Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 310
Filter
Add more filters

Publication year range
1.
Cell ; 185(13): 2370-2386.e18, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35597242

ABSTRACT

2',3'-cAMP is a positional isomer of the well-established second messenger 3',5'-cAMP, but little is known about the biology of this noncanonical cyclic nucleotide monophosphate (cNMP). Toll/interleukin-1 receptor (TIR) domains of nucleotide-binding leucine-rich repeat (NLR) immune receptors have the NADase function necessary but insufficient to activate plant immune responses. Here, we show that plant TIR proteins, besides being NADases, act as 2',3'-cAMP/cGMP synthetases by hydrolyzing RNA/DNA. Structural data show that a TIR domain adopts distinct oligomers with mutually exclusive NADase and synthetase activity. Mutations specifically disrupting the synthetase activity abrogate TIR-mediated cell death in Nicotiana benthamiana (Nb), supporting an important role for these cNMPs in TIR signaling. Furthermore, the Arabidopsis negative regulator of TIR-NLR signaling, NUDT7, displays 2',3'-cAMP/cGMP but not 3',5'-cAMP/cGMP phosphodiesterase activity and suppresses cell death activity of TIRs in Nb. Our study identifies a family of 2',3'-cAMP/cGMP synthetases and establishes a critical role for them in plant immune responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cell Death/genetics , Cyclic AMP/biosynthesis , Cyclic GMP/biosynthesis , Ligases/metabolism , NAD+ Nucleosidase/metabolism , Plant Diseases , Plant Immunity/physiology , Plant Proteins/metabolism , Receptors, Immunologic/metabolism , Receptors, Interleukin-1/metabolism , Nicotiana/genetics , Nicotiana/metabolism
2.
Trends Biochem Sci ; 48(10): 835-838, 2023 10.
Article in English | MEDLINE | ID: mdl-37365086

ABSTRACT

In bacteria, cCMP and cUMP have a key role in defense against infection with bacterial viruses. Bacteriophages encode phosphodiesterases (PDEs; 'nucleases'; Apyc1), which cleave cCMP/cUMP, counteracting this defense. We propose that PDEs are of broader biological relevance, including cCMP/cUMP-cleaving PDEs of eukaryotic viruses, which may constitute new drug targets.


Subject(s)
Phosphoric Diester Hydrolases , Virus Diseases , Humans , Cyclic CMP , Nucleotides, Cyclic
3.
Annu Rev Pharmacol Toxicol ; 64: 387-415, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37683278

ABSTRACT

G protein-coupled receptors are the largest and pharmacologically most important receptor family and are involved in the regulation of most cell functions. Most of them reside exclusively at the cell surface, from where they signal via heterotrimeric G proteins to control the production of second messengers such as cAMP and IP3 as well as the activity of several ion channels. However, they may also internalize upon agonist stimulation or constitutively reside in various intracellular locations. Recent evidence indicates that their function differs depending on their precise cellular localization. This is because the signals they produce, notably cAMP and Ca2+, are mostly bound to cell proteins that significantly reduce their mobility, allowing the generation of steep concentration gradients. As a result, signals generated by the receptors remain confined to nanometer-sized domains. We propose that such nanometer-sized domains represent the basic signaling units in a cell and a new type of target for drug development.


Subject(s)
Drug Development , Signal Transduction , Humans , Cell Membrane
4.
Circulation ; 150(8): 600-610, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38939948

ABSTRACT

BACKGROUND: We assessed the efficacy and safety of tadalafil, a phosphodiesterase type 5 inhibitor, in patients with heart failure with preserved ejection fraction and combined postcapillary and precapillary pulmonary hypertension. METHODS: In the double-blind PASSION study (Phosphodiesterase-5 Inhibition in Patients With Heart Failure With Preserved Ejection Fraction and Combined Post- and Pre-Capillary Pulmonary Hypertension), patients with heart failure with preserved ejection fraction and combined postcapillary and precapillary pulmonary hypertension were randomized 1:1 to receive tadalafil at a target dose of 40 mg or placebo. The primary end point was the time to the first composite event of adjudicated heart failure hospitalization or all-cause death. Secondary end points included all-cause mortality and improvements in New York Heart Association functional class or ≥10% improvement in 6-minute walking distance from baseline. RESULTS: Initially targeting 372 patients, the study was terminated early because of disruption in study medication supply. At that point, 125 patients had been randomized (placebo: 63; tadalafil: 62,). Combined primary end-point events occurred in 20 patients (32%) assigned to placebo and 17 patients (27%) assigned to tadalafil (hazard ratio, 1.02 [95% CI, 0.52-2.01]; P=0.95). There was a possible signal of higher all-cause mortality in the tadalafil group (hazard ratio, 5.10 [95% CI, 1.10-23.69]; P=0.04). No significant between-group differences were observed in other secondary end points. Serious adverse events occurred in 29 participants (48%) in the tadalafil group and 35 (56%) in the placebo group. CONCLUSIONS: The PASSION trial, terminated prematurely due to study medication supply disruption, does not support tadalafil use in patients with heart failure with preserved ejection fraction and combined postcapillary and precapillary pulmonary hypertension, with potential safety concerns and no observed benefits in primary and secondary end points. REGISTRATION: URL: https://www.clinicaltrialsregister.eu/; Unique identifier: 2017-003688-37. URL: https://drks.de; Unique identifier: DRKS -DRKS00014595.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Phosphodiesterase 5 Inhibitors , Stroke Volume , Tadalafil , Humans , Tadalafil/therapeutic use , Heart Failure/drug therapy , Heart Failure/mortality , Heart Failure/physiopathology , Male , Female , Stroke Volume/drug effects , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/mortality , Hypertension, Pulmonary/physiopathology , Aged , Middle Aged , Double-Blind Method , Phosphodiesterase 5 Inhibitors/therapeutic use , Phosphodiesterase 5 Inhibitors/adverse effects , Treatment Outcome
5.
Med Res Rev ; 44(4): 1404-1445, 2024 07.
Article in English | MEDLINE | ID: mdl-38279990

ABSTRACT

Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.


Subject(s)
Neurodegenerative Diseases , Phosphodiesterase Inhibitors , Humans , Neurodegenerative Diseases/drug therapy , Phosphodiesterase Inhibitors/therapeutic use , Phosphodiesterase Inhibitors/pharmacology , Animals , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Phosphoric Diester Hydrolases/metabolism , Signal Transduction/drug effects
6.
Pflugers Arch ; 476(9): 1383-1398, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38355819

ABSTRACT

Oxygen sensing is of paramount importance for maintaining cellular and systemic homeostasis. In response to diminished oxygen levels, the hypoxia-inducible factors (HIFs) orchestrate various biological processes. These pivotal transcription factors have been identified as key regulators of several biological events. Notably, extensive research from our group and others has demonstrated that HIF1α exerts an inverse regulatory effect on steroidogenesis, leading to the suppression of crucial steroidogenic enzyme expression and a subsequent decrease in steroid levels. These steroid hormones occupy pivotal roles in governing a myriad of physiological processes. Substantial or prolonged fluctuations in steroid levels carry detrimental consequences across multiple organ systems and underlie various pathological conditions, including metabolic and immune disorders. MicroRNAs serve as potent mediators of multifaceted gene regulatory mechanisms, acting as influential epigenetic regulators that modulate a broad spectrum of gene expressions. Concomitantly, phosphodiesterases (PDEs) play a crucial role in governing signal transduction. PDEs meticulously manage intracellular levels of both cAMP and cGMP, along with their respective signaling pathways and downstream targets. Intriguingly, an intricate interplay seems to exist between hypoxia signaling, microRNAs, and PDEs in the regulation of steroidogenesis. This review highlights recent advances in our understanding of the role of microRNAs during hypoxia-driven processes, including steroidogenesis, as well as the possibilities that exist in the application of HIF prolyl hydroxylase (PHD) inhibitors for the modulation of steroidogenesis.


Subject(s)
MicroRNAs , Phosphoric Diester Hydrolases , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Signal Transduction , Steroids/biosynthesis , Steroids/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics
7.
Microcirculation ; 31(6): e12871, 2024 08.
Article in English | MEDLINE | ID: mdl-38805589

ABSTRACT

OBJECTIVE: This study aimed to determine nicotine's impact on receptor-mediated cyclic adenosine monophosphate (cAMP) synthesis in vascular smooth muscle (VSM). We hypothesize that nicotine impairs ß adrenergic-mediated cAMP signaling in VSM, leading to altered vascular reactivity. METHODS: The effects of nicotine on cAMP signaling and vascular function were systematically tested in aortic VSM cells and acutely isolated aortas from mice expressing the cAMP sensor TEpacVV (Camper), specifically in VSM (e.g., CamperSM). RESULTS: Isoproterenol (ISO)-induced ß-adrenergic production of cAMP in VSM was significantly reduced in cells from second-hand smoke (SHS)-exposed mice and cultured wild-type VSM treated with nicotine. The decrease in cAMP synthesis caused by nicotine was verified in freshly isolated arteries from a mouse that had cAMP sensor expression in VSM (e.g., CamperSM mouse). Functionally, the changes in cAMP signaling in response to nicotine hindered ISO-induced vasodilation, but this was reversed by immediate PDE3 inhibition. CONCLUSIONS: These results imply that nicotine alters VSM ß adrenergic-mediated cAMP signaling and vasodilation, which may contribute to the dysregulation of vascular reactivity and the development of vascular complications for nicotine-containing product users.


Subject(s)
Cyclic AMP , Muscle, Smooth, Vascular , Nicotine , Signal Transduction , Animals , Nicotine/pharmacology , Cyclic AMP/metabolism , Mice , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Signal Transduction/drug effects , Vasodilation/drug effects , Isoproterenol/pharmacology , Male , Aorta/metabolism , Aorta/drug effects , Cells, Cultured
8.
Plant Cell Environ ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39219547

ABSTRACT

Genotoxic stress activates the DNA-damage response (DDR) signalling cascades responsible for maintaining genome integrity. Downstream DNA repair pathways include the tyrosyl-DNA phosphodiesterase 1 (TDP1) enzyme that hydrolyses the phosphodiester bond between the tyrosine of topoisomerase I (TopI) and 3'-phosphate of DNA. The plant TDP1 subfamily contains the canonical TDP1α gene and the TDP1ß gene whose functions are not fully elucidated. The current study proposes to investigate the involvement of TDP1 genes in DDR-related processes by using Arabidopsis thaliana mutants treated with genotoxic agents. The phenotypic and molecular characterization of tdp1α, tdp1ß and tdp1α/ß mutants treated with cisplatin (CIS), curcumin (CUR), NSC120686 (NSC), zeocin (ZEO), and camptothecin (CPT), evidenced that while tdp1ß was highly sensitive to CIS and CPT, tdp1α was more sensitive to NSC. Gene expression analyses showing upregulation of the TDP2 gene in the double mutant indicate the presence of compensatory mechanisms. The downregulation of POL2A gene in the tdp1ß mutant along with the upregulation of the TDP1ß gene in pol2a mutants, together with its sensitivity to replication inhibitors (CIS, CTP), point towards a function of this gene in the response to replication stress. Therefore, this study brings novel information relative to the activity of TDP1 genes in plants.

9.
Purinergic Signal ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958821

ABSTRACT

Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.

10.
Exp Brain Res ; 242(2): 309-320, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052997

ABSTRACT

Physical exercise reduces the effects of aging and cognitive decline by improving synaptic plasticity and spatial learning. However, the underlying neurobiological mechanisms are unclear. A total of 45 Male SPF Sprague-Dawley rats were acclimatized and then allocated into three groups, 15 in each group: the saline control (DC) group, D-gal-induced aging (DA) group, and D-gal-induced aging + exercise (DE) group. Six weeks of intraperitoneal injections of D-gal at a concentration of 100 mg/kg body weight/d was injected to establish model of aging in the DA and DE groups. Morris water maze test was implemented to evaluate the hippocampus related cognition. SOD activity and MDA was tested to assess the aging in all groups. H&E and Nissl staining was used to observe the histopathological changes of hippocampal neurons in aging rats. Quantitative real-time polymerase chain reaction, western blotting and immunofluorescence staining techniques were used to investigate the expression of synaptic genes and proteins in the hippocampus. Massarray methylation system was employed to measure the PDE-4 gene methylation level in rat hippocampal tissues. Our results demonstrated that exercise intervention improves cognitive function in D-gal-induced aging rats. The methylation of CpG sites in PDE-4 in the hippocampus was significantly increased. The physical exercise significantly increased PDE-4 gene methylation and effectively decreased PDE-4 gene and protein expression. These beneficial behavioral and morphological effects were attributed to PDE-4 methylation, which was activated cAMP/PKA/CREB pathway and improved synaptic plasticity. Exercise induced PDE-4 methylation is key mechanism underpinning the amelioration of learning/memory impairment, suggesting the potential efficacy of physical exercise training in delaying brain aging.


Subject(s)
Galactose , Spatial Learning , Rats , Male , Animals , Rats, Sprague-Dawley , Galactose/adverse effects , Galactose/metabolism , Hippocampus , Memory Disorders , Aging/psychology , Neuronal Plasticity/physiology , Methylation , Maze Learning
11.
Eur Heart J ; 44(27): 2483-2494, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36810794

ABSTRACT

AIMS: Atrial fibrillation (AF) is associated with altered cAMP/PKA signaling and an AF-promoting reduction of L-type Ca2+-current (ICa,L), the mechanisms of which are poorly understood. Cyclic-nucleotide phosphodiesterases (PDEs) degrade cAMP and regulate PKA-dependent phosphorylation of key calcium-handling proteins, including the ICa,L-carrying Cav1.2α1C subunit. The aim was to assess whether altered function of PDE type-8 (PDE8) isoforms contributes to the reduction of ICa,L in persistent (chronic) AF (cAF) patients. METHODS AND RESULTS: mRNA, protein levels, and localization of PDE8A and PDE8B isoforms were measured by RT-qPCR, western blot, co-immunoprecipitation and immunofluorescence. PDE8 function was assessed by FRET, patch-clamp and sharp-electrode recordings. PDE8A gene and protein levels were higher in paroxysmal AF (pAF) vs. sinus rhythm (SR) patients, whereas PDE8B was upregulated in cAF only. Cytosolic abundance of PDE8A was higher in atrial pAF myocytes, whereas PDE8B tended to be more abundant at the plasmalemma in cAF myocytes. In co-immunoprecipitation, only PDE8B2 showed binding to Cav1.2α1C subunit which was strongly increased in cAF. Accordingly, Cav1.2α1C showed a lower phosphorylation at Ser1928 in association with decreased ICa,L in cAF. Selective PDE8 inhibition increased Ser1928 phosphorylation of Cav1.2α1C, enhanced cAMP at the subsarcolemma and rescued the lower ICa,L in cAF, which was accompanied by a prolongation of action potential duration at 50% of repolarization. CONCLUSION: Both PDE8A and PDE8B are expressed in human heart. Upregulation of PDE8B isoforms in cAF reduces ICa,L via direct interaction of PDE8B2 with the Cav1.2α1C subunit. Thus, upregulated PDE8B2 might serve as a novel molecular mechanism of the proarrhythmic reduction of ICa,L in cAF.


Subject(s)
Atrial Fibrillation , Humans , Calcium/metabolism , Phosphoric Diester Hydrolases/metabolism , Myocytes, Cardiac/physiology , Phosphorylation
12.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125619

ABSTRACT

Phosphodiesterase 4 (PDE4) enzymes catalyze cyclic adenosine monophosphate (cAMP) hydrolysis and are involved in a variety of physiological processes, including brain function, monocyte and macrophage activation, and neutrophil infiltration. Among different PDE4 isoforms, Phosphodiesterases 4D (PDE4Ds) play a fundamental role in cognitive, learning and memory consolidation processes and cancer development. Selective PDE4D inhibitors (PDE4Dis) could represent an innovative and valid therapeutic strategy for the treatment of various neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and Lou Gehrig's diseases, but also for stroke, traumatic brain and spinal cord injury, mild cognitive impairment, and all demyelinating diseases such as multiple sclerosis. In addition, small molecules able to block PDE4D isoforms have been recently studied for the treatment of specific cancer types, particularly hepatocellular carcinoma and breast cancer. This review overviews the PDE4DIsso far identified and provides useful information, from a medicinal chemistry point of view, for the development of a novel series of compounds with improved pharmacological properties.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4 , Phosphodiesterase 4 Inhibitors , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Phosphodiesterase 4 Inhibitors/chemistry , Animals , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism
13.
J Infect Dis ; 227(3): 423-433, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36482781

ABSTRACT

BACKGROUND: Monocyte activation is a driver of inflammation in the course of chronic HIV infection. Prostaglandin E2 (PGE2) is known to mediate anti-inflammatory effects, notably the inhibition of tumor necrosis factor- (TNF-) production by monocytes. We aim to investigate the effects of PGE2 on activation of monocytes in chronic HIV infection and the mechanisms through which PGE2 modulates their inflammatory signature. METHODS: We recruited a group of people with HIV (PWH) and matched healthy uninfected persons. We compared plasma levels of PGE2, monocyte activation, and sensitivity of monocytes to the inhibitory actions mediated by PGE2. RESULTS: We found increased plasma levels of PGE2 in PWH, and an activated phenotype in circulating monocytes, compared with uninfected individuals. Monocytes from PWH showed a significant resistance to the inhibitory actions mediated by PGE2; the concentration of PGE2 able to inhibit 50 of the production of TNF- by lipopolysaccharide-stimulated monocytes was 10 times higher in PWH compared with uninfected controls. Furthermore, the expression of phosphodiesterase 4B, a negative regulator of PGE2 activity, was significantly increased in monocytes from PWH. CONCLUSIONS: Resistance to the inhibitory actions mediated by PGE2 could account, at least in part, for the inflammatory profile of circulating monocytes in PWH.


Subject(s)
Dinoprostone , HIV Infections , Humans , Dinoprostone/metabolism , Monocytes/metabolism , HIV Infections/metabolism , Tumor Necrosis Factor-alpha/metabolism , Gene Expression , Lipopolysaccharides
14.
J Bacteriol ; 205(6): e0000323, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37199658

ABSTRACT

The opportunistic human pathogen Pseudomonas aeruginosa causes chronic infections that involve multicellular aggregates called biofilms. Biofilm formation is modulated by the host environment and the presence of cues and/or signals, likely affecting the pool of the bacterial second messenger cyclic diguanylate monophosphate (c-di-GMP). The manganese ion Mn2+ is a divalent metal cation that is essential for pathogenic bacterial survival and replication during the infection in a host organism. In this study, we investigated how Mn2+ alters P. aeruginosa biofilm formation via the regulation of c-di-GMP levels. Exposure to Mn2+ was found to temporally enhance attachment but impair subsequent biofilm development, apparent by reduced biofilm biomass accumulation and lack of microcolony formation due to the induction of dispersion. Moreover, exposure to Mn2+ coincided with reduced production of the exopolysaccharides Psl and Pel, decreased transcriptional abundance of pel and psl, and decreased levels of c-di-GMP. To determine whether the effect of Mn2+ was linked to the activation of phosphodiesterases (PDEs), we screened several PDE mutants for Mn2+-dependent phenotypes (attachment and polysaccharide production) as well as PDE activity. The screen revealed that the PDE RbdA is activated by Mn2+ and is responsible for Mn2+-dependent attachment, inhibition of Psl production, and dispersion. Taken together, our findings suggest Mn2+ is an environmental inhibitor of P. aeruginosa biofilm development that acts through the PDE RbdA to modulate c-di-GMP levels, thereby impeding polysaccharide production and biofilm formation but enhancing dispersion. IMPORTANCE While diverse environmental conditions such as the availability of metal ions have been shown to affect biofilm development, little is known about the mechanism. Here, we demonstrate that Mn2+ affects Pseudomonas aeruginosa biofilm development by stimulating phosphodiesterase RbdA activity to reduce the signaling molecule c-di-GMP levels, thereby hindering polysaccharide production and biofilm formation but enhancing dispersion. Our findings demonstrate that Mn2+ acts as an environmental inhibitor of P. aeruginosa biofilms, further suggesting manganese to be a promising new antibiofilm factor.


Subject(s)
Manganese , Pseudomonas aeruginosa , Humans , Gene Expression Regulation, Bacterial , Biofilms , Cyclic GMP , Polysaccharides , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
15.
J Biol Chem ; 298(3): 101626, 2022 03.
Article in English | MEDLINE | ID: mdl-35074425

ABSTRACT

The bacterial second messenger bis-(3'-5')-cyclic diguanylate monophosphate (c-di-GMP) controls various cellular processes, including motility, toxin production, and biofilm formation. c-di-GMP is enzymatically synthesized by GGDEF domain-containing diguanylate cyclases and degraded by HD-GYP domain-containing phosphodiesterases (PDEs) to 2 GMP or by EAL domain-containing PDE-As to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG). Since excess pGpG feedback inhibits PDE-A activity and thereby can lead to the uncontrolled accumulation of c-di-GMP, a PDE that degrades pGpG to 2 GMP (PDE-B) has been presumed to exist. To date, the only enzyme known to hydrolyze pGpG is oligoribonuclease Orn, which degrades all kinds of oligoribonucleotides. Here, we identified a pGpG-specific PDE, which we named PggH, using biochemical approaches in the gram-negative bacteria Vibrio cholerae. Biochemical experiments revealed that PggH exhibited specific PDE activity only toward pGpG, thus differing from the previously reported Orn. Furthermore, the high-resolution structure of PggH revealed the basis for its PDE activity and narrow substrate specificity. Finally, we propose that PggH could modulate the activities of PDE-As and the intracellular concentration of c-di-GMP, resulting in phenotypic changes including in biofilm formation.


Subject(s)
Cyclic GMP/analogs & derivatives , Phosphoric Diester Hydrolases , Vibrio cholerae , Bacterial Proteins/metabolism , Biofilms , Cyclic GMP/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Phosphoric Diester Hydrolases/metabolism , Signal Transduction , Substrate Specificity , Vibrio cholerae/enzymology , Vibrio cholerae/metabolism
16.
J Biol Chem ; 298(2): 101526, 2022 02.
Article in English | MEDLINE | ID: mdl-34958798

ABSTRACT

Ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family members (ENPP1-7) have been implicated in key biological and pathophysiological processes, including nucleotide and phospholipid signaling, bone mineralization, fibrotic diseases, and tumor-associated immune cell infiltration. ENPPs are single-pass transmembrane ecto-enzymes, with notable exceptions of ENPP2 (Autotaxin) and ENNP6, which are secreted and glycosylphosphatidylinositol (GPI)-anchored, respectively. ENNP1 and ENNP2 are the best characterized and functionally the most interesting members. Here, we review the structural features of ENPP1-7 to understand how they evolved to accommodate specific substrates and mediate different biological activities. ENPPs are defined by a conserved phosphodiesterase (PDE) domain. In ENPP1-3, the PDE domain is flanked by two N-terminal somatomedin B-like domains and a C-terminal inactive nuclease domain that confers structural stability, whereas ENPP4-7 only possess the PDE domain. Structural differences in the substrate-binding site endow each protein with unique characteristics. Thus, ENPP1, ENPP3, ENPP4, and ENPP5 hydrolyze nucleotides, whereas ENPP2, ENPP6, and ENNP7 evolved as phospholipases through adaptions in the catalytic domain. These adaptations explain the different biological and pathophysiological functions of individual members. Understanding the ENPP members as a whole advances our insights into common mechanisms, highlights their functional diversity, and helps to explore new biological roles.


Subject(s)
Phosphoric Diester Hydrolases , Pyrophosphatases , Catalytic Domain , Nucleotides/metabolism , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/chemistry , Pyrophosphatases/metabolism , Signal Transduction , Structure-Activity Relationship
17.
J Biol Chem ; 298(8): 102151, 2022 08.
Article in English | MEDLINE | ID: mdl-35718063

ABSTRACT

cAMP and antimicrobial susceptibility in mycobacteriaAntimicrobial tolerance, the ability to survive exposure to antimicrobials via transient nonspecific means, promotes the development of antimicrobial resistance (AMR). The study of the molecular mechanisms that result in antimicrobial tolerance is therefore essential for the understanding of AMR. In gram-negative bacteria, the second messenger molecule 3'',5''-cAMP has been previously shown to be involved in AMR. In mycobacteria, however, the role of cAMP in antimicrobial tolerance has been difficult to probe due to its particular complexity. In order to address this difficulty, here, through unbiased biochemical approaches consisting in the fractionation of clear protein lysate from a mycobacterial strain deleted for the known cAMP phosphodiesterase (Rv0805c) combined with mass spectrometry techniques, we identified a novel cyclic nucleotide-degrading phosphodiesterase enzyme (Rv1339) and developed a system to significantly decrease intracellular cAMP levels through plasmid expression of Rv1339 using the constitutive expression system, pVV16. In Mycobacterium smegmatis mc2155, we demonstrate that recombinant expression of Rv1339 reduced cAMP levels threefold and resulted in altered gene expression, impaired bioenergetics, and a disruption in peptidoglycan biosynthesis leading to decreased tolerance to antimicrobials that target cell wall synthesis such as ethambutol, D-cycloserine, and vancomycin. This work increases our understanding of the role of cAMP in mycobacterial antimicrobial tolerance, and our observations suggest that nucleotide signaling may represent a new target for the development of antimicrobial therapies.


