Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 492
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38359819

ABSTRACT

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Subject(s)
Neoplasms , Proteogenomics , Humans , Combined Modality Therapy , Genomics , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Proteomics , Tumor Escape
2.
Cell ; 187(16): 4389-4407.e15, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38917788

ABSTRACT

Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.


Subject(s)
Neoplasms , Proteogenomics , Humans , Proteogenomics/methods , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/metabolism , Molecular Targeted Therapy , Immunotherapy/methods , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Cell Line, Tumor , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Peptides/metabolism , Proteomics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
3.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181741

ABSTRACT

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Subject(s)
Lung Neoplasms , Proteogenomics , Small Cell Lung Carcinoma , Humans , Cell Line , Lung Neoplasms/chemistry , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/chemistry , Small Cell Lung Carcinoma/genetics , Heterografts , Biomarkers, Tumor/analysis
4.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37582357

ABSTRACT

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Subject(s)
Neoplasms , Proteogenomics , Humans , Neoplasms/genetics , Oncogenes , Cell Transformation, Neoplastic/genetics , DNA Copy Number Variations
5.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34358469

ABSTRACT

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Proteogenomics , Acetylation , Adult , Aged , Aged, 80 and over , Cluster Analysis , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Mutation/genetics , Neoplasm Proteins/metabolism , Phosphorylation , Protein Binding , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction , Ubiquitination
6.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34534465

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Proteogenomics , Adenocarcinoma/diagnosis , Adult , Aged , Aged, 80 and over , Algorithms , Carcinoma, Pancreatic Ductal/diagnosis , Cohort Studies , Endothelial Cells/metabolism , Epigenesis, Genetic , Female , Gene Dosage , Genome, Human , Glycolysis , Glycoproteins/biosynthesis , Humans , Male , Middle Aged , Molecular Targeted Therapy , Pancreatic Neoplasms/diagnosis , Phenotype , Phosphoproteins/metabolism , Phosphorylation , Prognosis , Protein Kinases/metabolism , Proteome/metabolism , Substrate Specificity , Transcriptome/genetics
7.
Cell ; 184(7): 1661-1670, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33798439

ABSTRACT

When it comes to precision oncology, proteogenomics may provide better prospects to the clinical characterization of tumors, help make a more accurate diagnosis of cancer, and improve treatment for patients with cancer. This perspective describes the significant contributions of The Cancer Genome Atlas and the Clinical Proteomic Tumor Analysis Consortium to precision oncology and makes the case that proteogenomics needs to be fully integrated into clinical trials and patient care in order for precision oncology to deliver the right cancer treatment to the right patient at the right dose and at the right time.


Subject(s)
Neoplasms/diagnosis , Proteogenomics/methods , Databases, Genetic , Drug Discovery , Genetic Association Studies , Humans , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine
8.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649874

ABSTRACT

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Proteogenomics , Adenocarcinoma of Lung/immunology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Female , Humans , Lung Neoplasms/immunology , Male , Middle Aged , Mutation/genetics , Oncogene Proteins, Fusion , Phenotype , Phosphoproteins/metabolism , Proteome/metabolism
9.
Cell ; 182(1): 226-244.e17, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649875

ABSTRACT

Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.


Subject(s)
Disease Progression , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proteogenomics , Smoking/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinogens/toxicity , Cohort Studies , Cytosine Deaminase/metabolism , Asia, Eastern , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genome, Human , Humans , Matrix Metalloproteinases/metabolism , Mutation/genetics , Principal Component Analysis
10.
Cell ; 180(4): 729-748.e26, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32059776

ABSTRACT

We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/ß-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.


Subject(s)
Carcinoma/genetics , Endometrial Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Proteome/genetics , Transcriptome , Acetylation , Animals , Antigens, Neoplasm/genetics , Carcinoma/immunology , Carcinoma/pathology , Endometrial Neoplasms/immunology , Endometrial Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Feedback, Physiological , Female , Genomic Instability , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Microsatellite Repeats , Phosphorylation , Protein Processing, Post-Translational , Proteome/metabolism , Signal Transduction
11.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33212010

ABSTRACT

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Molecular Targeted Therapy , Proteogenomics , APOBEC Deaminases/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Cohort Studies , DNA Damage , DNA Repair , Female , Humans , Immunotherapy , Metabolomics , Middle Aged , Mutagenesis/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Receptor, ErbB-2/metabolism , Retinoblastoma Protein/metabolism , Tumor Microenvironment/immunology
12.
Cell ; 179(2): 561-577.e22, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31585088

ABSTRACT

We performed the first proteogenomic characterization of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) using paired tumor and adjacent liver tissues from 159 patients. Integrated proteogenomic analyses revealed consistency and discordance among multi-omics, activation status of key signaling pathways, and liver-specific metabolic reprogramming in HBV-related HCC. Proteomic profiling identified three subgroups associated with clinical and molecular attributes including patient survival, tumor thrombus, genetic profile, and the liver-specific proteome. These proteomic subgroups have distinct features in metabolic reprogramming, microenvironment dysregulation, cell proliferation, and potential therapeutics. Two prognostic biomarkers, PYCR2 and ADH1A, related to proteomic subgrouping and involved in HCC metabolic reprogramming, were identified. CTNNB1 and TP53 mutation-associated signaling and metabolic profiles were revealed, among which mutated CTNNB1-associated ALDOA phosphorylation was validated to promote glycolysis and cell proliferation. Our study provides a valuable resource that significantly expands the knowledge of HBV-related HCC and may eventually benefit clinical practice.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Fructose-Bisphosphate Aldolase/genetics , Hepatitis B virus , Hepatitis B, Chronic/complications , Liver Neoplasms/genetics , Liver Neoplasms/virology , Proteogenomics/methods , beta Catenin/genetics , Animals , Cell Proliferation , Cohort Studies , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Tumor Microenvironment/genetics
13.
Cell ; 179(4): 964-983.e31, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31675502

ABSTRACT

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.


Subject(s)
Carcinoma, Renal Cell/genetics , Neoplasm Proteins/genetics , Proteogenomics , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Disease-Free Survival , Exome/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Genome, Human/genetics , Humans , Male , Middle Aged , Neoplasm Proteins/immunology , Oxidative Phosphorylation , Phosphorylation/genetics , Signal Transduction/genetics , Transcriptome/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Exome Sequencing
14.
Cell ; 177(4): 1035-1049.e19, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31031003

ABSTRACT

We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Proteogenomics/methods , Apoptosis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes , Cell Proliferation/genetics , Colonic Neoplasms/metabolism , Genomics/methods , Glycolysis , Humans , Microsatellite Instability , Mutation , Phosphorylation , Prospective Studies , Proteomics/methods , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
15.
Annu Rev Pharmacol Toxicol ; 64: 455-479, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37738504

ABSTRACT

Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.


Subject(s)
Precision Medicine , Proteogenomics , Humans , Proteomics , Genomics , Mass Spectrometry
16.
Am J Hum Genet ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39079539

ABSTRACT

A major fraction of loci identified by genome-wide association studies (GWASs) mediate alternative splicing, but mechanistic interpretation is hindered by the technical limitations of short-read RNA sequencing (RNA-seq), which cannot directly link splicing events to full-length protein isoforms. Long-read RNA-seq represents a powerful tool to characterize transcript isoforms, and recently, infer protein isoform existence. Here, we present an approach that integrates information from GWASs, splicing quantitative trait loci (sQTLs), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes that colocalized with BMD associations (H4PP ≥ 0.75). We generated PacBio Iso-Seq data (N = ∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were unannotated. By casting the sQTLs onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense-mediated decay and 190 that potentially resulted in the expression of unannotated protein isoforms. Finally, we functionally validated colocalizing sQTLs in TPM2, in which siRNA-mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization but exhibited no effect upon knockdown of the entire gene. Our approach should be to generalize across diverse clinical traits and to provide insights into protein isoform activities modulated by GWAS loci.

17.
Mol Cell ; 73(1): 166-182.e7, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30609389

ABSTRACT

Subcellular localization is a main determinant of protein function; however, a global view of cellular proteome organization remains relatively unexplored. We have developed a robust mass spectrometry-based analysis pipeline to generate a proteome-wide view of subcellular localization for proteins mapping to 12,418 individual genes across five cell lines. Based on more than 83,000 unique classifications and correlation profiling, we investigate the effect of alternative splicing and protein domains on localization, complex member co-localization, cell-type-specific localization, as well as protein relocalization after growth factor inhibition. Our analysis provides information about the cellular architecture and complexity of the spatial organization of the proteome; we show that the majority of proteins have a single main subcellular location, that alternative splicing rarely affects subcellular location, and that cell types are best distinguished by expression of proteins exposed to the surrounding environment. The resource is freely accessible via www.subcellbarcode.org.


Subject(s)
Chromatography, Liquid , Mass Spectrometry , Proteins/metabolism , Proteome , Proteomics/methods , Subcellular Fractions/metabolism , Biomarkers/metabolism , Cell Fractionation , Computational Biology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Gefitinib/pharmacology , Humans , Isoelectric Focusing , MCF-7 Cells , Protein Kinase Inhibitors/pharmacology , Protein Transport , Proteins/antagonists & inhibitors , Proteins/classification , Proteins/genetics , Reproducibility of Results , Subcellular Fractions/classification , Subcellular Fractions/drug effects
18.
Proc Natl Acad Sci U S A ; 121(6): e2204075121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38306482

ABSTRACT

Coastal Antarctic marine ecosystems are significant in carbon cycling because of their intense seasonal phytoplankton blooms. Southern Ocean algae are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12). Micronutrient limitation controls productivity and shapes the composition of blooms which are typically dominated by either diatoms or the haptophyte Phaeocystis antarctica. However, the vitamin requirements and ecophysiology of the keystone species P. antarctica remain poorly characterized. Using cultures, physiological analysis, and comparative omics, we examined the response of P. antarctica to a matrix of Fe-B12 conditions. We show that P. antarctica is not auxotrophic for B12, as previously suggested, and identify mechanisms underlying its B12 response in cultures of predominantly solitary and colonial cells. A combination of proteomics and proteogenomics reveals a B12-independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and interreplaced with the B12-dependent isoform under replete conditions. Database searches return homologues of the MetE-fusion protein in multiple Phaeocystis species and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles as well as bacterioplankton. Furthermore, we find MetE-fusion homologues expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding that P. antarctica has a flexible B12 metabolism has implications for its relative fitness compared to B12-auxotrophic diatoms and for the detection of B12-stress in a more diverse set of marine microbes.


Subject(s)
Diatoms , Haptophyta , Haptophyta/genetics , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Ecosystem , Phytoplankton/metabolism , Diatoms/genetics , Vitamins/metabolism , Micronutrients/metabolism
19.
Mol Cell Proteomics ; 23(6): 100764, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604503

ABSTRACT

Efforts to address the poor prognosis associated with esophageal adenocarcinoma (EAC) have been hampered by a lack of biomarkers to identify early disease and therapeutic targets. Despite extensive efforts to understand the somatic mutations associated with EAC over the past decade, a gap remains in understanding how the atlas of genomic aberrations in this cancer impacts the proteome and which somatic variants are of importance for the disease phenotype. We performed a quantitative proteomic analysis of 23 EACs and matched adjacent normal esophageal and gastric tissues. We explored the correlation of transcript and protein abundance using tissue-matched RNA-seq and proteomic data from seven patients and further integrated these data with a cohort of EAC RNA-seq data (n = 264 patients), EAC whole-genome sequencing (n = 454 patients), and external published datasets. We quantified protein expression from 5879 genes in EAC and patient-matched normal tissues. Several biomarker candidates with EAC-selective expression were identified, including the transmembrane protein GPA33. We further verified the EAC-enriched expression of GPA33 in an external cohort of 115 patients and confirm this as an attractive diagnostic and therapeutic target. To further extend the insights gained from our proteomic data, an integrated analysis of protein and RNA expression in EAC and normal tissues revealed several genes with poorly correlated protein and RNA abundance, suggesting posttranscriptional regulation of protein expression. These outlier genes, including SLC25A30, TAOK2, and AGMAT, only rarely demonstrated somatic mutation, suggesting post-transcriptional drivers for this EAC-specific phenotype. AGMAT was demonstrated to be overexpressed at the protein level in EAC compared to adjacent normal tissues with an EAC-selective, post-transcriptional mechanism of regulation of protein abundance proposed. Integrated analysis of proteome, transcriptome, and genome in EAC has revealed several genes with tumor-selective, posttranscriptional regulation of protein expression, which may be an exploitable vulnerability.


Subject(s)
Adenocarcinoma , Biomarkers, Tumor , Esophageal Neoplasms , Gene Expression Regulation, Neoplastic , Proteomics , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Proteomics/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , Female , RNA Processing, Post-Transcriptional , Proteome/metabolism , Multiomics
20.
Mol Cell Proteomics ; 23(1): 100683, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37993104

ABSTRACT

Dysregulated mRNA splicing is involved in the pathogenesis of many diseases including cancer, neurodegenerative diseases, and muscular dystrophies such as myotonic dystrophy type 1 (DM1). Comprehensive assessment of dysregulated splicing on the transcriptome and proteome level has been methodologically challenging, and thus investigations have often been targeting only few genes. Here, we performed a large-scale coordinated transcriptomic and proteomic analysis to characterize a DM1 mouse model (HSALR) in comparison to wild type. Our integrative proteogenomics approach comprised gene- and splicing-level assessments for mRNAs and proteins. It recapitulated many known instances of aberrant mRNA splicing in DM1 and identified new ones. It enabled the design and targeting of splicing-specific peptides and confirmed the translation of known instances of aberrantly spliced disease-related genes (e.g., Atp2a1, Bin1, Ryr1), complemented by novel findings (Flnc and Ywhae). Comparative analysis of large-scale mRNA and protein expression data showed quantitative agreement of differentially expressed genes and splicing patterns between disease and wild type. We hence propose this work as a suitable blueprint for a robust and scalable integrative proteogenomic strategy geared toward advancing our understanding of splicing-based disorders. With such a strategy, splicing-based biomarker candidates emerge as an attractive and accessible option, as they can be efficiently asserted on the mRNA and protein level in coordinated fashion.


Subject(s)
Myotonic Dystrophy , Proteogenomics , Mice , Animals , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonic Dystrophy/pathology , Alternative Splicing/genetics , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL