Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Ecol Lett ; 27(2): e14365, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38362774

ABSTRACT

Plants harbour a great chemodiversity, that is diversity of specialised metabolites (SMs), at different scales. For instance, individuals can produce a large number of SMs, and populations can differ in their metabolite composition. Given the ecological and economic importance of plant chemodiversity, it is important to understand how it arises and is maintained over evolutionary time. For other dimensions of biodiversity, that is species diversity and genetic diversity, quantitative models play an important role in addressing such questions. Here, we provide a synthesis of existing hypotheses and quantitative models, that is mathematical models and computer simulations, for the evolution of plant chemodiversity. We describe each model's ingredients, that is the biological processes that shape chemodiversity, the scales it considers and whether it has been formalized as a quantitative model. Although we identify several quantitative models, not all are dynamic and many influential models have remained verbal. To fill these gaps, we outline our vision for the future of chemodiversity modelling. We identify quantitative models used for genetic variation that may be adapted for chemodiversity, and we present a flexible framework for the creation of individual-based models that address different scales of chemodiversity and combine different ingredients that bring this chemodiversity about.


Subject(s)
Biodiversity , Plants , Humans , Plants/genetics , Computer Simulation
2.
New Phytol ; 237(2): 631-642, 2023 01.
Article in English | MEDLINE | ID: mdl-36263711

ABSTRACT

Plants are widely recognized as chemical factories, with each species producing dozens to hundreds of unique secondary metabolites. These compounds shape the interactions between plants and their natural enemies. We explore the evolutionary patterns and processes by which plants generate chemical diversity, from evolving novel compounds to unique chemical profiles. We characterized the chemical profile of one-third of the species of tropical rainforest trees in the genus Inga (c. 100, Fabaceae) using ultraperformance liquid chromatography-mass spectrometry-based metabolomics and applied phylogenetic comparative methods to understand the mode of chemical evolution. We show: each Inga species contain structurally unrelated compounds and high levels of phytochemical diversity; closely related species have divergent chemical profiles, with individual compounds, compound classes, and chemical profiles showing little-to-no phylogenetic signal; at the evolutionary time scale, a species' chemical profile shows a signature of divergent adaptation. At the ecological time scale, sympatric species were the most divergent, implying it is also advantageous to maintain a unique chemical profile from community members; finally, we integrate these patterns with a model for how chemical diversity evolves. Taken together, these results show that phytochemical diversity and divergence are fundamental to the ecology and evolution of plants.


Subject(s)
Fabaceae , Metabolomics , Secondary Metabolism , Phylogeny , Rainforest
3.
Molecules ; 27(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36234832

ABSTRACT

Heracleum persicum Desf. ex Fischer seeds are a rich source of essential oils (EOs) with high antimicrobial and antioxidant effects. In order to determine the phytochemical variability in various Iranian H. persicum populations, seed samples were collected from 10 different climatic locations. The current study indicated that hexyl butyrate (20.9-44.7%), octyl acetate (11.2-20.3%), hexyl-2-methylbutyrate (4.81-8.64%), and octyl 2-methyl butyrate (3.41-8.91%) were the major components of the EOs. The maximum (44.7%) and the minimum (20.9%) content of hexyl butyrate were obtained from Kaleibar and Sari populations, respectively. Moreover, the octyl acetate content ranged from 2% (in Mahdasht) to 20.3% in Torghabeh population. The CA and PCA analysis divided the 10 Iranian H. persicum populations into three major groups. Populations from Khanghah, Kaleibar, Shebeilo, Showt, Mahdasht, and Amin Abbad showed a distinct separation in comparison with the other populations, having high contents of hexyl butyrate (39.8%) and low contents of octyl acetate (13.5%) (Chemotype II). According to correlation analysis, the highest correlation coefficient was among habitat elevation and hexyl butyrate content. In addition, the mean annual precipitation was negatively correlated with the content of hexyl butyrate. Although octyl acetate content showed high correlation with soil EC and mean annual temperature, it was not statistically significant. In general, in order to have plants with a high content of hexyl butyrate, it is recommended to harvest these plants from regions with high altitude and low rainfall such as Kaleibar.


Subject(s)
Anti-Infective Agents , Heracleum , Oils, Volatile , Acetates , Antioxidants , Butyrates , Heracleum/chemistry , Iran , Oils, Volatile/chemistry , Soil
4.
Physiol Mol Biol Plants ; 27(4): 727-746, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33967459

ABSTRACT

Picrorhiza kurroa is a medicinally important, high altitude perennial herb, endemic to the Himalayas. It possesses strong hepato-protective bioactivity that is contributed by two iridoid picroside compounds viz Picroside-I (P-I) and Picroside-II (P-II). Commercially, many P. kurroa based hepato-stimulatory Ayurvedic drug brands that use different proportions of P-I and P-II are available in the market. To identify genetically heterozygous and high yielding genotypes for multiplication, sustained use and conservation, it is essential to assess genetic and phytochemical diversity and understand the population structure of P. kurroa. In the present study, isolation and HPLC based quantification of picrosides P-I and P-II and molecular DNA fingerprinting using RAPD, AFLP and ISSR markers have been undertaken in 124 and 91 genotypes, respectively. The analyzed samples were collected from 10 natural P. kurroa Himalayan populations spread across four states (Jammu & Kashmir, Sikkim, Uttarakhand and Himachal Pradesh) of India. Genotypes used in this study covered around 1000 km geographical area of the total Indian Himalayan habitat range of P. kurroa. Significant quantitative variation ranging from 0.01 per cent to 4.15% for P-I, and from 0.01% to 3.18% in P-II picroside was observed in the analyzed samples. Three molecular DNA markers, RAPD (22 primers), ISSR (15 primers) and AFLP (07 primer combinations) also revealed a high level of genetic variation. The percentage polymorphism and effective number of alleles for RAPD, ISSR and AFLP analysis varied from 83.5%, 80.6% and 72.1%; 1.5722, 1.5787 and 1.5665, respectively. Further, the rate of gene flow (Nm) between populations was moderate for RAPD (0.8434), and AFLP (0.9882) and comparatively higher for ISSR (1.6093). Fst values were observed to be 0.56, 0.33, and 0.51 for RAPD, ISSR and AFLP markers, respectively. These values suggest that most of the observed genetic variation resided within populations. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian based STRUCTURE grouped all the analyzed accessions into largely region-wise clusters and showed some inter-mixing between the populations, indicating the existence of distinct gene pools with limited gene flow/exchange. The present study has revealed a high level of genetic diversity in the analyzed populations. The analysis has resulted in identification of genetically diverse and high picrosides containing P. kurroa genotypes from Sainj, Dayara, Tungnath, Furkia, Parsuthach, Arampatri, Manvarsar, Kedarnath, Thangu and Temza in the Indian Himalayan region. The inferences generated in this study can be used to devise future resource management and conservation strategies in P. kurroa. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00972-w.

5.
Ecol Lett ; 23(1): 16-32, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31724320

ABSTRACT

Research on the ecological and evolutionary roles of phytochemicals has recently progressed from studying single compounds to examining chemical diversity itself. A key conceptual advance enabling this progression is the use of species diversity metrics for quantifying phytochemical diversity. In this perspective, we extend the theory developed for species diversity to further our understanding of what exactly phytochemical diversity is and how its many dimensions impact ecological and evolutionary processes. First, we discuss the major dimensions of phytochemical diversity - richness, evenness, functional diversity, and alpha, gamma and beta diversity. We describe their potential independent roles in biotic interactions and the practical challenges associated with their analysis. Second, we re-analyse the published and unpublished datasets to reveal that the phytochemical diversity experienced by an organism (or observed by a researcher) depends strongly on the scale of the interaction and the total amount of phytochemicals involved. We argue that we must account for these frames of reference to meaningfully understand diversity. Moving from a general notion of phytochemical diversity as a single measure to a precise definition of its multidimensional and multiscale nature yields overlooked testable predictions that will facilitate novel insights about the evolutionary ecology of plant biotic interactions.


Subject(s)
Biodiversity , Phytochemicals , Biological Evolution , Ecology
6.
Oecologia ; 194(3): 441-454, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33051776

ABSTRACT

Plants link interactions between aboveground and belowground organisms. Herbivore-induced changes in plant chemistry are hypothesized to impact entire food webs by changing the strength of trophic cascades. Yet, few studies have explored how belowground herbivores affect the behaviors of generalist predators, nor how such changes may act through diverse changes to the plant metabolome. Using a factorial experiment, we tested whether herbivory by root-knot nematodes (Meloidogyne incognita) affected the aboveground interaction among milkweed plants (Asclepias fascicularis or Asclepias speciosa), oleander aphids (Aphis nerii), and aphid-tending ants (Linepithema humile). We quantified the behaviors of aphid-tending ants, and we measured the effects of herbivore treatments on aphid densities and on phytochemistry. Unexpectedly, ants tended aphids primarily on the leaves of uninfected plants, whereas ants tended aphids primarily at the base of the stem of nematode-infected plants. In nematode-infected plants, aphids excreted more sugar per capita in their ant-attracting honeydew. Additionally, although plant chemistry was species-specific, nematode infection generally decreased the richness of plant secondary metabolites while acting as a protein sink in the roots. Path analysis indicated that the ants' behavioral change was driven in part by indirect effects of nematodes acting through changes in plant chemistry. We conclude that belowground herbivores can affect the behaviors of aboveground generalist ant predators by multiple paths, including changes in phytochemistry, which may affect the attractiveness of aphid honeydew rewards.


Subject(s)
Ants , Aphids , Nematoda , Animals , Herbivory , Plants
7.
Ecol Lett ; 22(2): 332-341, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30548569

ABSTRACT

Phytochemical traits are a key component of plant defense theory. Chemical ecology has been biased towards studying effects of individual metabolites even though effective plant defenses are comprised of diverse mixtures of metabolites. We tested the phytochemical landscape hypothesis, positing that trophic interactions are contingent upon their spatial location across a phytochemically diverse landscape. Specifically, intraspecific phytochemical changes associated with vertical strata in forests were hypothesised to affect herbivore communities of the neotropical shrub Piper kelleyi Tepe (Piperaceae). Using a field experiment, we found that phytochemical diversity increased with canopy height, and higher levels of phytochemical diversity located near the canopy were characterised by tradeoffs between photoactive and non-photoactive biosynthetic pathways. For understory plants closer to the ground, phytochemical diversity increased as direct light transmittance decreased, and these plants were characterised by up to 37% reductions in herbivory. Our results suggest that intraspecific phytochemical diversity structures herbivore communities across the landscape, affecting total herbivory.


Subject(s)
Herbivory , Piper , Forests , Phytochemicals , Plants
8.
Ann Bot ; 123(6): 1029-1041, 2019 06 24.
Article in English | MEDLINE | ID: mdl-30770925

ABSTRACT

BACKGROUND AND AIMS: Most crops have been dramatically altered from their wild ancestors with the primary goal of increasing harvestable yield. A long-held hypothesis is that increased allocation to yield has reduced plant investment in defence and resulted in crops that are highly susceptible to pests. However, clear demonstrations of these trade-offs have been elusive due to the many selective pressures that occur concurrently during crop domestication. METHODS: To provide a robust test of whether increased allocation to yield can alter plant investment in defence, this study examined fruit chemical defence traits and herbivore resistance across 52 wild and 56 domesticated genotypes of apples that vary >26-fold in fruit size. Ninety-six phenolic metabolites were quantified in apple skin, pulp and seeds, and resistance to the codling moth was assessed with a series of bioassays. KEY RESULTS: The results show that wild apples have higher total phenolic concentrations and a higher diversity of metabolites than domesticated apples in skin, pulp and seeds. A negative phenotypic relationship between fruit size and phenolics indicates that this pattern is driven in part by allocation-based trade-offs between yield and defence. There were no clear differences in codling moth performance between wild and domesticated apples and no overall effects of total phenolic concentration on codling moth performance, but the results did show that codling moth resistance was increased in apples with higher phenolic diversity. The concentrations of a few individual compounds (primarily flavan-3-ols) also correlated with increased resistance, primarily driven by a reduction in pupal mass of female moths. CONCLUSIONS: The negative phenotypic relationship between fruit size and phenolic content, observed across a large number of wild and domesticated genotypes, supports the hypothesis of yield-defence trade-offs in crops. However, the limited effects of phenolics on codling moth highlight the complexity of consequences that domestication has for plant-herbivore interactions. Continued studies of crop domestication can further our understanding of the multiple trade-offs involved in plant defence, while simultaneously leading to novel discoveries that can improve the sustainability of crop production.


Subject(s)
Malus , Moths , Animals , Domestication , Female , Fruit , Resource Allocation
9.
Chem Pharm Bull (Tokyo) ; 66(6): 642-650, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29618669

ABSTRACT

Genus Dendrobium (Orchidaceae) contains numerous species. Phylogenetic analyses based on morphological characteristics and DNA sequences indicated that this genus is divided into two major groups: Asian and Australasian clades. On the other hand, little is known about the phytochemical differences and similarities among the species in each clade. In this study, we selected 18 Dendrobium species (11 from the Asian clade and 7 from the Australasian clade) and constructed HPLC profiles, arrays composed of relative intensity of the chromatographic peaks. Next, orthogonal partial least square discriminant analysis (OPLS-DA) was applied to the profile matrix to classify Dendrobium species into the Asian and Australasian clades in order to identify the peaks that significantly contribute to the class separation. In the end, two phenanthrenes, 4,9-dimethoxyphenanthrene-2,5-diol 1 and 1,5-dimethoxyphenanthrene-2,7-diol 2, which contributed to the class separation, were isolated from the HPLC peaks. The existence of 2 was limited to the genetically related Australasian species.


Subject(s)
Dendrobium/chemistry , Phenanthrenes/analysis , Plant Extracts/analysis , Australasia , Chromatography, High Pressure Liquid , Multivariate Analysis , Species Specificity
10.
Chem Biodivers ; 15(12): e1800301, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30240144

ABSTRACT

In order to determine the morphophysiological and phytochemical properties of various Ducrosia anethifolia populations, the plant samples were collected from 20 locations in native regions. Current study indicated significant differences in the morphophysiological and phytochemical characteristics of D. anethifolia populations collected from 20 locations in Sistan and Baluchestan Province, Iran. The highest value of plant height and the number of lateral stems, node per plant, umbellate per umbel, seeds per umbellate and the roots fresh and dry weight were related to the location with relatively high rainfall (130-161 mm) and low altitude (up to 1165 m) compared with others. Based on the essential oil components, D. anethifolia populations were divided into five different chemotypes. Chemotypes I, II and III were characterized by high amounts of methyl chavicol, chrysanthenyl acetate and decanal, respectively. Moreover, the populations with high amounts of decanal, anethole and dodecanal were placed in chemotype IV. Chemotype V was attributed to the Naserabad population with 1-decanol as the major compound.


Subject(s)
Apiaceae/chemistry , Phytochemicals/chemistry , Allylbenzene Derivatives , Anisoles/analysis , Anisoles/isolation & purification , Apiaceae/metabolism , Bridged Bicyclo Compounds/analysis , Bridged Bicyclo Compounds/isolation & purification , Ecosystem , Gas Chromatography-Mass Spectrometry , Iran , Monoterpenes/analysis , Monoterpenes/isolation & purification , Oils, Volatile/chemistry , Phytochemicals/analysis , Phytochemicals/isolation & purification , Principal Component Analysis
11.
Plant Biol (Stuttg) ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150982

ABSTRACT

Solanaceous plants, such as Solanum dulcamara, produce steroidal glycosides (SGs). Leaf SG profiles vary among S. dulcamara individuals, leading to distinct phytochemical phenotypes ('chemotypes') and intraspecific phytochemical diversity ('chemodiversity'). However, if and how SG chemodiversity varies among organs and across ontogeny, and how this relates to SG metabolism gene expression is unknown. Among organs and across ontogeny, S. dulcamara plants with saturated (S) and unsaturated (U) SG leaf chemotypes were selected and clonally propagated. Roots, stems and leaves were harvested from vegetative and flowering plants. Extracts were analysed using untargeted LC-MS. Expression of candidate genes in SG metabolism (SdGAME9, SdGAME4, SdGAME25, SdS5αR2 and SdDPS) was analysed using RT-qPCRs. Our analyses showed that SG chemodiversity varies among organs and across ontogeny in S. dulcamara; SG richness (Dmg) was higher in flowering than vegetative plants. In vegetative plants, Dmg was higher for leaves than for roots. Lack of SdGAME25 expression in U-chemotype leaves, while readily expressed in roots and stems, suggests a pivotal role for SdGAME25 in differentiation of leaf chemotypes in vegetative and flowering plants. By acting as an ontogeny-dependent chemotypic switch, differential regulation of SdGAME25 enables adaptive allocation of SGs, thereby increasing SG chemodiversity in leaves. This indicates that differential expression and/or regulation of glycoalkaloid metabolism genes, rather than their presence or absence, explains observed chemotypic variation in SG chemodiversity among organs and across ontogeny.

12.
Phytochemistry ; 222: 114076, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570005

ABSTRACT

The high value of fiber-type Cannabis sativa L. (hemp) due to its phytochemicals has yet to be fully recognized and leveraged. Besides cannabidiol (CBD), which is the most prevalent non-psychoactive cannabinoid, hemp contains numerous other cannabinoids with unexplored bioactivities, in addition to various compound classes. Previous works have aimed to correlate chemical profiles of C. sativa inflorescences with important parameters, mostly based on experiments under controlled conditions. However, mapping studies that explore the phytochemical diversity of hemp in a more realistic context are crucial to guide decisions at multiple levels, especially in areas where hemp cultivation was recently re-authorized, including Mediterranean countries. In this work, a powerful strategy was followed to map the phytochemical diversity of cultivated hemp in Greece, being the first study of its kind for this environment. A panel of 98 inflorescence samples, covering two harvesting years, eleven geographical regions and seven commonly used EU varieties, were studied using a combination of targeted and untargeted approaches. Quantitative results based on UPLC-PDA revealed relatively constant CBD/THC (total) ratios, while profiling by LC-HRMS effectively probed the phytochemical variability of samples, and led to the annotation of 88 metabolites, including a multitude of minor cannabinoids. Multivariate analysis substantiated a strong effect of harvesting year in sample discrimination and related biomarkers were revealed, belonging to fatty acids and flavonoids. The effect of geographical region and, especially, variety on chemical variation patterns was more intricate to interpret. The results of this work are envisioned to enhance our understanding of the real-world phytochemical complexity of C. sativa (hemp), with a view to maximized utilization of hemp for the promotion of human well-being.


Subject(s)
Cannabis , Phytochemicals , Cannabis/chemistry , Greece , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Cannabinoids/chemistry , Cannabinoids/analysis
13.
J Food Biochem ; 46(12): e14413, 2022 12.
Article in English | MEDLINE | ID: mdl-36136087

ABSTRACT

Diospyros species (DS), "Ebenaceae," were known for their therapeutic uses in folk medicine since days of yore. Thereafter, scientific evidence related their health benefits to a myriad of chemical classes, for instance, naphthoquinones, flavonoids, tannins, coumarins, norbergenin derivatives, sterols, secoiridoids, sesquiterpenes, diterpenoids, triterpenoids, volatile organic compounds (VOCs), and carotenoids. The available literature showed that more than 200 compounds were isolated and identified via spectroscopic techniques. Many pharmacological activities of DS have been previously described, such as antioxidant, neuroprotective, antibacterial, antiviral, antiprotozoal, antifungal, antiinflammatory, analgesic, antipyretic and cosmeceutical, investigated, and confirmed through versatile in vitro and in vivo assays. Previous studies proved that genus Diospyros is a rich reservoir of valuable bioactive compounds. However, further comparative studies among its different species are recommended for more precise natural source-based drug discovery and clinical application. Accordingly, this review is to recall the chemical abundance and diversity among different members of genus Diospyros and their ethnopharmacological and pharmacological uses. PRACTICAL APPLICATIONS: Practically, providing sufficient background on both secondary metabolites divergence and pharmacological properties of genus Diospyros has many fruitful aspects. As demonstrated below, extracts and many isolated compounds have significant curative properties, which can lead to the discovery of pharmaceutically relevant alternative substitutes to conventional medicine. Consequently, molecular docking on various receptors can be applied. On the grounds, Naoxinqing tablets, a standardized herbal product containing D. kaki leaves extract, have been patented and recorded in Chinese Pharmacopeia as an approved Traditional Chinese Medicine (TCM) for the treatment of cerebro- and cardiovascular diseases, although the underlying mechanism remains under advisement. Moreover, the antimicrobial applications of DS are of considerable concern; since the widespread use of antibiotics resulted in different forms of bacterial resistance, hence, limiting and compromising effective treatment. In addition, as a result of contemporary rampant memory disorders, neuroprotective activities of different extracts of DS became of great emphasis.


Subject(s)
Diospyros , Phytotherapy , Molecular Docking Simulation , Phytochemicals/chemistry , Plant Extracts/chemistry
14.
Plants (Basel) ; 11(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35214861

ABSTRACT

Cymbopogon winterianus Jowitt is an industrially important crop due to its value in the aromatic, perfumery and pharmaceutical industries. In this study, 72 accessions of C. winterianus were selected for molecular diversity analysis using SSR markers. It revealed a total of 65 polymorphic alleles showing an average of 68.10% polymorphism. The best SSR primer with competency in discriminating the germplasm was 3CM0506 with PIC (0.69), MI (0.69) and Rp (3.12). Genetic variation was studied between Assam, Manipur, Meghalaya and Arunachal Pradesh populations. A dendrogram based on the Neighbour-Joining Method showed clustering of germplasm on the collection site. A total of six relevant genetic populations were identified through a structure harvester software analysis. Moreover, a dendrogram based on similarity, complete linkage and Euclidean distance was also elucidated differentiating the genotypes with respect to the major phytochemical constituents of the essential oil. GC-FID and GC-MS analyses of the essential oil of the 72 germplasms revealed citronellal content from 2.58-51.45%, citronellol from 0.00-26.39% and geraniol from 0.00-41.15%. This is the first molecular diversity report with 72 accessions of C. winterianus collected from the NE region using 28 SSR primers as well as their diversity based on phytochemical markers. This diversity computation will help with acquisition of the knowledge and relationship among each individual accession leading to the development of improved and essential oil component-rich cultivars.

15.
Genomics Proteomics Bioinformatics ; 20(4): 702-714, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33631426

ABSTRACT

Genome-scale metabolomics analysis is increasingly used for pathway and function discovery in the post-genomics era. The great potential offered by developed mass spectrometry (MS)-based technologies has been hindered, since only a small portion of detected metabolites were identifiable so far. To address the critical issue of low identification coverage in metabolomics, we adopted a deep metabolomics analysis strategy by integrating advanced algorithms and expanded reference databases. The experimental reference spectra and in silico reference spectra were adopted to facilitate the structural annotation. To further characterize the structure of metabolites, two approaches were incorporated into our strategy, i.e., structural motif search combined with neutral loss scanning and metabolite association network. Untargeted metabolomics analysis was performed on 150 rice cultivars using ultra-performance liquid chromatography coupled with quadrupole-Orbitrap MS. Consequently, a total of 1939 out of 4491 metabolite features in the MS/MS spectral tag (MS2T) library were annotated, representing an extension of annotation coverage by an order of magnitude in rice. The differential accumulation patterns of flavonoids between indica and japonica cultivars were revealed, especially O-sulfated flavonoids. A series of closely-related flavonolignans were characterized, adding further evidence for the crucial role of tricin-oligolignols in lignification. Our study provides an important protocol for exploring phytochemical diversity in other plant species.


Subject(s)
Oryza , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Oryza/genetics , Metabolomics/methods , Algorithms , Flavonoids
16.
PeerJ ; 9: e11796, 2021.
Article in English | MEDLINE | ID: mdl-35070514

ABSTRACT

Phytochemical diversity (PD) can be considered as a defensive trait; it can operate through single plant secondary metabolites or usually as complex mixtures of them. We tested the more diversity-better defense hypothesis correlating the leaf plant secondary metabolites (PSMs) with the incidence of plant enemies on Hass avocado trees. We expected a negative correlation between the occurrence of plant enemies and PD metrics. Also, as intraspecific PSMs polymorphisms in plant populations are common, we studied the incidence of plant enemies on Hass avocado trees representing chemical variants (chemotypes). We expected a differential incidence of plant enemies among trees grouped by their mono and sesquiterpene + phenylpropanoid chemotypes. We analyzed foliar hexane extracts from 236 trees in 17 orchards by gas chromatography and for the incidence of red mite, thrips, whitefly, avocado branch borer, fruit rot, scab, and peduncle collar blight. The predicted negative correlation between the plant enemies' incidence and the phytochemical metrics did not occur. To determine the relationship between enemy incidence and chemotypes we grouped the trees by cluster analysis using a matrix of PSMs in each tree. Most trees were grouped under four out of 23 chemotypes. Branch borers attacked trees of low-frequency chemotypes more frequently than trees with common chemotypes. The incidence of five plant enemies was different among the predominant chemotypes. The hypothesis of more diversity-better defense was not supported by the correlations between the phytochemical diversity and the incidence of pests and pathogens in Hass avocado orchards. Based on our results, we hypothesize that phytochemical diversity function as a defensive trait relies more on differentiation among individuals in a population than on the sole increase of chemical diversity. Also, the differential incidence of pests and pathogens on trees classified by their foliar chemotypes implies that these susceptibility or resistance markers represent potential useful tools for Hass avocado orchard pest management.

17.
J Agric Food Chem ; 68(37): 9940-9952, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32813520

ABSTRACT

Environmental factors shape the production and accumulation processes of plant secondary metabolites in medical and aromatic plants and thus their pharmacological and biological activity. Using an environmental metabolomics approach, we determined chemotypes and specific compounds on the basis of essential oils (EOs) from roots of 10 Iranian Ferula assa-foetida L. populations and related them to geographical, climate, and edaphic data. GC-MS revealed three distinct chemotypes characterized by (I) monoterpenes and Z-1-propenyl sec-butyl disulfide; (II) eudesmane sesquiterpenoids and α-agarofuran; and (III) Z- and E-1-propenyl sec-butyl disulfide. NIRS measurements indicated a similar but less distinct pattern. Structural equation models showed that EO constituents and content were directly influenced by edaphic factors (texture, pH, and iron, potassium, and aluminum content) and temperature and predominantly indirectly by latitude, longitude, and altitude. Predicting EO constituents or chemotypes by geographical, climate, and soil factors can be used in F. assa-foetida to select populations with specific EO characteristics.


Subject(s)
Ferula/metabolism , Oils, Volatile/chemistry , Plant Oils/chemistry , Plant Roots/chemistry , Ecosystem , Environment , Ferula/chemistry , Ferula/classification , Ferula/growth & development , Gas Chromatography-Mass Spectrometry , Iran , Metabolomics , Oils, Volatile/metabolism , Plant Oils/metabolism , Plant Roots/classification , Plant Roots/growth & development , Plant Roots/metabolism , Soil/chemistry
18.
Ecology ; 101(11): e03158, 2020 11.
Article in English | MEDLINE | ID: mdl-32745232

ABSTRACT

Phytochemical diversity is comprised of two main dimensions-the average (alpha) within-plant neighbors or the difference (beta) in the composition of chemicals between plant neighbors. Research, however, has primarily examined the consequences of phytochemical diversity on herbivore performance through a single dimension, even though diversity is multidimensional. Furthermore, the ecological role of phytochemical diversity is not well understood because each of these dimensions exhibits unique biological effects on herbivore performance. Therefore, it has been difficult to tease apart the relative importance of alpha and beta chemical diversities on plant-herbivore interactions. We experimentally manipulated alpha and beta diversities along a chemical gradient to disentangle the relative effects of these dimensions on the performance of a mobile generalist herbivore, Trichoplusia ni (Hübner), using 16 genotypes from the Solanum pennellii introgression lines. First, we found contrasting effects of alpha and beta diversities on herbivore performance. Second, when comparing diversity across and within chemical classes, herbivore performance was reduced when plant neighbors had greater diversity within chemical classes that are biologically inhibiting at higher quantities (i.e., quantitative defenses such as phenolics and acyl sugars). However, herbivore performance was enhanced when plant neighbors had higher levels of chemical classes that are biologically toxic (i.e., qualitative defenses such as alkaloids). Finally, herbivores performed better on plant dicultures compared to monocultures, and performance was positively associated with plant dicultures only when there were high levels of average alpha diversity within plant neighbors. Our results suggest T. ni generalist caterpillars do better when plant neighbors are chemically different because differences provide options for them to choose or to switch between plants to balance chemical uptake. Overall, herbivores interact with a large diversity of plant chemicals at multiple scales, and our results indicate that not all chemical diversity is equal: specific dimensions of phytochemical diversity have unique effects on the dynamics of herbivore performance.


Subject(s)
Herbivory , Lepidoptera , Animals , Insecta , Phytochemicals , Plants
19.
Front Plant Sci ; 9: 656, 2018.
Article in English | MEDLINE | ID: mdl-29942320

ABSTRACT

Terrestrial tri-trophic interactions account for a large part of biodiversity, with approximately 75% represented in plant-insect-parasitoid interactions. Herbivore diet breadth is an important factor mediating these tri-trophic interactions, as specialisation can influence how herbivore fitness is affected by plant traits. We investigated how phytochemistry, herbivore immunity, and herbivore diet breadth mediate plant-caterpillar-parasitoid interactions on the tropical plant genus Piper (Piperaceae) at La Selva Biological station in Costa Rica and at Yanayacu Biological Station in Ecuador. We collected larval stages of one Piper generalist species, Quadrus cerealis, (Lepidoptera: Hesperiidae) and 4 specialist species in the genus Eois (Lepidoptera: Geometridae) from 15 different species of Piper, reared them on host leaf material, and assayed phenoloxidase activity as a measure of potential larval immunity. We combined these data with parasitism and caterpillar species diet breadth calculated from a 19-year database, as well as established values of phytochemical diversity calculated for each plant species, in order to test specific hypotheses about how these variables are related. We found that phytochemical diversity was an important predictor for herbivore immunity, herbivore parasitism, and diet breadth for specialist caterpillars, but that the direction and magnitude of these relationships differed between sites. In Costa Rica, specialist herbivore immune function was negatively associated with the phytochemical diversity of the Piper host plants, and rates of parasitism decreased with higher immune function. The same was true for Ecuador with the exception that there was a positive association between immune function and phytochemical diversity. Furthermore, phytochemical diversity did not affect herbivore immunity and parasitism for the more generalised herbivore. Results also indicated that small differences in herbivore diet breadth are an important factor mediating herbivore immunity and parasitism success for Eois at both sites. These patterns contribute to a growing body of literature that demonstrate strong cascading effects of phytochemistry on higher trophic levels that are dependent on herbivore specialisation and that can vary in space and time. Investigating the interface between herbivore immunity, plant chemical defence, and parasitoids is an important facet of tri-trophic interactions that can help to explain the enormous amount of biodiversity found in the tropics.

20.
Front Plant Sci ; 9: 1424, 2018.
Article in English | MEDLINE | ID: mdl-30323822

ABSTRACT

A major prediction of coevolutionary theory is that plants may target particular herbivores with secondary compounds that are selectively defensive. The highly specialized monarch butterfly (Danaus plexippus) copes well with cardiac glycosides (inhibitors of animal Na+/K+-ATPases) from its milkweed host plants, but selective inhibition of its Na+/K+-ATPase by different compounds has not been previously tested. We applied 17 cardiac glycosides to the D. plexippus-Na+/K+-ATPase and to the more susceptible Na+/K+-ATPases of two non-adapted insects (Euploea core and Schistocerca gregaria). Structural features (e.g., sugar residues) predicted in vitro inhibitory activity and comparison of insect Na+/K+-ATPases revealed that the monarch has evolved a highly resistant enzyme overall. Nonetheless, we found evidence for relative selectivity of individual cardiac glycosides reaching from 4- to 94-fold differences of inhibition between non-adapted Na+/K+-ATPase and D. plexippus-Na+/K+-ATPase. This toxin receptor specificity suggests a mechanism how plants could target herbivores selectively and thus provides a strong basis for pairwise coevolutionary interactions between plants and herbivorous insects.

SELECTION OF CITATIONS
SEARCH DETAIL