Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Proc Natl Acad Sci U S A ; 119(22): e2202449119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35622888

ABSTRACT

Organodisulfides (RSSR) are a class of promising active materials for redox flow batteries (RFBs). However, their sluggish kinetics and poor cyclic stability remain a formidable challenge. Here, we propose carbon disulfide (CS2) as a unique redox mediator involving reversible C-S bond formation/breakage to facilitate the reduction reaction of organodisulfides in RFBs. In the discharge of RSSR, CS2 interacts with the negatively charged RSSR-• to promote cleavage of the S-S bond by reducing about one-third of the energy barrier, forming RSCS2Li. In the recharge, CS2 is unbonded from RSCS2Li while RSSR is regenerated. Meanwhile, the redox mediator can also be inserted into the molecular structure of RSSR to form RSCS2SR/RSCS2CS2SR, and these new active materials with lower energy barriers can further accelerate the reaction kinetics of RSSR. With CS2, phenyl disulfide exhibits an exceptional rate capability and cyclability of 500 cycles. An average energy efficiency of >90% is achieved. This strategy provides a unique redox-mediating pathway involving C-S bond formation/breakage with the active species, which is different from those used in lithium-oxygen or other batteries.

2.
Small ; 20(27): e2311771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38268308

ABSTRACT

Insufficient thermal stability of vanadium redox flow battery (VRFB) electrolytes at elevated temperatures (>40 °C) remains a challenge in the development and commercialization of this technology, which otherwise presents a broad range of technological advantages for the long-term storage of intermittent renewable energy. Herein, a new concept of combined additives is presented, which significantly increases thermal stability of the battery, enabling safe operation to the highest temperature (50 °C) tested to date. This is achieved by combining two chemically distinct additives-inorganic ammonium phosphate and polyvinylpyrrolidone (PVP) surfactant, which collectively decelerate both protonation and agglomeration of the oxo-vanadium species in solution and thereby significantly suppress detrimental formation of precipitates. Specifically, the precipitation rate is reduced by nearly 75% under static conditions at 50° C. This improvement is reflected in the robust operation of a complete VRFB device for over 300 h of continuous operation at 50 °C, achieving an impressive 83% voltage efficiency at 100 mA cm‒2 current density, with no precipitation detected in either the electrode/flow-frame or electrolyte tank.

3.
Chem Rec ; 24(1): e202300171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37606899

ABSTRACT

The global rapid transition from fossil fuels to renewable energy resources necessitates the implementation of long-duration energy storage technologies owing to the intermittent nature of renewable energy sources. Therefore, the deployment of grid-scale energy storage systems is inevitable. Sulfur-based batteries can be exploited as excellent energy storage devices owing to their intrinsic safety, low cost of raw materials, low risk of environmental hazards, and highest theoretical capacities (gravimetric: 2600 Wh/kg and volumetric: 2800 Wh/L). However, sulfur-based batteries exhibit certain scientific limitations, such as polysulfide crossover, which causes rapid capacity decay and low Coulombic efficiency, thereby hindering their implementation at a commercial scale. In this review article, we focus on the latest research developments between 2012-2023 to improve the separators/membranes and overcome the shuttle effect associated with them. Various categories of ion exchange membranes (IEMs) used in redox batteries, particularly polysulfide redox flow batteries and lithium-sulfur batteries, are discussed in detail. Furthermore, advances in IEM constituents are summarized to gain insights into different fundamental strategies for attaining targeted characteristics, and a critical analysis is proposed to highlight their efficiency in mitigating sulfur cross-shuttling issues. Finally, future prospects and recommendations are suggested for future research toward the fabrication of more effective membranes with desired properties.

4.
Chem Rec ; 24(1): e202300233, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37695078

ABSTRACT

The ever-increasing threat of climate change and the depletion of fossil fuel resources necessitate the use of solar- and wind-based renewable energy sources. Large-scale energy storage technologies, such as redox flow batteries (RFBs), offer a continuous supply of energy. Depending on the nature of the electrolytes used, RFBs are broadly categorized into aqueous redox flow batteries (ARFBs) and non-aqueous redox flow batteries (NARFBs). ARFBs suffer from various problems, including low conductivity of electrolytes, inferior charge/discharge current densities, high-capacity fading, and lower energy densities. NARFBs offer a wider potential window and range of operating temperatures, faster electron transfer kinetics, and higher energy densities. In this review article, a critical analysis is provided on the design of organic electroactive molecules, their physiochemical/electrochemical properties, and various organic solvents used in NARFBs. Furthermore, various redox-active organic materials, such as metal-based coordination complexes, quinones, radicals, polymers, and miscellaneous electroactive species, explored for NARFBs during 2012-2023 are discussed. Finally, the current challenges and prospects of NARFBs are summarized.

5.
Angew Chem Int Ed Engl ; : e202409006, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896505

ABSTRACT

Proton exchange membranes with high selectivity are urgently required in energy and electronic technologies. Nafion, a state-of-the-art commercial proton exchange membrane material, faces significant challenges. It suffers from the permeation of undesirable substances, like hydrogen in fuel cells and vanadium ions in redox flow batteries, due to the unmatched sizes between its ionic domains (3~5 nm) and these substances. In this work, we present a supramolecular modification strategy that simultaneously enhances the proton conductivity and selectivity of Nafion. We employ fluoroalkyl-grafted polyoxometalate (POMs) nanoclusters as supramolecular additives to modify Nafion via co-assembly. These POMs can precisely and robustly decorate at Nafion ionic domains, with their fluoroalkyl chains anchoring into the perfluorinated matrix while their inorganic clusters stay in the ionic regions. The hybrid membranes, with continuous proton hopping sites and nanoscale steric hindrance offered by POMs, exhibit a 56% increase in proton conductivity and a 100% improvement in proton/vanadium selectivity. This leads to significantly enhanced power density and energy efficiency in fuel cells and vanadium flow batteries, respectively. These results underscore the intriguing potential of molecular cluster additives in improving the functions of ion-conducting membranes.

6.
Small ; 19(32): e2300943, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37060221

ABSTRACT

Iron-chromium redox flow batteries have attracted widespread attention because of their low cost. However, the performance of these batteries is still lower than that of vanadium redox flow batteries due to the poor electrochemical activity of Cr3+ /Cr2+ redox couples on graphite felt electrodes. Herein, binder-free TiN nanorods array-decorated 3D graphite felt composite electrode-is demonstrated. The dendrite-like TiN nanorods array increases the specific surface area of the electrode. The nitrogen and oxygen elements on the surface provide more adsorption sites and electrochemically active sites for Cr3+ /Cr2+ . The contact resistance of the composite electrode is effectively reduced and its homogeneity and stability are improved by avoiding the use of a binder and mixing process. A battery prepared using the TiN nanorods array-decorated 3D graphite felt electrode has enabled the maximum power density to be 427 mW·cm-2 , which is 74.0% higher than a battery assembled with TiN nanoparticles bonded to graphite felt. At a current density of 80 mA·cm-2 , the TiN nanorods battery exhibits the highest coulombic efficiency of 93.0%, voltage efficiency of 90.4%, and energy efficiency of 84.1%. Moreover, the battery efficiency and composite electrode structure remains stable during a redox flow battery cycle test.

7.
Chemistry ; 29(44): e202300996, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37205719

ABSTRACT

N-functionalized pyridinium frameworks derived from the three major vitamers of vitamin B6, pyridoxal, pyridoxamine and pyridoxine, have been screened computationally for consideration as negative electrode materials in aqueous organic flow batteries. A molecular database including the structure and the one-electron standard reduction potential of related pyridinium derivatives has been generated using a computational protocol that combines semiempirical and DFT quantum chemical methods. The predicted reduction potentials span a broad range for the investigated pyridinium frameworks, but pyridoxal derivatives, particularly those involving electron withdrawing substituents, have potentials compatible with the electrochemical stability window of aqueous electrolytes. The stability of radicals formed upon one-electron reduction has been analyzed by a new computational tool proposed recently for large-scale computational screening.

8.
Angew Chem Int Ed Engl ; 62(6): e202214819, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36495124

ABSTRACT

As a green route for large-scale energy storage, aqueous organic redox flow batteries (AORFBs) are attracting extensive attention. However, most of the reported AORFBs were operated in an inert atmosphere. Herein, we clarify this issue by using the reported AORFB (i.e., 3, 3'-(9,10-anthraquinone-diyl)bis(3-methylbutanoicacid) (DPivOHAQ)||Ferrocyanide) as an example. We demonstrate that the dissolved O2 can oxidize the discharged DPivOHAQ in anolyte, leading to capacity-imbalance between anolyte and catholyte. Therefore, this cell shows continuous capacity fading when operated in an air atmosphere. We propose a simple strategy for this challenge, in which the oxygen evolution reaction (OER) in catholyte is employed to balance oxygen reduction reaction (ORR) in anolyte. When using the Ni(OH)2 -modifed carbon felt (CF) as a current collector for catholyte, this cell shows an excellent stability in air atmosphere because the Ni(OH)2 -induced OER capacity in catholyte exactly balances the ORR capacity in anolyte. Such O2 -balance strategy facilitates AORFBs' practical application.

9.
Small ; 18(50): e2206284, 2022 12.
Article in English | MEDLINE | ID: mdl-36319463

ABSTRACT

Polybenzimidazole (PBI) membranes show excellent chemical stability and low vanadium crossover in vanadium redox flow batteries (VRFBs), but their high resistance is challenging. This work introduces a concept, membrane assemblies of a highly selective 2 µm thin PBI membrane between two 60 µm thick highly conductive PBI gel membranes, which act as soft protective layers against external mechanical forces and astray carbon fibers from the electrode. The soft layers are produced by casting phosphoric acid solutions of commercial PBI powder into membranes and exchanging the absorbed acid into sulfuric acid. A conductivity of 565 mS cm-1 is achieved. A stability test indicates that gel mPBI and dense PBI-OO have higher stability than dense mPBI and dense py-PBI, and gel/PBI-OO/gel is successfully tested for 1070 cycles (ca. 1000 h) at 100 mA cm-2 in the VRFB. The initial energy efficiency (EE) for the first 50 cycles is 90.5 ± 0.2%, and after a power outage stabilized at 86.3 ± 0.5% for the following 500 cycles. The initial EE is one of the highest published so far, and the materials cost for a membrane assembly is 12.35 U.S. dollars at a production volume of 5000 m2 , which makes these membranes very attractive for commercialization.


Subject(s)
Electric Power Supplies , Vanadium , Oxidation-Reduction , Electric Conductivity , Membranes, Artificial
10.
Nanotechnology ; 33(26)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35313297

ABSTRACT

Aqueous Zn-iodine redox flow batteries have aroused great interest for the features of high capacity, excellent stability, low cost, and high safety, yet the dissatisfying energy efficiency still limits their future advancement. In this work, three-dimensional semiconductor BiVO4nanoparticles decorated hierarchical TiO2/SnO2arrays (BiVO4@TiO2/SnO2) were applied as photocathode in Zn-iodine redox flow batteries (ZIRFBs) for the realization of efficient photo-assisted charge/discharge process. The photogenerated carriers at the solid/liquid interfaces boosted the oxidation process of I-, and thus contributed to a significant elevation in energy efficiency of 14.9% (@0.5 mA cm-2). A volumetric discharge capacity was extended by 79.6% under light illumination, owing to a reduced polarization. The photocathode also exhibited an excellent durability, leading to a stable operation for over 80 h with a maintained high energy efficiency of ∼90% @0.2 mA cm-2. The research offers a feasible approach for the realization of high-energy-efficiency aqueous Zn-iodine batteries towards high-efficiency energy conversion and utilization.

11.
Angew Chem Int Ed Engl ; 61(30): e202204030, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35523722

ABSTRACT

Zinc metal represents a low-cost, high-capacity anode material to develop energy-dense aqueous redox-flow batteries (RFB). However, the energy-storage applications of traditional inorganic Zn halide flow batteries are primarily plagued by the material challenges of traditional halide cathode electrolytes (e.g., bromine), including corrosion, toxicity, and severe crossover. Herein, we report a bipolar zinc-ferrocene salt compound, zinc 1,1'-bis(3-sulfonatopropyl)ferrocene, Zn[Fc(SPr)2 ] (1.80 M solubility or 48.2 Ah L- charge storage capacity)-a robust, energy-dense, bipolar redox-active electrolyte material for RFBs. Zn[Fc(SPr)2 ]-based redox-flow batteries operated at high current densities of up to 200 mA cm-2 and delivered an energy efficiency of up to 81.5 % and a power density of up to 270.5 mW cm-2 . A Zn[Fc(SPr)2 ] flow battery demonstrated an energy density of 20.2 Wh L-1 and displayed nearly 100 % capacity retention for 2000 cycles (1284 h or 53.5 days).

12.
Angew Chem Int Ed Engl ; 61(38): e202207580, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35876472

ABSTRACT

Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.

13.
Angew Chem Int Ed Engl ; 61(36): e202206093, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35718885

ABSTRACT

The rapid evolution of electrical devices and the increasing demand for the supply of sustainable energy necessitate the development of high-performance energy storage systems such as rechargeable and redox flow batteries. However, these batteries typically contain inorganic active materials, which exhibit several critical drawbacks hindering further development. In this regard, azo compounds are promising alternatives, offering the benefits of fast kinetics, multi-electron redox reactions, and tunable (via structural adjustment) battery performance. Herein, we review the use of azo compounds as the active materials of rechargeable and redox flow batteries, discuss certain aspects of material design and electrochemical reaction mechanisms, and summarize the corresponding perspectives and research directions to facilitate further progress in this field.

14.
J Synchrotron Radiat ; 28(Pt 6): 1865-1873, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34738941

ABSTRACT

Vanadium-ion transport through the polymer membrane results in a significant decrease in the capacity of vanadium redox flow batteries. It is assumed that five vanadium species are involved in this process. Micro X-ray absorption near-edge structure spectroscopy (micro-XANES) is a potent method to study chemical reactions during vanadium transport inside the membrane. In this work, protocols for micro-XANES measurements were developed to enable through-plane characterization of the vanadium species in Nafion 117 on beamline P06 of the PETRA III synchrotron radiation facility (DESY, Hamburg, Germany). A Kapton tube diffusion cell with a diameter of 3 mm was constructed. The tube diameter was chosen in order to accommodate laminar flow for cryogenic cooling while allowing easy handling of the cell components by hand. A vertical step size of 2.5 µm and a horizontal step size of 5 µm provided sufficient resolution to resolve the profile and good statistics after summing up horizontal rows of scan points. The beam was confined in the horizontal plane to account for the waviness of the membrane. The diffusion of vanadium ions during measurement was inhibited by the cryogenic cooling. Vanadium oxidation, e.g. by water radiolysis (water percentage in the hydrated membrane ∼23 wt%), was mitigated by the cryogenic cooling and by minimizing the dwell time per pixel to 5 ms. Thus, the photo-induced oxidation of V3+ in the focused beam could be limited to 10%. In diffusion experiments, Nafion inside the diffusion cell was exposed on one side to V3+ electrolyte and on the other side to VO2+. The ions were allowed to diffuse across the through-plane orientation of the membrane during one of two short defrost times (200 s and 600 s). Subsequent micro-XANES measurements showed the formation of VO2+ from V3+ and VO2+ inside the water body of Nafion. This result proves the suitability of the experimental setup as a powerful tool for the determination of the profile of vanadium species in Nafion and other ionomeric membranes.

15.
Chemistry ; 27(47): 12172-12180, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34041796

ABSTRACT

Redox flow batteries (RFBs) employing nonaqueous electrolytes could potentially operate at much higher cell voltages, and therefore afford higher energy and power densities, than RFBs employing aqueous electrolytes. The development of such high-voltage nonaqueous RFBs requires anolytes that are electrochemically stable, especially in the presence of traces of oxygen and/or moisture. The inherent atmospheric reactivity of anolytes mandates judicious molecular design with high electron affinity and electrochemical stability. In this study, diketopyrrolopyrrole (DPP)-based TDPP-Hex-CN4 is proposed as a stable redox-active molecule for anolytes in nonaqueous organic RFBs. We demonstrate organic RFBs using TDPP-Hex-CN4 as anolyte with unisol blue (UB) 1,4-bis(isopropylamino)anthraquinone and 1,4-di-tert-butyl-2,5-bis(2-methoxyethoxy)benzene (DBBB) as catholytes. Cyclic voltammetry measurements with scans repeated over 200 cycles were performed to establish the electrochemical stability of the redox pairs. Symmetric flow-cell studies show that TDPP-Hex-CN4 exhibits stable capacity up to 700 cycles. Redox flow cells employing TDPP-Hex-CN4 /UB and TDPP-Hex-CN4 /DBBB as redox pairs demonstrate that DPP derivatives are propitious materials for anolytes in all organic nonaqueous RFBs.

16.
Sensors (Basel) ; 21(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071551

ABSTRACT

Microwave planar sensors employ conventional passive complementary split ring resonators (CSRR) as their sensitive region. In this work, a novel planar reflective sensor is introduced that deploys CSRRs as the front-end sensing element at fres=6 GHz with an extra loss-compensating negative resistance that restores the dissipated power in the sensor that is used in dielectric material characterization. It is shown that the S11 notch of -15 dB can be improved down to -40 dB without loss of sensitivity. An application of this design is shown in discriminating different states of vanadium redox solutions with highly lossy conditions of fully charged V5+ and fully discharged V4+ electrolytes.

17.
Int J Mol Sci ; 22(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502193

ABSTRACT

Redox flow batteries (RFB) are one of the most interesting technologies in the field of energy storage, since they allow the decoupling of power and capacity. Zinc-bromine flow batteries (ZBFB) are a type of hybrid RFB, as the capacity depends on the effective area of the negative electrode (anode), on which metallic zinc is deposited during the charging process. Gaseous bromine is generated at the positive electrode (cathode) during the charging process, so the use of bromine complexing agents (BCA) is very important. These BCAs are quaternary amines capable of complexation with bromine and generating an organic phase, immiscible with the aqueous electrolyte. One of the most commonly used BCAs in RFB technology is 4-methylethylmorpholinium bromide (MEM-Br). In this work, an alternative quaternary amine 4-methylpropylmorpholinium bromide (MPM-Br) was studied. MPM-Br was integrated into the electrolyte, and 200 charge-discharge cycles were performed on the resulting ZBFBs. The obtained results were compared with those when MEM-Br was used, and it was observed that the electrolyte with MPM-Br displays a higher resistance in voltage and higher energy efficiency, making it a promising alternative to MEM-Br.


Subject(s)
Bromides/chemistry , Electric Power Supplies , Electrodes , Hydrocarbons, Brominated/chemistry , Zinc/chemistry , Oxidation-Reduction
18.
Molecules ; 26(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201612

ABSTRACT

Owing to their broad range of redox potential, quinones/hydroquinones can be utilized for energy storage in redox flow batteries. In terms of stability, organic catholytes are more challenging than anolytes. The two-electron transfer feature adds value when building all-quinone flow battery systems. However, the dimerization of quinones/hydroquinones usually makes it difficult to achieve a full two-electron transfer in practical redox flow battery applications. In this work, we designed and synthesized four new hydroquinone derivatives bearing morpholinomethylene and/or methyl groups in different positions on the benzene ring to probe molecular stability upon battery cycling. The redox potential of the four molecules were investigated, followed by long-term stability tests using different supporting electrolytes and cell cycling methods in a symmetric flow cell. The derivative with two unoccupied ortho positions was found highly unstable, the cell of which exhibited a capacity decay rate of ~50% per day. Fully substituted hydroquinones turned out to be more stable. In particular, 2,6-dimethyl-3,5-bis(morpholinomethylene)benzene-1,4-diol (asym-O-5) displayed a capacity decay of only 0.45%/day with four-week potentiostatic cycling at 0.1 M in 1 M H3PO4. In addition, the three fully substituted hydroquinones displayed good accessible capacity of over 82%, much higher than those of conventional quinone derivatives.

19.
Molecules ; 26(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209898

ABSTRACT

Discovering new materials for energy storage requires reliable and efficient protocols for predicting key properties of unknown compounds. In the context of the search for new organic electrolytes for redox flow batteries, we present and validate a robust procedure to calculate the redox potentials of organic molecules at any pH value, using widely available quantum chemistry and cheminformatics methods. Using a consistent experimental data set for validation, we explore and compare a few different methods for calculating reaction free energies, the treatment of solvation, and the effect of pH on redox potentials. We find that the B3LYP hybrid functional with the COSMO solvation method, in conjunction with thermal contributions evaluated from BLYP gas-phase harmonic frequencies, yields a good prediction of pH = 0 redox potentials at a moderate computational cost. To predict how the potentials are affected by pH, we propose an improved version of the Alberty-Legendre transform that allows the construction of a more realistic Pourbaix diagram by taking into account how the protonation state changes with pH.

20.
Angew Chem Int Ed Engl ; 60(52): 27039-27045, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34672070

ABSTRACT

This report describes the design of diaminocyclopropenium-phenothiazine hybrid catholytes for non-aqueous redox flow batteries. The molecules are synthesized in a rapid and modular fashion by appending a diaminocyclopropenium (DAC) substituent to the nitrogen of the phenothiazine. Combining a versatile C-N coupling protocol (which provides access to diverse derivatives) with computation and structure-property analysis enabled the identification of a catholyte that displays stable two-electron cycling at potentials of 0.64 and 1.00 V vs. Fc/Fc+ as well as high solubility in all oxidation states (≥0.45 M in TBAPF6 /MeCN). This catholyte was deployed in a high energy density two-electron RFB, exhibiting >90 % capacity retention over 266 hours of flow cell cycling at >0.5 M electron concentration.

SELECTION OF CITATIONS
SEARCH DETAIL