Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cell ; 183(2): 347-362.e24, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33064988

ABSTRACT

Neoantigens arise from mutations in cancer cells and are important targets of T cell-mediated anti-tumor immunity. Here, we report the first open-label, phase Ib clinical trial of a personalized neoantigen-based vaccine, NEO-PV-01, in combination with PD-1 blockade in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. This analysis of 82 patients demonstrated that the regimen was safe, with no treatment-related serious adverse events observed. De novo neoantigen-specific CD4+ and CD8+ T cell responses were observed post-vaccination in all of the patients. The vaccine-induced T cells had a cytotoxic phenotype and were capable of trafficking to the tumor and mediating cell killing. In addition, epitope spread to neoantigens not included in the vaccine was detected post-vaccination. These data support the safety and immunogenicity of this regimen in patients with advanced solid tumors (Clinicaltrials.gov: NCT02897765).


Subject(s)
Cancer Vaccines/immunology , Immunotherapy/methods , Precision Medicine/methods , Aged , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Female , Humans , Kaplan-Meier Estimate , Male , Melanoma/drug therapy , Melanoma/immunology , Middle Aged , Mutation , Nivolumab/therapeutic use , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/immunology
2.
Cancer Immunol Immunother ; 72(7): 2045-2056, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36795124

ABSTRACT

Immunotherapy based on immune checkpoint inhibitors (ICIs) has provided revolutionary results in treating various cancers. However, its efficacy in colorectal cancer (CRC), especially in microsatellite stability-CRC, is limited. This study aimed to observe the efficacy of personalized neoantigen vaccine in treating MSS-CRC patients with recurrence or metastasis after surgery and chemotherapy. Candidate neoantigens were analyzed from whole-exome and RNA sequencing of tumor tissues. The safety and immune response were assessed through adverse events and ELISpot. The clinical response was evaluated by progression-free survival (PFS), imaging examination, clinical tumor marker detection, circulating tumor DNA (ctDNA) sequencing. Changes in health-related quality of life were measured by the FACT-C scale. A total of six MSS-CRC patients with recurrence or metastasis after surgery and chemotherapy were administered with personalized neoantigen vaccines. Neoantigen-specific immune response was observed in 66.67% of the vaccinated patients. Four patients remained progression-free up to the completion of clinical trial. They also had a significantly longer progression-free survival time than the other two patients without neoantigen-specific immune response (19 vs. 11 months). Changes in health-related quality of life improved for almost all patients after the vaccine treatment. Our results shown that personalized neoantigen vaccine therapy is likely to be a safe, feasible and effective strategy for MSS-CRC patients with postoperative recurrence or metastasis.


Subject(s)
Cancer Vaccines , Colorectal Neoplasms , Humans , Antigens, Neoplasm , Cancer Vaccines/therapeutic use , Colorectal Neoplasms/genetics , Immunotherapy/methods , Immunotherapy, Active , Microsatellite Repeats , Quality of Life
3.
Mol Cancer ; 20(1): 41, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33632261

ABSTRACT

mRNA vaccines have become a promising platform for cancer immunotherapy. During vaccination, naked or vehicle loaded mRNA vaccines efficiently express tumor antigens in antigen-presenting cells (APCs), facilitate APC activation and innate/adaptive immune stimulation. mRNA cancer vaccine precedes other conventional vaccine platforms due to high potency, safe administration, rapid development potentials, and cost-effective manufacturing. However, mRNA vaccine applications have been limited by instability, innate immunogenicity, and inefficient in vivo delivery. Appropriate mRNA structure modifications (i.e., codon optimizations, nucleotide modifications, self-amplifying mRNAs, etc.) and formulation methods (i.e., lipid nanoparticles (LNPs), polymers, peptides, etc.) have been investigated to overcome these issues. Tuning the administration routes and co-delivery of multiple mRNA vaccines with other immunotherapeutic agents (e.g., checkpoint inhibitors) have further boosted the host anti-tumor immunity and increased the likelihood of tumor cell eradication. With the recent U.S. Food and Drug Administration (FDA) approvals of LNP-loaded mRNA vaccines for the prevention of COVID-19 and the promising therapeutic outcomes of mRNA cancer vaccines achieved in several clinical trials against multiple aggressive solid tumors, we envision the rapid advancing of mRNA vaccines for cancer immunotherapy in the near future. This review provides a detailed overview of the recent progress and existing challenges of mRNA cancer vaccines and future considerations of applying mRNA vaccine for cancer immunotherapies.


Subject(s)
Cancer Vaccines/immunology , Immunotherapy/methods , Neoplasms/therapy , Vaccines, Synthetic/immunology , Animals , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cancer Vaccines/administration & dosage , Humans , Neoplasms/immunology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Vaccines, Synthetic/administration & dosage , Vaccinology/methods , Vaccinology/trends , mRNA Vaccines
4.
Eur J Neurosci ; 54(3): 5120-5142, 2021 08.
Article in English | MEDLINE | ID: mdl-34107127

ABSTRACT

Glioblastoma (GBM) is the most perilous and highly malignant in all the types of brain tumor. Regardless of the treatment, the diagnosis of the patients in GBM is very poor. The average survival rate is only 21 months after multimodal combinational therapies, which include chemotherapy, radiation, and surgery. Due to the intrusive and infiltrative nature of GBM, it requires elective therapy for specific targeting of tumor cells. Tumor vaccine in a form of immunotherapy has potential to address this need. Nanomedicine-based immunotherapies have clutch the trigger of systemic and specific immune response against tumor cells, which might be the approach to eliminating the unrelieved cancer. In this mechanism, combination of immunomodulators with specific target and appropriate strategic vaccines can stifle tumor anti-immune defense system and/or increase the capabilities of the body to move up immunity against the tumor. Here, we explore the different types of immunotherapies and vaccines for brain tumor treatment and their clinical trials, which bring the feasibility of the future of personalized vaccine of nanomedicine-based immunotherapies for the brain tumor. We believe that immunotherapy could result in a significantly more stable reaction in GBM patients.


Subject(s)
Brain Neoplasms , Cancer Vaccines , Glioblastoma , Brain Neoplasms/therapy , Glioblastoma/therapy , Humans , Immunologic Factors , Immunotherapy
6.
Brief Bioinform ; 17(3): 453-67, 2016 05.
Article in English | MEDLINE | ID: mdl-26174229

ABSTRACT

The immune system is by definition multi-scale because it involves biochemical networks that regulate cell fates across cell boundaries, but also because immune cells communicate with each other by direct contact or through the secretion of local or systemic signals. Furthermore, tumor and immune cells communicate, and this interaction is affected by the tumor microenvironment. Altogether, the tumor-immunity interaction is a complex multi-scale biological system whose analysis requires a systemic view to succeed in developing efficient immunotherapies for cancer and immune-related diseases. In this review we discuss the necessity and the structure of a systems medicine approach for the design of anticancer immunotherapies. We support the idea that the approach must be a combination of algorithms and methods from bioinformatics and patient-data-driven mathematical models conceived to investigate the role of clinical interventions in the tumor-immunity interaction. For each step of the integrative approach proposed, we review the advancement with respect to the computational tools and methods available, but also successful case studies. We particularized our idea for the case of identifying novel tumor-associated antigens and therapeutic targets by integration of patient's immune and tumor profiling in case of aggressive melanoma.


Subject(s)
Neoplasms/immunology , Algorithms , Computational Biology , Humans , Immunotherapy , Systems Analysis
7.
Oncol Rev ; 18: 1374513, 2024.
Article in English | MEDLINE | ID: mdl-38707486

ABSTRACT

Background: Malignant gliomas are known with poor prognosis and low rate of survival among brain tumors. Resection surgery is followed by chemotherapy and radiotherapy in treatment of gliomas which is known as the conventional treatment. However, this treatment method results in low survival rate. Vaccination has been suggested as a type of immunotherapy to increase survival rate of glioma patients. Different types of vaccines have been developed that are mainly classified in two groups including peptide vaccines and cell-based vaccines. However, there are still conflicts about which type of vaccines is more efficient for malignant glioma treatment. Methods: Phase Ⅰ/Ⅱ clinical trials which compared the efficacy and safety of various vaccines with conventional treatments were searched in databases through November 2022. Overall survival (OS) rate, progression free survival (PFS), and OS duration were used for calculation of pooled risk ratio (RR). In addition, fatigue, headache, nausea, diarrhea, and flu-like syndrome were used for evaluating the safety of vaccines therapy in glioma patients. Results: A total of twelve articles were included in the present meta-analysis. Comparison of OS rate between vaccinated groups and control groups who underwent only conventional treatments showed a significant increase in OS rate in vaccinated patients (I2 = 0%, RR = 11.17, 95% CI: 2.460-50.225). PFS rate was better in vaccinated glioma patients (I2 = 83%, RR = 2.87, 95% CI: 1.63-5.03). Assessment of safety demonstrated that skin reaction (I2 = 0.0%, RR = 3.654; 95% CI: 1.711-7.801, p-value = 0.0058) and flu-like syndrome were significantly more frequent adverse effects win vaccinated groups compared to the control group. Subgroup analysis also showed that vaccination leads to better OS duration in recurrent gliomas than primary gliomas, and in LGG than HGG (p-value = 0). On the other hand, personalized vaccines showed better OS duration than non-personalized vaccines (p-value = 0). Conclusion: Vaccination is a type of immunotherapy which shows promising efficacy in treatment of malignant glioma patients in terms of OS, PFS and duration of survival. In addition, AFTV, peptide, and dendritic cell-based vaccines are among the most efficient vaccines for gliomas. Personalized vaccines also showed considerable efficacy for glioma treatments.

8.
Anticancer Res ; 44(9): 3713-3724, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39197920

ABSTRACT

Cancer immunotherapy activates the host immune system against tumor cells and has the potential to lead to the development of innovative strategies for cancer treatment. Neoantigens are non-self-antigens produced by genetic mutations in tumor cells that induce a strong immune response against tumor cells without central immune tolerance. Along with advances in neoantigen analysis technology, the development of vaccines focusing on neoantigens is being accelerated. Whereas there are various platforms for neoantigen vaccines, combined immuno-therapies are being developed simultaneously with the clinical application of synthetic long peptides and mRNA and dendritic-cell (DC)-based vaccines. Personalized DC-based vaccines not only can load various antigens including neoantigens, but also have the potential to elicit a strong immune response in T cells as antigen-presenting cells. In this review, we describe the properties of neoantigens and the basic characteristics of DCs. We also discuss the clinical applications of neoantigen vaccines, focusing on personalized DC-based vaccines, as well as future research and development directions and challenges.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells , Neoplasms , Precision Medicine , Humans , Dendritic Cells/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Antigens, Neoplasm/immunology , Neoplasms/immunology , Neoplasms/therapy , Precision Medicine/methods , Immunotherapy/methods , Animals
9.
Adv Mater ; 36(40): e2407189, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39171954

ABSTRACT

Hematological malignancies (HM) like acute myeloid leukemia (AML) are often intractable. Cancer vaccines possibly inducing robust and broad anti-tumor immune responses may be a promising treatment option for HM. Few effective vaccines against blood cancers are, however, developed to date partly owing to insufficient stimulation of dendritic cells (DCs) in the body and lacking appropriate tumor antigens (Ags). Here it is found that systemic multifunctional nanovaccines consisting of nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and Toll-like receptor 9 (TLR9) agonists - muramyl dipeptide (MDP) and CpG, and tumor cell lysate (TCL) as Ags (MCA-NV) induce potent and broad immunity against AML. MCA-NV show complementary stimulation of DCs and prime homing to lymphoid organs following systemic administration. Of note, in orthotopic AML mouse models, intravenous infusion of different vaccine formulations elicits substantially higher anti-AML efficacies than subcutaneous administration. Systemic MCA-NV cure 78% of AML mice and elicit long-term immune memory with 100% protection from rechallenging AML cells. Systemic MCA-NV can also serve as prophylactic vaccines against the same AML. These systemic nanovaccines utilizing patient TCL as Ags and dual adjuvants to elicit strong, durable, and broad immune responses can provide a personalized immunotherapeutic strategy against AML and other HM.


Subject(s)
Cancer Vaccines , Immunotherapy , Leukemia, Myeloid, Acute , Precision Medicine , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Animals , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Mice , Humans , Nanoparticles/chemistry , Dendritic Cells/immunology , Cell Line, Tumor , Antigens, Neoplasm/immunology , Nod2 Signaling Adaptor Protein/metabolism , Nanovaccines
10.
Cell Rep Med ; 5(5): 101516, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38626769

ABSTRACT

Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Carcinoma, Non-Small-Cell Lung , Cell Differentiation , Dendritic Cells , Lung Neoplasms , T-Lymphocytes , Vaccination , Humans , Dendritic Cells/immunology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Cancer Vaccines/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Male , Female , Middle Aged , Antigens, Neoplasm/immunology , Cell Differentiation/immunology , Aged , T-Lymphocytes/immunology
11.
Front Immunol ; 14: 1246682, 2023.
Article in English | MEDLINE | ID: mdl-37744371

ABSTRACT

Since the successful application of messenger RNA (mRNA) vaccines in preventing COVID-19, researchers have been striving to develop mRNA vaccines for clinical use, including those exploited for anti-tumor therapy. mRNA cancer vaccines have emerged as a promising novel approach to cancer immunotherapy, offering high specificity, better efficacy, and fewer side effects compared to traditional treatments. Multiple therapeutic mRNA cancer vaccines are being evaluated in preclinical and clinical trials, with promising early-phase results. However, the development of these vaccines faces various challenges, such as tumor heterogeneity, an immunosuppressive tumor microenvironment, and practical obstacles like vaccine administration methods and evaluation systems for clinical application. To address these challenges, we highlight recent advances from preclinical studies and clinical trials that provide insight into identifying obstacles associated with mRNA cancer vaccines and discuss potential strategies to overcome them. In the future, it is crucial to approach the development of mRNA cancer vaccines with caution and diligence while promoting innovation to overcome existing barriers. A delicate balance between opportunities and challenges will help guide the progress of this promising field towards its full potential.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , Humans , COVID-19/prevention & control , Neoplasms/genetics , Neoplasms/therapy , mRNA Vaccines , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , Tumor Microenvironment
12.
Adv Mater ; 34(47): e2205950, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36217832

ABSTRACT

Dendritic cells (DCs)-based vaccines are an approved method for inducing potent antigen-specific immune responses to eliminate tumor cells. However, this promising strategy still faces challenges such as tumor-associated antigens (TAAs) loading, lymph node homing, quality control, and other limitations. Here, a personalized DC-mimicking nanovaccine (nanoDC) for stimulation of TAAs-specific T cell populations is developed. The nanoDCs are fabricated using nanoparticles with dendritic structure and membranes from mature bone-marrow-derived cells (BMDCs). Mature BMDCs are stimulated by nanostructures assembled from Escherichia coli and tumor cells to efficiently deliver TAAs and induce BMDCs maturation through the stimulator of interferon genes (STING) pathway. By maintaining co-stimulatory markers, molecules class I (MHC-I) antigen complexes and lymphocyte homing receptors, nanoDCs efficiently migrate to lymph nodes and generate potent antigen-specific T cell responses. Consequently, vaccination with nanoDCs strongly inhibits the tumor growth and metastases formation in vivo. In particular, nanoDCs can also induce memory T cells for long-term protective immunity. This study demonstrates that nanoDCs can trigger adaptive immune protection against tumors for personalized immunotherapy and precision medicine.


Subject(s)
Dendritic Cells , Neoplasms , Animals , Mice , Antigens, Neoplasm , Immunotherapy/methods , Adaptive Immunity , Mice, Inbred C57BL
13.
Front Mol Biosci ; 9: 832393, 2022.
Article in English | MEDLINE | ID: mdl-35155582

ABSTRACT

Current approaches to cancer immunotherapy include immune checkpoint inhibitors, cancer vaccines, and adoptive cellular therapy. These therapies have produced significant clinical success for specific cancers, but their efficacy has been limited. Oncolytic virotherapy (OVT) has emerged as a promising immunotherapy for a variety of cancers. Furthermore, the unique characteristics of OVs make them a good choice for delivering tumor peptides/antigens to induce enhanced tumor-specific immune responses. The first oncolytic virus (OV) approved for human use is the attenuated herpes simplex virus type 1 (HSV-1), Talimogene laherparepvec (T-VEC) which has been FDA approved for the treatment of melanoma in humans. In this study, we engineered the recombinant oncolytic HSV-1 (oHSV) VC2-OVA expressing a fragment of ovalbumin (OVA) as a fusion protein with VP26 virion capsid protein. We tested the ability of VC2-OVA to act as a vector capable of stimulating strong, specific antitumor immunity in a syngeneic murine melanoma model. Therapeutic vaccination with VC2-OVA led to a significant reduction in colonization of tumor cells in the lungs of mice intravenously challenged B16cOVA cells. In addition, VC2-OVA induced a potent prophylactic antitumor response and extended survival of mice that were intradermally engrafted with B16cOVA tumors compared with mice immunized with control virus.

14.
Vaccines (Basel) ; 10(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35214655

ABSTRACT

Alternatives to conventional cancer treatments are highly sought after for high-risk malignancies that have a poor response to established treatment modalities. With research advancing rapidly in the past decade, neoantigen-based immunotherapeutic approaches represent an effective and highly tolerable therapeutic option. Neoantigens are tumor-specific antigens that are not expressed in normal cells and possess significant immunogenic potential. Several recent studies have described the conceptual framework and methodologies to generate neoantigen-based vaccines as well as the formulation of appropriate clinical trials to advance this approach for patient care. This review aims to describe some of the key studies in the recent literature in this rapidly evolving field and summarize the current advances in neoantigen identification and selection, vaccine generation and delivery, and the optimization of neoantigen-based therapeutic strategies, including the early data from pivotal clinical studies.

15.
Adv Sci (Weinh) ; : e2203298, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36351249

ABSTRACT

Personalized neoantigen vaccines have shown strong immunogenicity in clinical trial, but still face various challenges in facilitating an efficient antitumor immune response. Here, a personalized neoantigen nanovaccine (PNVAC) platform for adjuvant cancer immunotherapy is generated. PNVAC triggers superior protective efficacy against tumor recurrence and promotes longer survival than free neoantigens, especially when combined with anti-PD-1 treatment in a murine tumor model. A phase I clinical trial (ChiCTR1800017319) is initiated to evaluate the safety, immunogenicity, and prophylactic effect of PNVAC on preventing tumor recurrence in patients with high-risk gastric/gastroesophageal junction cancer after adjuvant chemotherapy of postsurgical resection. The one- and two-year disease-free survival rates are significantly higher than historical record. PNVAC induces both CD4+ and CD8+ T cell responses as well as antigen-experienced memory T cell phenotype. Furthermore, the immune response is persistent and remains evident one year after the vaccination. This work provides a safe and feasible strategy for developing neoantigen vaccines to delay gastric cancer recurrence after surgery.

16.
Front Immunol ; 13: 785231, 2022.
Article in English | MEDLINE | ID: mdl-35185883

ABSTRACT

Uveal melanoma (UM) is an orphan disease with a mortality of 80% within one year upon the development of metastatic disease. UM does hardly respond to chemotherapy and kinase inhibitors and is largely resistant to checkpoint inhibition. Hence, further therapy approaches are urgently needed. To improve clinical outcome, we designed a trial employing the 3rd generation personalized IKKß-matured RNA-transfected dendritic cell (DC) vaccine which primes T cells and in addition activates NK cells. This ongoing phase I trial [NCT04335890 (www.clinicaltrials.gov), Eudract: 2018-004390-28 (www.clinicaltrialsregister.eu)] investigates patients with treatment-naive metastatic UM. Monocytes are isolated by leukapheresis, differentiated to immature DCs, matured with a cytokine cocktail, and activated via the NF-κB pathway by electroporation with RNA encoding a constitutively active mutant of IKKß. Three types of antigen-RNA are co-electroporated: i) amplified mRNA of the tumor representing the whole transcriptome, ii) RNA encoding driver mutations identified by exome sequencing, and iii) overexpressed non-mutated tumor antigens detected by transcriptome sequencing. This highly personalized DC vaccine is applied by 9 intravenous infusions in a staggered schedule over one year. Parallel to the vaccination, standard therapy, usually an immune checkpoint blockade (ICB) as mono (anti-PD-1) or combined (anti-CTLA4 and anti-PD-1) regimen is initiated. The coordinated vaccine-induced immune response encompassing tumor-specific T cells and innate NK cells should synergize with ICB, perhaps resulting in measurable clinical responses in this resistant tumor entity. Primary outcome measures of this trial are safety, tolerability and toxicity; secondary outcome measures comprise overall survival and induction of antigen-specific T cells.


Subject(s)
Cancer Vaccines/therapeutic use , Dendritic Cells/immunology , I-kappa B Kinase/genetics , Melanoma/immunology , RNA/genetics , Uveal Neoplasms/immunology , Antigens, Neoplasm/immunology , Clinical Trials, Phase I as Topic , Electroporation , Humans , Immune Checkpoint Inhibitors/therapeutic use , Precision Medicine , Vaccination
17.
Biomed Pharmacother ; 131: 110640, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32836075

ABSTRACT

Tumor neoantigen has a high degree of immunogenicity. As one of the emerging methods of tumor immunotherapy, the vaccine developed against it has served to clinical trials of various solid tumors, especially in the treatment of melanoma. Currently, a variety of immunotherapy methods have been applied to the treatment of the tumor. However, other therapeutic methods have the disadvantages of low specificity and prominent side effects. Treatments require tumor antigen with higher immunogenicity as the target of immune attack. This review will recommend the identification of neoantigen, the influencing factors of neoantigen, and the application of personalized vaccines for neoantigen in metastatic tumors such as malignant melanoma.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines/administration & dosage , Immunotherapy/methods , Neoplasms/therapy , Precision Medicine/methods , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Humans , Immunotherapy/trends , Neoplasms/genetics , Neoplasms/immunology , Precision Medicine/trends
18.
Neuro Oncol ; 22(10): 1425-1438, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32615600

ABSTRACT

As immunotherapy assumes a central role in the management of many cancers, ongoing work is directed at understanding whether immune-based treatments will be successful in patients with glioblastoma (GBM). Despite several large studies conducted in the last several years, there remain no FDA-approved immunotherapies in this patient population. Nevertheless, there are a range of exciting new approaches being applied to GBM, all of which may not only allow us to develop new treatments but also help us understand fundamental features of the immune response in the central nervous system. In this review, we summarize new developments in the application of immune checkpoint blockade, from biomarker-driven patient selection to the timing of treatment. Moreover, we summarize novel work in personalized immune-oncology by reviewing work in cancer immunogenomics-driven neoantigen vaccine studies. Finally, we discuss cell therapy efforts by reviewing the current state of chimeric antigen receptor T-cell therapy.


Subject(s)
Glioblastoma , Glioma , Cell- and Tissue-Based Therapy , Glioblastoma/genetics , Glioblastoma/therapy , Glioma/genetics , Glioma/therapy , Humans , Immunotherapy
19.
Oncoimmunology ; 8(4): e1561106, 2019.
Article in English | MEDLINE | ID: mdl-30906654

ABSTRACT

Neoantigens represent promising targets for personalized cancer vaccine strategies. However, the feasibility of this approach in lower mutational burden tumors like glioblastoma (GBM) remains unknown. We have previously reported the use of an immunogenomics pipeline to identify candidate neoantigens in preclinical models of GBM. Here, we report the application of the same immunogenomics pipeline to identify candidate neoantigens and guide screening for neoantigen-specific T cell responses in a patient with GBM treated with a personalized synthetic long peptide vaccine following autologous tumor lysate DC vaccination. Following vaccination, reactivity to three HLA class I- and five HLA class II-restricted candidate neoantigens were detected by IFN-γ ELISPOT in peripheral blood. A similar pattern of reactivity was observed among isolated post-treatment tumor-infiltrating lymphocytes. Genomic analysis of pre- and post-treatment GBM reflected clonal remodeling. These data demonstrate the feasibility and translational potential of a therapeutic neoantigen-based vaccine approach in patients with primary CNS tumors.

20.
Front Immunol ; 8: 1807, 2017.
Article in English | MEDLINE | ID: mdl-29403468

ABSTRACT

This paper describes the sequencing protocol and computational pipeline for the PGV-001 personalized vaccine trial. PGV-001 is a therapeutic peptide vaccine targeting neoantigens identified from patient tumor samples. Peptides are selected by a computational pipeline that identifies mutations from tumor/normal exome sequencing and ranks mutant sequences by a combination of predicted Class I MHC affinity and abundance estimated from tumor RNA. The personalized genomic vaccine (PGV) pipeline is modular and consists of independently usable tools and software libraries. We hope that the functionality of these tools may extend beyond the specifics of the PGV-001 trial and enable other research groups in their own neoantigen investigations.

SELECTION OF CITATIONS
SEARCH DETAIL