Subject(s)
Anti-Infective Agents , Drug Resistance, Bacterial , Mycobacterium smegmatis , Phosphoric Diester Hydrolases , Anti-Infective Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Wall/drug effects , Cyclic AMP , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/genetics , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism
18.
Chemistry ; 29(12): e202203213, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36382737

ABSTRACT

The calix[4]arene scaffold, blocked in the cone conformation through alkylation with long alkyl chains, and decorated at the upper rim with four guanidine or arginine units, effectively catalyzes the cleavage of the phosphodiester bond of DNA and RNA model compounds in water. An exhaustive kinetic investigation unequivocally points to the existence of spontaneous aggregation phenomena, driven by hydrophobic effect, occurring at different critical concentrations that depend on the identity of the compound. A pronounced superiority of the assembled structures compared with the monomers in solution was observed. Moreover, the catalytically active units, clustered on the macrocyclic tetrafunctional scaffold, were proved to efficiently cooperate in the catalytic mechanism and result in improved reaction rates compared to those of the monofunctional model compounds. The kinetic analysis is also integrated and corroborated with further experiments based on fluorescence spectroscopy and light scattering. The advantage of the supramolecular assemblies based on tetrafunctional calixarenes leads to believe that the active units can cooperate not only intramolecularly but also intermolecularly. The molecules in the aggregates can probably mold, flex and rearrange but, at the same time, keep an ordered structure that favors phosphodiester bond cleavage. This dynamic preorganization can allow the catalytic units to reach a better fitting with the substrates and perform a superior catalytic activity.

19.
Brain Behav Immun ; 109: 1-22, 2023 03.
Article in English | MEDLINE | ID: mdl-36584795

ABSTRACT

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Phosphodiesterase 4 Inhibitors , Humans , Mice , Animals , Myelin Sheath/metabolism , Multiple Sclerosis/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/therapeutic use , Evoked Potentials, Visual , Oligodendroglia/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Cell Differentiation , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL
20.
Cereb Cortex ; 32(16): 3457-3471, 2022 08 03.
Article in English | MEDLINE | ID: mdl-34937090

ABSTRACT

Extensive research has uncovered diverse forms of synaptic plasticity and an array of molecular signaling mechanisms that act as positive or negative regulators. Specifically, cyclic 3',5'-cyclic adenosine monophosphate (cAMP)-dependent signaling pathways are crucially implicated in long-lasting synaptic plasticity. In this study, we examine the role of Popeye domain-containing protein 1 (POPDC1) (or blood vessel epicardial substance (BVES)), a cAMP effector protein, in modulating hippocampal synaptic plasticity. Unlike other cAMP effectors, such as protein kinase A (PKA) and exchange factor directly activated by cAMP, POPDC1 is membrane-bound and the sequence of the cAMP-binding cassette differs from canonical cAMP-binding domains, suggesting that POPDC1 may have an unique role in cAMP-mediated signaling. Our results show that Popdc1 is widely expressed in various brain regions including the hippocampus. Acute hippocampal slices from Popdc1 knockout (KO) mice exhibit PKA-dependent enhancement in CA1 long-term potentiation (LTP) in response to weaker stimulation paradigms, which in slices from wild-type mice induce only transient LTP. Loss of POPDC1, while not affecting basal transmission or input-specificity of LTP, results in altered response during high-frequency stimulation. Popdc1 KO mice also show enhanced forskolin-induced potentiation. Overall, these findings reveal POPDC1 as a novel negative regulator of hippocampal synaptic plasticity and, together with recent evidence for its interaction with phosphodiesterases (PDEs), suggest that POPDC1 is involved in modulating activity-dependent local cAMP-PKA-PDE signaling.


Subject(s)
Cell Adhesion Molecules , Hippocampus , Long-Term Potentiation , Muscle Proteins , Neuronal Plasticity , Animals , Cell Adhesion Molecules/genetics , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Hippocampus/physiology , Mice , Mice, Inbred C57BL , Muscle Proteins/genetics , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL