taxonomically variable, shifts in Caribbean biotic composition, and extinction, but inferred causes of these biological changes have remained elusive. We addressed this through falsifiable hypotheses about how independently determined historical changes in oceanographic conditions may have been responsible. The most striking environmental change was a sharp decline in upwelling intensity as measured from decreases in intra-annual fluctuations in temperature and consequently in planktonic productivity. We then hypothesized three general categories of biological response based upon observed differences in natural history between the oceans today. These include changes in feeding ecology, life histories, and habitats. As expected, suspension feeders and predators became rarer as upwelling declined. However, predicted increases in benthic productivity by reef corals, and benthic algae were drawn out over more than 1 Myr as seagrass and coral reef habitats proliferated; a shift that was itself driven by declining upwelling. Similar time lags occurred for predicted shifts in reproductive life history characteristics of bivalves, gastropods, and bryozoans. Examination of the spatial variability of biotic change helps to understand the time lags. Many older species characteristic of times before environmental conditions had changed tended to hang on in progressively smaller proportions of locations until they became extinct as expected from metapopulation theory and the concept of extinction debt. Faunal turnover may not occur until a million or more years after the environmental changes ultimately responsible.


Subject(s)
Anthozoa , Ecosystem , Animals , Caribbean Region , Ecology , Coral Reefs
3.
Proc Natl Acad Sci U S A ; 120(17): e2217872120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068225

ABSTRACT

Extant terrestrial vertebrates, including birds, have a panoply of symbiotic relationships with many insects and arachnids, such as parasitism or mutualism. Yet, identifying arthropod-vertebrate symbioses in the fossil record has been based largely on indirect evidence; findings of direct association between arthropod guests and dinosaur host remains are exceedingly scarce. Here, we present direct and indirect evidence demonstrating that beetle larvae fed on feathers from an undetermined theropod host (avian or nonavian) 105 million y ago. An exceptional amber assemblage is reported of larval molts (exuviae) intimately associated with plumulaceous feather and other remains, as well as three additional amber pieces preserving isolated conspecific exuviae. Samples were found in the roughly coeval Spanish amber deposits of El Soplao, San Just, and Peñacerrada I. Integration of the morphological, systematic, and taphonomic data shows that the beetle larval exuviae, belonging to three developmental stages, are most consistent with skin/hide beetles (family Dermestidae), an ecologically important group with extant keratophagous species that commonly inhabit bird and mammal nests. These findings show that a symbiotic relationship involving keratophagy comparable to that of beetles and birds in current ecosystems existed between their Early Cretaceous relatives.


Subject(s)
Coleoptera , Dinosaurs , Animals , Dinosaurs/anatomy & histology , Feathers/anatomy & histology , Symbiosis , Amber , Ecosystem , Fossils , Birds/anatomy & histology , Biological Evolution , Mammals
4.
Proc Natl Acad Sci U S A ; 120(43): e2306815120, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37844232

ABSTRACT

Recent global changes associated with anthropogenic activities are impacting ecological systems globally, giving rise to the Anthropocene. Critical reorganization of biological communities and biodiversity loss are expected to accelerate as anthropogenic global change continues. Long-term records offer context for understanding baseline conditions and those trajectories that are beyond the range of normal fluctuation seen over recent millennia: Are we causing changes that are fundamentally different from changes in the past? Using a rich dataset of late Quaternary pollen records, stored in the open-access and community-curated Neotoma database, we analyzed changes in biodiversity and community composition since the end Pleistocene in North America. We measured taxonomic richness, short-term taxonomic loss and gain, first/last appearances (FAD/LAD), and abrupt community change. For all analyses, we incorporated age-model uncertainty and accounted for differences in sample size to generate conservative estimates. The most prominent signals of elevated vegetation change were seen during the Pleistocene-Holocene transition and since 200 calendar years before present (cal YBP). During the Pleistocene-Holocene transition, abrupt changes and FADs were elevated, and from 200 to -50 cal YBP, we found increases in short-term taxonomic loss, FADs, LADs, and abrupt changes. Taxonomic richness declined from ~13,000 cal YBP until about 6,000 cal YBP and then increased until the present, reaching levels seen during the end Pleistocene. Regionally, patterns were highly variable. These results show that recent changes associated with anthropogenic impacts are comparable to the landscape changes that took place as we moved from a glacial to interglacial world.


Subject(s)
Biodiversity , Ecosystem , Pollen , North America , Biota
5.
Proc Natl Acad Sci U S A ; 119(42): e2202852119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215482

ABSTRACT

Fossilized leaves provide the longest running record of hyperdiverse plant-insect herbivore associations. Reconstructions of these relationships over deep time indicate strong links between environmental conditions, herbivore diversity, and feeding damage on leaves. However, herbivory has not been compared between the past and the modern era, which is characterized by intense anthropogenic environmental change. Here, we present estimates for damage frequencies and diversities on fossil leaves from the Late Cretaceous (66.8 Ma) through the Pleistocene (2.06 Ma) and compare these estimates with Recent (post-1955) leaves collected via paleobotanical methods from modern ecosystems: Harvard Forest, United States; the Smithsonian Environmental Research Center, United States; and La Selva, Costa Rica. Total damage frequency, measured as the percentage of leaves with any herbivore damage, within modern ecosystems is greater than any fossil locality within this record. This pattern is driven by increased frequencies across nearly all functional feeding groups within the Recent. Diversities of total, specialized, and mining damage types are elevated within the Recent compared with fossil floras. Our results demonstrate that plants in the modern era are experiencing unprecedented levels of insect damage, despite widespread insect declines. Human influence, such as the rate of global climate warming, influencing insect feeding and timing of life cycle processes along with urbanization and the introduction of invasive plant and insect species may drive elevated herbivory. This research suggests that the strength of human influence on plant-insect interactions is not controlled by climate change alone but rather, the way in which humans interact with terrestrial landscape.


Subject(s)
Fossils , Herbivory , Animals , Ecosystem , Forests , Humans , Insecta , Plant Leaves , Plants
6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35193983

ABSTRACT

Researchers have long debated the degree to which Native American land use altered landscapes in the Americas prior to European colonization. Human-environment interactions in southern South America are inferred from new pollen and charcoal data from Laguna El Sosneado and their comparison with high-resolution paleoenvironmental records and archaeological/ethnohistorical information at other sites along the eastern Andes of southern Argentina and Chile (34-52°S). The records indicate that humans, by altering ignition frequency and the availability of fuels, variously muted or amplified the effects of climate on fire regimes. For example, fire activity at the northern and southern sites was low at times when the climate and vegetation were suitable for burning but lacked an ignition source. Conversely, abundant fires set by humans and infrequent lightning ignitions occurred during periods when warm, dry climate conditions coincided with ample vegetation (i.e., fuel) at midlatitude sites. Prior to European arrival, changes in Native American demography and land use influenced vegetation and fire regimes locally, but human influences were not widely evident until the 16th century, with the introduction of nonnative species (e.g., horses), and then in the late 19th century, as Euro-Americans targeted specific resources to support local and national economies. The complex interactions between past climate variability, human activities, and ecosystem dynamics at the local scale are overlooked by approaches that infer levels of land use simply from population size or that rely on regionally composited data to detect drivers of past environmental change.


Subject(s)
Anthropogenic Effects , Ecosystem , Climate Change , Humans , South America
7.
Ecol Lett ; 27(6): e14448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814285

ABSTRACT

Linking the species interactions occurring at the scale of local communities to their potential impact at evolutionary timescales is challenging. Here, we used the high-resolution fossil record of mammals from the Iberian Peninsula to reconstruct a timeseries of trophic networks spanning more than 20 million years and asked whether predator-prey interactions affected regional extinction patterns. We found that, despite small changes in species richness, trophic networks showed long-term trends, gradually losing interactions and becoming sparser towards the present. This restructuring of the ecological networks was driven by the loss of medium-sized herbivores, which reduced prey availability for predators. The decrease in prey availability was associated with predator longevity, such that predators with less available prey had greater extinction risk. These results not only reveal long-term trends in network structure but suggest that prey species richness in ecological communities may shape large scale patterns of extinction and persistence among predators.


Subject(s)
Extinction, Biological , Food Chain , Fossils , Predatory Behavior , Animals , Spain , Mammals/physiology , Carnivora/physiology , Biodiversity , Biological Evolution
8.
J Hum Evol ; 190: 103508, 2024 05.
Article in English | MEDLINE | ID: mdl-38599140

ABSTRACT

The Mount Galili Formation in the Afar region, Ethiopia, samples a critical time in hominin evolution, 4.4 to 3.8 Ma, documenting the last appearance of Ardipithecus and the origin of Australopithecus. This period is also important in the evolution of cercopithecids, especially the origin of Theropithecus in general and Theropithecus oswaldi lineage in particular. Galili has provided a total of 655 cercopithecid specimens that include crania, mandibles, isolated teeth and postcrania. All the fossils were recovered from the Lasdanan (5.3-4.43 Ma), Dhidinley (4.43-3.9 Ma) and Shabeley Laag (∼3.92-3.8 Ma) Members. Here, we described and analyzed 362 fossils employing both qualitative and quantitative methods. Descriptions of the material were supplemented with dental metrics and cranial shape analysis using three-dimensional geometric morphometrics. Results indicate the presence of at least six cercopithecid taxa: Theropithecus oswaldi serengetensis (n = 28), Theropithecus sp. (n = 2), three non-Theropithecus papionin groups (n = 134) and one colobine-size group (n = 58). The T. o. serengetensis represents the earliest form of the lineage, documented from ∼3.9 Ma Galili sediments. The three Galili papionins include a smaller taxon, a medium-sized taxon comparable to Pliopapio alemui and a large papionin overlapping in size with Soromandrillus, Gorgopithecus and Dinopithecus. The majority of Galili colobines have closest affinities to Kuseracolobus aramisi and some overlap with other taxa. Papionins dominate the Galili cercopithecid collection, although colobines are still fairly common (approximately 25% of the sample). Thus, Galili sample is like Kanapoi (4.2-4.1 Ma) and Gona (5.2-3.9 Ma) localities but distinct from Aramis, suggesting paleoecological similarity to the former sites. On the other hand, Theropithecus is less abundant at Galili than geologically younger Hadar (3.4-3.2 Ma) and Woranso-Mille (3.8-3.6 Ma) sites. Whether this difference is due to sampling, time or landscape variation requires further investigation.


Subject(s)
Hominidae , Theropithecus , Animals , Cercopithecidae , Fossils , Ethiopia , Skull/anatomy & histology
9.
J Hum Evol ; 191: 103546, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795630

ABSTRACT

Vegetation change in eastern Africa during the Pliocene would have had an important impact on hominin adaptation and ecology, and it may have been a key driver of hominin macroevolution, including the extinction of Australopithecus and the emergence of Paranthropus and Homo. The Pliocene paleoanthropological site of Laetoli in Tanzania provides an opportunity to investigate the relationship between vegetation change and hominin turnover because it encompasses the time period when grass cover was spreading across eastern Africa and because hominin species turnover occurred locally at Laetoli, with Paranthropus aethiopicus in the Upper Ndolanya Beds (UNB) replacing Australopithecus afarensis in the Upper Laetolil Beds (ULB). However, it remains unresolved how the vegetation of the UNB and the ULB differed from each other. To examine differences between the two stratigraphic units, multiple proxies-hypsodonty, mesowear, and stable carbon isotopes of tooth enamel (δ13Cenamel)-are used to infer the diets of large herbivores and compare the dietary guild structure of the large herbivore communities. All three proxies indicate an increase in the abrasiveness and C4-content in the diets of the large herbivores in the UNB relative to those in the ULB. After inferring the diets of species based on all three proxies, the large herbivore community of the UNB had a greater proportion of grazers and a smaller proportion of mixed feeders than in the ULB but maintained a similar proportion of browsers and frugivores. The ULB community has few modern-day analogs, whereas the UNB community is most closely analogous to those in modern African grasslands. Thus, hominin turnover at Laetoli is associated with an increase in grass cover within a woodland-grassland mosaic and is part of a broader transformation of the herbivore community structure.


Subject(s)
Fossils , Herbivory , Hominidae , Animals , Tanzania , Hominidae/physiology , Diet , Biological Evolution , Carbon Isotopes/analysis , Dental Enamel
10.
J Hum Evol ; 190: 103498, 2024 05.
Article in English | MEDLINE | ID: mdl-38581918

ABSTRACT

The Homa Peninsula, in southwestern Kenya, continues to yield insights into Oldowan hominin landscape behaviors. The Late Pliocene locality of Nyayanga (∼3-2.6 Ma) preserves some of the oldest Oldowan tools. At the Early Pleistocene locality of Kanjera South (∼2 Ma) toolmakers procured a diversity of raw materials from over 10 km away and strategically reduced them in a grassland-dominated ecosystem. Here, we report findings from Sare-Abururu, a younger (∼1.7 Ma) Oldowan locality approximately 12 km southeast of Kanjera South and 18 km east of Nyayanga. Sare-Abururu has yielded 1754 artifacts in relatively undisturbed low-energy silts and sands. Stable isotopic analysis of pedogenic carbonates suggests that hominin activities were carried out in a grassland-dominated setting with similar vegetation structure as documented at Kanjera South. The composition of a nearby paleo-conglomerate indicates that high-quality stone raw materials were locally abundant. Toolmakers at Sare-Abururu produced angular fragments from quartz pebbles, representing a considerable contrast to the strategies used to reduce high quality raw materials at Kanjera South. Although lithic reduction at Sare-Abururu was technologically simple, toolmakers proficiently produced cutting edges, made few mistakes and exhibited a mastery of platform management, demonstrating that expedient technical strategies do not necessarily indicate a lack of skill or suitable raw materials. Lithic procurement and reduction patterns on the Homa Peninsula appear to reflect variation in local resource contexts rather than large-scale evolutionary changes in mobility, energy budget, or toolmaker cognition.


Subject(s)
Hominidae , Animals , Kenya , Ecosystem , Biological Evolution , Carbonates , Archaeology , Fossils
11.
Am J Bot ; 111(1): e16263, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38014690

ABSTRACT

PREMISE: Plant traits and insect herbivory have been highly studied within the modern record but only to a limited extent within the paleontological. Preservation influences what can be measured within the fossil record, but modern methods are also not compatible with paleobotanical methods. To remedy this knowledge gap, a comparable framework was created here using modern and paleobotanical methods, allowing for future comparisons within the fossil record. METHODS: Insect feeding damage on selected tree species at Harvard Forest, the Smithsonian Environmental Research Center, and La Selva were characterized using the damage type system prevalent within paleobotanical studies and compared with leaf traits. Linear models and random forest analyses tested the influence of leaf traits on total, specialized, gall, and mine frequency and diversity. RESULTS: Structural traits like leaf dry mass per area and palatability traits, including lignin and phosphorus concentrations, are important variables affecting gall and mine damage. The significance and strength of trait-herbivory relationships varied across forest types, which is likely driven by differences in local insect populations. CONCLUSIONS: This work addresses the persistent gap between modern and paleoecological studies focusing on the influence of leaf traits on insect herbivory. This is important as modern climate change alters our understanding of plant-insect interactions, providing a need for contextualizing these relationships within evolutionary time. The fossil record provides information on terrestrial response to past climatic events and, thus, should be implemented when considering how to preserve biodiversity under current and future global change.


Subject(s)
Ecosystem , Insecta , Animals , Insecta/physiology , Herbivory , Biodiversity , Plant Leaves/physiology
12.
Naturwissenschaften ; 111(3): 22, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607380

ABSTRACT

Documentation of cryptic trilobite behavior has presented important insights into the paleoecology of this fully extinct arthropod group. One such example is the preservation of trilobites inside the remains of larger animals. To date, evidence for trilobites within cephalopods, gastropods, hyoliths, and other trilobites has been presented. Importantly, most of these interactions show trilobite molts, suggesting that trilobites used larger animals for protection during molting. To expand the record of molted trilobites within cephalopods, we present a unique case of a Toxochasmops vormsiensis trilobite within the body chamber of a Gorbyoceras textumaraneum nautiloid from the Upper Ordovician Kõrgessaare Formation of Estonia. By examining this material, we present new insights into the ecology of pterygometopid trilobites, highlighting how these forms used large cephalopods as areas to successfully molt.


Subject(s)
Arthropods , Molting , Animals , Ecology , Estonia
13.
Oecologia ; 204(3): 467-489, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38517529

ABSTRACT

Paleoenvironmental reconstructions of fossil sites based on isotopic analyses of enamel typically rely on data from multiple herbivore taxa, with the assumption that this dietary spectrum represents the community's isotopic range and provides insights into local or regional vegetation patterns. However, it remains unclear how representative the sampled taxa are of the broader herbivore community and how well these data correspond to specific ecosystems. Verifying these underlying assumptions is essential to refining the utility of enamel isotopic values for paleoenvironmental reconstructions. This study explores potential links between modern herbivore community carbon isotopic enamel spectra, biome types, and climate in sub-Saharan Africa. This region is one of the most comprehensively isotopically sampled areas globally and is of particular relevance to hominin evolution. Our extensive data compilation reveals that published enamel isotopic data from sub-Saharan Africa typically sample only a small percentage of the taxa documented at most localities and that some biome types (e.g., subtropical savannas) are dramatically overrepresented relative to others (e.g., forests) in these modern data sets. Multiple statistical analyses, including linear models and cluster analyses, revealed weak relationships of associated mammalian herbivore enamel isotopic values, biome type, and climate parameters. These results confound any simple assumptions about how community isotopic profiles map onto specific environments, highlighting the need for more precise strategic approaches in extending isotopic frameworks into the past for paleoecological reconstructions. Developing more refined modern analogs will ultimately allow us to more accurately characterize the isotopic spectra of paleo-communities and link isotopic dietary signatures to specific ecosystems.


Subject(s)
Ecosystem , Hominidae , Animals , Carbon Isotopes/analysis , Fossils , Herbivory , Mammals
14.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161283

ABSTRACT

The 2020 fire season punctuated a decades-long trend of increased fire activity across the western United States, nearly doubling the total area burned in the central Rocky Mountains since 1984. Understanding the causes and implications of such extreme fire seasons, particularly in subalpine forests that have historically burned infrequently, requires a long-term perspective not afforded by observational records. We place 21st century fire activity in subalpine forests in the context of climate and fire history spanning the past 2,000 y using a unique network of 20 paleofire records. Largely because of extensive burning in 2020, the 21st century fire rotation period is now 117 y, reflecting nearly double the average rate of burning over the past 2,000 y. More strikingly, contemporary rates of burning are now 22% higher than the maximum rate reconstructed over the past two millennia, during the early Medieval Climate Anomaly (MCA) (770 to 870 Common Era), when Northern Hemisphere temperatures were ∼0.3 °C above the 20th century average. The 2020 fire season thus exemplifies how extreme events are demarcating newly emerging fire regimes as climate warms. With 21st century temperatures now surpassing those during the MCA, fire activity in Rocky Mountain subalpine forests is exceeding the range of variability that shaped these ecosystems for millennia.


Subject(s)
Fires , Forests , Climate , Colorado , Geography , Statistics as Topic , Time Factors , Wyoming
15.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33723011

ABSTRACT

Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al., Nat. Clim. Chang. (3), 673-677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al., Philos. Trans. A Math. Phys. Eng. Sci. (371), 20130097 (2013) and Post et al., SciAdv (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a ∼400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic-documented here by multiple proxies-likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future.


Subject(s)
Climate Change , DNA, Ancient/analysis , DNA, Plant/analysis , Plant Dispersal , Pollen/genetics , Arctic Regions , Fossils , Geologic Sediments/analysis , Lakes , Paleontology
16.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33397717

ABSTRACT

Cities and agricultural fields encroach on the most fertile, habitable terrestrial landscapes, fundamentally altering global ecosystems. Today, 75% of terrestrial ecosystems are considerably altered by human activities, and landscape transformation continues to accelerate. Human impacts are one of the major drivers of the current biodiversity crisis, and they have had unprecedented consequences on ecosystem function and rates of species extinctions for thousands of years. Here we use the fossil record to investigate whether changes in geographic range that could result from human impacts have altered the climatic niches of 46 species covering six mammal orders within the contiguous United States. Sixty-seven percent of the studied mammals have significantly different climatic niches today than they did before the onset of the Industrial Revolution. Niches changed the most in the portions of the range that overlap with human-impacted landscapes. Whether by forcible elimination/introduction or more indirect means, large-bodied dietary specialists have been extirpated from climatic envelopes that characterize human-impacted areas, whereas smaller, generalist mammals have been facilitated, colonizing these same areas of the climatic space. Importantly, the climates where we find mammals today do not necessarily represent their past habitats. Without mitigation, as we move further into the Anthropocene, we can anticipate a low standing biodiversity dominated by small, generalist mammals.


Subject(s)
Agriculture , Animal Distribution , Climate , Fossils , Mammals , Urbanization , Animals , Body Size , Conservation of Natural Resources , Diet , Ecosystem , Humans , Time Factors , United States
17.
Am Nat ; 202(6): E147-E162, 2023 12.
Article in English | MEDLINE | ID: mdl-38033183

ABSTRACT

AbstractPaleoecological estimation is fundamental to the reconstruction of evolutionary and environmental histories. The ant fossil record preserves a range of species in three-dimensional fidelity and chronicles faunal turnover across the Cretaceous and Cenozoic; taxonomically rich and ecologically diverse, ants are an exemplar system to test new methods of paleoecological estimation in evaluating hypotheses. We apply a broad extant ecomorphological dataset to evaluate random forest machine learning classification in predicting the total ecological breadth of extinct and enigmatic hell ants. In contrast to previous hypotheses of extinction-prone arboreality, we find that hell ants were primarily leaf litter or ground-nesting and foraging predators, and by comparing ecospace occupations of hell ants and their extant analogs, we recover a signature of ecomorphological turnover across temporally and phylogenetically distinct lineages on opposing sides of the Cretaceous-Paleogene boundary. This paleoecological predictive framework is applicable across lineages and may provide new avenues for testing hypotheses over deep time.


Subject(s)
Ants , Animals , Biological Evolution , Fossils
18.
Glob Chang Biol ; 29(6): 1530-1544, 2023 03.
Article in English | MEDLINE | ID: mdl-36495084

ABSTRACT

Climate warming is leading to permafrost thaw in northern peatlands, and current predictions suggest that thawing will drive greater surface wetness and an increase in methane emissions. Hydrology largely drives peatland vegetation composition, which is a key element in peatland functioning and thus in carbon dynamics. These processes are expected to change. Peatland carbon accumulation is determined by the balance between plant production and peat decomposition. But both processes are expected to accelerate in northern peatlands due to warming, leading to uncertainty in future peatland carbon budgets. Here, we compile a dataset of vegetation changes and apparent carbon accumulation data reconstructed from 33 peat cores collected from 16 sub-arctic peatlands in Fennoscandia and European Russia. The data cover the past two millennia that has undergone prominent changes in climate and a notable increase in annual temperatures toward present times. We show a pattern where European sub-Arctic peatland microhabitats have undergone a habitat change where currently drier habitats dominated by Sphagnum mosses replaced wetter sedge-dominated vegetation and these new habitats have remained relatively stable over the recent decades. Our results suggest an alternative future pathway where sub-arctic peatlands may at least partly sustain dry vegetation and enhance the carbon sink capacity of northern peatlands.


Subject(s)
Carbon Sequestration , Sphagnopsida , Ecosystem , Soil , Carbon
19.
J Hum Evol ; 177: 103325, 2023 04.
Article in English | MEDLINE | ID: mdl-36805971

ABSTRACT

Since the discovery of Paranthropus boisei alongside early Homo at Olduvai Gorge and East Turkana, paleoanthropologists have attempted to understand the different evolutionary paths of these two hominin lineages. Conventional wisdom is that their prolonged phase of sympatry in eastern Africa reflects different adaptive strategies, with early Homo characterized as the ecologically flexible generalist and Paranthropus as the less versatile specialist. If correct, this should imply differences in their use of ancient environments, with early Homo occurring in a broader range of environmental contexts than Paranthropus. This prediction has yet to be subject to rigorous quantitative evaluation. In this study, we use the 2.0-1.4 Ma fossil bovid assemblages associated with early Homo and P. boisei at East Turkana (Kenya) to quantify the breadth of their environmental associations. We find that early Homo occurs in faunal assemblages indicative of a broader range of environments than P. boisei. A null model taking sampling into account shows that the broad environmental associations of early Homo are indistinguishable from random, whereas P. boisei is one of just a handful of large mammal taxa from East Turkana that has a narrower range of environmental associations than expected by chance. These results support the characterization of P. boisei as an ecological specialist relative to the more generalist Homo. Moreover, the narrow environmental associations observed of P. boisei, unlike those of almost all other C4 grass-consumers in the Turkana Basin, suggest that it likely did not feed on a spatially widespread C4 resource like the leaves, seeds, or rhizomes of grass.


Subject(s)
Hominidae , Animals , Cattle , Fossils , Biological Evolution , Environment , Kenya , Mammals
20.
J Hum Evol ; 185: 103441, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857126

ABSTRACT

Hispanopithecus laietanus from the Late Miocene (9.8 Ma) of Can Llobateres 1 (CLL1; Vallès-Penedès Basin, NE Iberian Peninsula) represents one of the latest occurrences of fossil apes in Western mainland Europe, where they are last recorded at ∼9.5 Ma. The paleoenvironment of CLL1 is thus relevant for understanding the extinction of European hominoids. To refine paleoenvironmental inferences for CLL1, we apply ecometric models based on functional crown type (FCT) variables-a scoring scheme devised to capture macroscopic functional traits of occlusal shape and wear surfaces of herbivorous large mammal molars. Paleotemperature and paleoprecipitation estimates for CLL1 are provided based on published regional regression models linking average FCT of large herbivorous mammal communities to climatic conditions. A mapping to Whittaker's present-day biome classification is also attempted based on these estimates, as well as a case-based reasoning via canonical variate analysis of FCT variables from five relevant biomes. Estimates of mean annual temperature (25 °C) and mean annual precipitation (881 mm) classify CLL1 as a tropical seasonal forest/savanna, only in partial agreement with the canonical variate analysis results, which classify CLL1 as a tropical rainforest with a higher probability. The former biome agrees better with previous inferences derived from fossil plants and mammals, as well as preliminary isotopic data. The misclassification of CLL1 as a tropical forest is attributed to the mixture of forest-adapted taxa with others adapted to more open environments, given that faunal and plant composition indicates the presence of a dense wetland/riparian forest with more open woodlands nearby. The tested FCT ecometric approaches do not provide unambiguous biome classification for CLL1. Nevertheless, our results are consistent with those from other approaches, thus suggesting that FCT variables are potentially useful to investigate paleoenvironmental changes through time and space-including those that led to the extinction of European Miocene apes.


Subject(s)
Hominidae , Tooth , Animals , Fossils , Europe , Ecosystem , Plants , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL