Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Publication year range
1.
Trends Biochem Sci ; 48(12): 1035-1043, 2023 12.
Article in English | MEDLINE | ID: mdl-37777390

ABSTRACT

RNAs are commonly categorized as being either protein-coding mRNAs or noncoding RNAs. However, an increasing number of transcripts, in organisms ranging from bacteria to humans, are being found to have both coding and noncoding functions. In some cases, the sequences encoding the protein and the regulatory RNA functions are separated, while in other cases the sequences overlap. The protein and RNA can regulate similar or distinct pathways. Here we describe examples illustrating how these dual-function (also denoted bifunctional or dual-component) RNAs are identified and their mechanisms of action and cellular roles. We also discuss the synergy or competition between coding and RNA activity and how these regulators evolved, as well as how more dual-function RNAs might be discovered and exploited.


Subject(s)
RNA, Long Noncoding , RNA , Humans , RNA, Untranslated , RNA, Messenger/genetics , RNA, Messenger/metabolism , Bacteria/metabolism , RNA, Long Noncoding/genetics
2.
Proc Natl Acad Sci U S A ; 120(31): e2307382120, 2023 08.
Article in English | MEDLINE | ID: mdl-37487082

ABSTRACT

Recombination-promoting nuclease (Rpn) proteins are broadly distributed across bacterial phyla, yet their functions remain unclear. Here, we report that these proteins are toxin-antitoxin systems, comprised of genes-within-genes, that combat phage infection. We show the small, highly variable Rpn C-terminal domains (RpnS), which are translated separately from the full-length proteins (RpnL), directly block the activities of the toxic RpnL. The crystal structure of RpnAS revealed a dimerization interface encompassing α helix that can have four amino acid repeats whose number varies widely among strains of the same species. Consistent with strong selection for the variation, we document that plasmid-encoded RpnP2L protects Escherichia coli against certain phages. We propose that many more intragenic-encoded proteins that serve regulatory roles remain to be discovered in all organisms.


Subject(s)
Antitoxins , Bacteriophages , Blood Group Antigens , Amino Acids , Dimerization , Endonucleases , Escherichia coli
3.
Proc Natl Acad Sci U S A ; 120(41): e2309607120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37792514

ABSTRACT

A large number of small membrane proteins have been uncovered in bacteria, but their mechanism of action has remained mostly elusive. Here, we investigate the mechanism of a physiologically important small protein, MgrB, which represses the activity of the sensor kinase PhoQ and is widely distributed among enterobacteria. The PhoQ/PhoP two-component system is a master regulator of the bacterial virulence program and interacts with MgrB to modulate bacterial virulence, fitness, and drug resistance. A combination of cross-linking approaches with functional assays and protein dynamic simulations revealed structural rearrangements due to interactions between MgrB and PhoQ near the membrane/periplasm interface and along the transmembrane helices. These interactions induce the movement of the PhoQ catalytic domain and the repression of its activity. Without MgrB, PhoQ appears to be much less sensitive to antimicrobial peptides, including the commonly used C18G. In the presence of MgrB, C18G promotes MgrB to dissociate from PhoQ, thus activating PhoQ via derepression. Our findings reveal the inhibitory mechanism of the small protein MgrB and uncover its importance in antimicrobial peptide sensing.


Subject(s)
Antimicrobial Peptides , Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Periplasm/metabolism , Gene Expression Regulation, Bacterial
4.
J Biol Chem ; : 107850, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362471

ABSTRACT

Numerous small proteins have been discovered across all domains of life, among which many are hydrophobic and predicted to localize to the cell membrane. Based on a few that are well-studied, small membrane proteins are regulators involved in various biological processes, such as cell signaling, nutrient transport, drug resistance, and stress response. However, the function of most identified small membrane proteins remains elusive. Their small size and hydrophobicity make protein production challenging, hindering function discovery. Here, we combined a cell-free system with lipid sponge droplets and synthesized small membrane proteins in vitro. Lipid sponge droplets contain a dense network of lipid bilayers, which accommodates and extracts newly synthesized small membrane proteins from the aqueous surroundings. Using small bacterial membrane proteins MgrB, SafA, and AcrZ as proof of principle, we showed that the in vitro produced membrane proteins were functionally active, for example, modulating the activity of their target kinase as expected. The cell-free system produced small membrane proteins, including one from human, up to micromolar concentrations, indicating its high level of versatility and productivity. Furthermore, AcrZ produced in this system was used successfully for in vitro co-immunoprecipitations to identify interaction partners. This work presents a robust alternative approach for producing small membrane proteins, which opens a door to their function discovery in different domains of life.

5.
EMBO J ; 40(24): e108542, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34612526

ABSTRACT

Bacterial small RNAs (sRNAs) are well known to modulate gene expression by base pairing with trans-encoded transcripts and are typically non-coding. However, several sRNAs have been reported to also contain an open reading frame and thus are considered dual-function RNAs. In this study, we discovered a dual-function RNA from Vibrio cholerae, called VcdRP, harboring a 29 amino acid small protein (VcdP), as well as a base-pairing sequence. Using a forward genetic screen, we identified VcdRP as a repressor of cholera toxin production and link this phenotype to the inhibition of carbon transport by the base-pairing segment of the regulator. By contrast, we demonstrate that the VcdP small protein acts downstream of carbon transport by binding to citrate synthase (GltA), the first enzyme of the citric acid cycle. Interaction of VcdP with GltA results in increased enzyme activity and together VcdR and VcdP reroute carbon metabolism. We further show that transcription of vcdRP is repressed by CRP allowing us to provide a model in which VcdRP employs two different molecular mechanisms to synchronize central metabolism in V. cholerae.


Subject(s)
Carbon/metabolism , Cholera Toxin/metabolism , Citrate (si)-Synthase/metabolism , RNA, Bacterial/genetics , Vibrio cholerae/metabolism , Bacterial Proteins/metabolism , Biological Transport , Down-Regulation , Gene Expression Regulation, Bacterial , Genetic Testing , Open Reading Frames , Phenotype , RNA, Bacterial/metabolism , Vibrio cholerae/genetics
6.
Mol Cell Proteomics ; 22(1): 100480, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36494044

ABSTRACT

Alternative ORFs (AltORFs) are unannotated sequences in genome that encode novel peptides or proteins named alternative proteins (AltProts). Although ribosome profiling and bioinformatics predict a large number of AltProts, mass spectrometry as the only direct way of identification is hampered by the short lengths and relative low abundance of AltProts. There is an urgent need for improvement of mass spectrometry methodologies for AltProt identification. Here, we report an approach based on size-exclusion chromatography for simultaneous enrichment and fractionation of AltProts from complex proteome. This method greatly simplifies the variance of AltProts discovery by enriching small proteins smaller than 40 kDa. In a systematic comparison between 10 methods, the approach we reported enabled the discovery of more AltProts with overall higher intensities, with less cost of time and effort compared to other workflows. We applied this approach to identify 89 novel AltProts from mouse liver, 39 of which were differentially expressed between embryonic and adult mice. During embryonic development, the upregulated AltProts were mainly involved in biological pathways on RNA splicing and processing, whereas the AltProts involved in metabolisms were more active in adult livers. Our study not only provides an effective approach for identifying AltProts but also novel AltProts that are potentially important in developmental biology.


Subject(s)
Peptides , Proteomics , Animals , Mice , Proteomics/methods , Peptides/metabolism , Proteome/metabolism , RNA Splicing , Liver/metabolism
7.
Proc Natl Acad Sci U S A ; 119(10): e2119866119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35239441

ABSTRACT

SignificanceDual-function RNAs base pair with target messenger RNAs as small regulatory RNAs and encode small protein regulators. However, only a limited number of these dual-function regulators have been identified. In this study, we show that a well-characterized base-pairing small RNA surprisingly also encodes a 15-amino acid protein. The very small protein binds the cyclic adenosine monophosphate receptor protein transcription factor to block activation of some promoters, raising the question of how many other transcription factors are modulated by unidentified small proteins.


Subject(s)
Amino Acids/chemistry , Escherichia coli Proteins/genetics , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , Transcription Factors/metabolism , Base Pairing , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Glucose/metabolism , Histidine/metabolism , Operon , Promoter Regions, Genetic , Protein Binding , Temperature
8.
Proteomics ; 24(16): e2300302, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38258387

ABSTRACT

Small proteins (SPs) are a unique group of proteins that play crucial roles in many important biological processes. Exploring the biological function of SPs is necessary. In this study, the InterPro tool and the maximum correlation method were utilized to analyze functional domains of SPs. The purpose was to identify important functional domains that can indicate the essential differences between small and large protein sequences. First, the small and large proteins were represented by their functional domains via a one-hot scheme. Then, the MaxRel method was adopted to evaluate the relationships between each domain and the target variable, indicating small or large protein. The top 36 domain features were selected for further investigation. Among them, 14 were deemed to be highly related to SPs because they were annotated to SPs more frequently than large proteins. We found the involvement of functional domains, such as ubiquitin-conjugating enzyme/RWD-like, nuclear transport factor 2 domain, and alpha subunit of guanine nucleotide-binding protein (G-protein) in regulating the biological function of SPs. The involvement of these domains has been confirmed by other recent studies. Our findings indicate that protein functional domains may regulate small protein-related functions and predict their biological activity.


Subject(s)
Machine Learning , Protein Domains , Proteins/chemistry , Proteins/metabolism , Humans , Databases, Protein , Computational Biology/methods
9.
J Struct Biol ; 216(3): 108105, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852682

ABSTRACT

Human serum albumin (HSA) is the most prevalent plasma protein in the human body, accounting for 60 % of the total plasma protein. HSA plays a major pharmacokinetic function, serving as a facilitator in the distribution of endobiotics and xenobiotics within the organism. In this paper we report the cryoEM structures of HSA in the apo form and in complex with two ligands (salicylic acid and teniposide) at a resolution of 3.5, 3.7 and 3.4 Å, respectively. We expand upon previously published work and further demonstrate that sub-4 Å maps of ∼60 kDa proteins can be routinely obtained using a 200 kV microscope, employing standard workflows. Most importantly, these maps allowed for the identification of small molecule ligands, emphasizing the practical applicability of this methodology and providing a starting point for subsequent computational modeling and in silico optimization.


Subject(s)
Cryoelectron Microscopy , Serum Albumin, Human , Humans , Ligands , Cryoelectron Microscopy/methods , Serum Albumin, Human/chemistry , Models, Molecular , Protein Binding , Protein Conformation
10.
J Comput Aided Mol Des ; 38(1): 30, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164492

ABSTRACT

The development of novel therapeutic proteins is a lengthy and costly process, with an average attrition rate of 91% (Thomas et al. Clinical Development Success Rates and Contributing Factors 2011-2020, 2021). To increase the probability of success and ensure robust drug supply beyond approval, it is essential to assess the developability profile of new potential drug candidates as early and broadly as possible in development (Jain et al. MAbs, 2023. https://doi.org/10.1016/j.copbio.2011.06.002 ). Predicting these properties in silico is expected to be the next leap in innovation as it would enable significantly reduced development timelines combined with broader screens at lower costs. However, developing predictive algorithms typically requires substantial datasets generated under very defined conditions, a limiting factor especially for new classes of therapeutic proteins that hold immense clinical promise. Here we describe a strategy for assessing the developability of a novel class of small therapeutic Anticalin® proteins using machine learning in conjunction with a knowledge-driven approach. The knowledge-driven approach considers developability attributes such as aggregation propensity, charge variants, immunogenicity, specificity, thermal stability, hydrophobicity, and potential post-translational modifications, to calculate a holistic developability score. Based on sequence-derived descriptors as input parameters we established novel statistical models designed to predict the developability scores for Anticalin proteins. The best models yielded low root mean square errors across the entire dataset and were further validated by removing input data from individual screening campaigns and predicting developability scores for those drug candidates. The adoption of the described workflow will enable significantly streamlined preclinical development of Anticalin drug candidates and could potentially be applied to other therapeutic protein scaffolds.


Subject(s)
Computer Simulation , Machine Learning , Proteins , Humans , Proteins/chemistry , Algorithms , Drug Discovery/methods , Drug Design
11.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34620716

ABSTRACT

We describe a general method that allows structure determination of small proteins by single-particle cryo-electron microscopy (cryo-EM). The method is based on the availability of a target-binding nanobody, which is then rigidly attached to two scaffolds: 1) a Fab fragment of an antibody directed against the nanobody and 2) a nanobody-binding protein A fragment fused to maltose binding protein and Fab-binding domains. The overall ensemble of ∼120 kDa, called Legobody, does not perturb the nanobody-target interaction, is easily recognizable in EM images due to its unique shape, and facilitates particle alignment in cryo-EM image processing. The utility of the method is demonstrated for the KDEL receptor, a 23-kDa membrane protein, resulting in a map at 3.2-Šoverall resolution with density sufficient for de novo model building, and for the 22-kDa receptor-binding domain (RBD) of SARS-CoV-2 spike protein, resulting in a map at 3.6-Šresolution that allows analysis of the binding interface to the nanobody. The Legobody approach thus overcomes the current size limitations of cryo-EM analysis.


Subject(s)
Cryoelectron Microscopy/methods , SARS-CoV-2/metabolism , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Binding Sites/immunology , COVID-19/virology , HEK293 Cells , Humans , Models, Molecular , Protein Binding , Protein Domains , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/ultrastructure
12.
Nano Lett ; 23(8): 3334-3343, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37068052

ABSTRACT

Obtaining the heterogeneous conformation of small proteins is important for understanding their biological role, but it is still challenging. Here, we developed a multi-tilt nanoparticle-aided cryo-electron microscopy sampling (MT-NACS) technique that enables the observation of heterogeneous conformations of small proteins and applied it to calmodulin. By imaging the proteins labeled by two gold nanoparticles at multiple tilt angles and analyzing the projected positions of the nanoparticles, the distributions of 3D interparticle distances were obtained. From the measured distance distributions, the conformational changes associated with Ca2+ binding and salt concentration were determined. MT-NACS was also used to track the structural change accompanied by the interaction between amyloid-beta and calmodulin, which has never been observed experimentally. This work offers an alternative platform for studying the functional flexibility of small proteins.


Subject(s)
Calmodulin , Metal Nanoparticles , Cryoelectron Microscopy/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Protein Conformation
13.
J Bacteriol ; 205(8): e0012923, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37439671

ABSTRACT

The dicBF operon of Qin cryptic prophage in Escherichia coli K-12 encodes the small RNA (sRNA) DicF and small protein DicB, which regulate host cell division and are toxic when overexpressed. While new functions of DicB and DicF have been identified in recent years, the mechanisms controlling the expression of the dicBF operon have remained unclear. Transcription from dicBp, the major promoter of the dicBF operon, is repressed by DicA. In this study, we discovered that transcription of the dicBF operon and processing of the polycistronic mRNA is regulated by multiple mechanisms. DicF sRNA accumulates during stationary phase and is processed from the polycistronic dicBF mRNA by the action of both RNase III and RNase E. DicA-mediated transcriptional repression of dicBp can be relieved by an antirepressor protein, Rem, encoded on the Qin prophage. Ectopic production of Rem results in cell filamentation due to strong induction of the dicBF operon, and filamentation is mediated by DicF and DicB. Spontaneous derepression of dicBp occurs in a subpopulation of cells independent of the antirepressor. This phenomenon is reminiscent of the bistable switch of λ phage with DicA and DicC performing functions similar to those of CI and Cro, respectively. Additional experiments demonstrate stress-dependent induction of the dicBF operon. Collectively, our results illustrate that toxic genes carried on cryptic prophages are subject to layered mechanisms of control, some that are derived from the ancestral phage and some that are likely later adaptations. IMPORTANCE Cryptic or defective prophages have lost genes necessary to excise from the bacterial chromosome and produce phage progeny. In recent years, studies have found that cryptic prophage gene products influence diverse aspects of bacterial host cell physiology. However, to obtain a complete understanding of the relationship between cryptic prophages and the host bacterium, identification of the environmental, host, or prophage-encoded factors that induce the expression of cryptic prophage genes is crucial. In this study, we examined the regulation of a cryptic prophage operon in Escherichia coli encoding a small RNA and a small protein that are involved in inhibiting bacterial cell division, altering host metabolism, and protecting the host bacterium from phage infections.


Subject(s)
Escherichia coli K12 , RNA, Small Untranslated , Escherichia coli/genetics , Escherichia coli/metabolism , Prophages/genetics , Escherichia coli K12/genetics , Bacteriophage lambda/genetics , Bacteria/genetics , RNA, Small Untranslated/metabolism
14.
J Cell Biochem ; 124(10): 1615-1627, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37682868

ABSTRACT

The MYCC and MYCN loci are each associated with two upstream open reading frames (uORFs) potentially encoding small proteins (9-21 kDa). We previously demonstrated that uORFs mrtl and MYCHEX1 of MYCC are translated, and their protein products may function to regulate the expression of the "parent" oncogene. We hypothesized that a similar relationship might exist between MYCN and its two uORFs: MYCNOT and MNOP, and investigated the uORF-encoded proteins associated with MYCN to confirm their expression and intracellular location in neuroblastoma and medulloblastoma cells and tissues. MNOP, MYCNOT, mrtl, and MYCHEX1 were readily detected via reverse transcription polymerase chain reaction and Western blot analysis in tumor cell lines. In tumor tissue, MNOP protein expression was confirmed; however, MCYNOT generated from alternative splicing MYCNΔ1b mRNA was not detected. Immunofluorescence staining of MYCNOT displayed multiple bright foci in the nucleus and diffuse staining in the cytoplasm, suggesting that this small protein may function in both the nucleus and cytoplasm. Upon JQ1 treatment, MYCN, MYCNOT, and mrtl decreased substantially or disappeared completely in three different tumor cell lines. Significant levels of apoptosis were observed in each pediatric embryonal tumor cell line but not T47D breast carcinoma cells, suggesting that response to JQ1 transcriptional inhibition is greatest in tumor cells, which depend on MYC to maintain an undifferentiated phenotype. In conclusion, both MYCN uORF-encoded proteins MNOP and MYCNOT, together with the two MYCC uORF-encoded proteins mrtl and MYCHEX1 were detected simultaneously in tumor cell lines and tumor tissues. These four distinct proteins are translated from the "5'-untranslated region" of MYCN or MYCC mRNA and display consistent distribution patterns within the cell. Additional studies to further elucidate the physiological and pathological roles of these uORF-encoded proteins are warranted, as insights gained could inform new strategies for modulating MYC-family oncogenes by targeting their uORFs.

15.
J Oral Pathol Med ; 52(8): 758-765, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37438940

ABSTRACT

BACKGROUND: Odontogenic keratocysts constitute 10%-20% of odontogenic cysts and exhibit a distinctive corrugated parakeratinized lining epithelium. Considering that cornified envelope formation is an important phenomenon during keratinocyte differentiation, this study aimed to clarify the characteristics of cornified envelope formation in odontogenic keratocysts. METHODS: We investigated the cellular distribution of cornified envelope-related proteins (transglutaminases and their substrates), as well as the upstream regulatory protein c-Fos, by immunohistochemical analysis of the lining epithelium of 20 odontogenic keratocysts. We examined the corresponding mRNA levels by quantitative polymerase chain reaction. Ten dentigerous cysts served as control non-keratinized cysts. RESULTS: The distributions of transglutaminase and their substrates except loricrin and small protein-rich protein 1a significantly differed between odontogenic keratocysts and dentigerous cysts. There was no significant difference in c-Fos expression between odontogenic keratocysts and dentigerous cysts. The mRNA levels of transglutaminases and their substrates were significantly higher in odontogenic keratocysts than in dentigerous cysts. However, c-Fos mRNA levels did not significantly differ between groups. CONCLUSION: Surprisingly, the overall appearance of cornified envelope-related proteins of odontogenic keratocysts was consistent with the characteristics of non-keratinized oral mucosa identified in previous studies. These findings indicate that the contribution of cornified envelope-related molecules in odontogenic keratocysts is similar to that in non-keratinized oral epithelium, rather than keratinized oral epithelium, suggesting that odontogenic keratocysts are not genuine keratinized cysts. The upregulation of cornified envelope-related genes in odontogenic epithelium could be an important pathognomonic event during odontogenic keratocyst development.


Subject(s)
Dentigerous Cyst , Odontogenic Cysts , Humans , Dentigerous Cyst/pathology , Odontogenic Cysts/genetics , Odontogenic Cysts/pathology , Epithelium/pathology , Transglutaminases
16.
Int J Mol Sci ; 24(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37108141

ABSTRACT

The Saccharomyces cerevisiae Agp2 is a plasma membrane protein initially reported to be an uptake transporter for L-carnitine. Agp2 was later rediscovered, together with three additional proteins, Sky1, Ptk2, and Brp1, to be involved in the uptake of the polyamine analogue bleomycin-A5, an anticancer drug. Mutants lacking either Agp2, Sky1, Ptk2, or Brp1 are extremely resistant to polyamines and bleomycin-A5, suggesting that these four proteins act in the same transport pathway. We previously demonstrated that pretreating cells with the protein synthesis inhibitor cycloheximide (CHX) blocked the uptake of fluorescently labelled bleomycin (F-BLM), raising the possibility that CHX could either compete for F-BLM uptake or alter the transport function of Agp2. Herein, we showed that the agp2Δ mutant displayed striking resistance to CHX as compared to the parent, suggesting that Agp2 is required to mediate the physiological effect of CHX. We examined the fate of Agp2 as a GFP tag protein in response to CHX and observed that the drug triggered the disappearance of Agp2 in a concentration- and time-dependent manner. Immunoprecipitation analysis revealed that Agp2-GFP exists in higher molecular weight forms that were ubiquitinylated, which rapidly disappeared within 10 min of treatment with CHX. CHX did not trigger any significant loss of Agp2-GFP in the absence of the Brp1 protein; however, the role of Brp1 in this process remains elusive. We propose that Agp2 is degraded upon sensing CHX to downregulate further uptake of the drug and discuss the potential function of Brp1 in the degradation process.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Cycloheximide/pharmacology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Bleomycin/pharmacology , Protein Serine-Threonine Kinases/metabolism
17.
J Bacteriol ; 204(1): e0029421, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34339296

ABSTRACT

Small proteins encoded by open reading frames (ORFs) shorter than 50 codons (small ORFs [sORFs]) are often overlooked by annotation engines and are difficult to characterize using traditional biochemical techniques. Ribosome profiling has tremendous potential to empirically improve the annotations of prokaryotic genomes. Recent improvements in ribosome profiling methods for bacterial model organisms have revealed many new sORFs in well-characterized genomes. Antibiotics that trap ribosomes just after initiation have played a key role in these developments by allowing the unambiguous identification of the start codons (and, hence, the reading frame) for novel ORFs. Here, we describe these new methods and highlight critical controls and considerations for adapting ribosome profiling to different prokaryotic species.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Open Reading Frames , Ribosomes , Bacteria/genetics , Codon , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Bacterial/physiology , Peptide Chain Initiation, Translational , Peptide Chain Termination, Translational , RNA, Bacterial , RNA, Ribosomal
18.
J Bacteriol ; 204(1): e0035321, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34748388

ABSTRACT

Small proteins of up to ∼50 amino acids are an abundant class of biomolecules across all domains of life. Yet due to the challenges inherent in their size, they are often missed in genome annotations, and are difficult to identify and characterize using standard experimental approaches. Consequently, we still know few small proteins even in well-studied prokaryotic model organisms. Mass spectrometry (MS) has great potential for the discovery, validation, and functional characterization of small proteins. However, standard MS approaches are poorly suited to the identification of both known and novel small proteins due to limitations at each step of a typical proteomics workflow, i.e., sample preparation, protease digestion, liquid chromatography, MS data acquisition, and data analysis. Here, we outline the major MS-based workflows and bioinformatic pipelines used for small protein discovery and validation. Special emphasis is placed on highlighting the adjustments required to improve detection and data quality for small proteins. We discuss both the unbiased detection of small proteins and the targeted analysis of small proteins of interest. Finally, we provide guidelines to prioritize novel small proteins, and an outlook on methods with particular potential to further improve comprehensive discovery and characterization of small proteins.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Mass Spectrometry/methods , Archaea/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacteria/genetics , Bacterial Proteins/genetics , Computational Biology , Gene Expression Regulation, Archaeal/physiology , Gene Expression Regulation, Bacterial/physiology
19.
BMC Bioinformatics ; 23(1): 405, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36180820

ABSTRACT

BACKGROUND: Identifying protein complexes from protein-protein interaction network is one of significant tasks in the postgenome era. Protein complexes, none of which exceeds 10 in size play an irreplaceable role in life activities and are also a hotspot of scientific research, such as PSD-95, CD44, PKM2 and BRD4. And in MIPS, CYC2008, SGD, Aloy and TAP06 datasets, the proportion of small protein complexes is over 75%. But up to now, protein complex identification methods do not perform well in the field of small protein complexes. RESULTS: In this paper, we propose a novel method, called BOPS. It is a three-step procedure. Firstly, it calculates the balanced weights to replace the original weights. Secondly, it divides the graphs larger than MAXP until the original PPIN is divided into small PPINs. Thirdly, it enumerates the connected subset of each small PPINs, identifies potential protein complexes based on cohesion and removes those that are similar. CONCLUSIONS: In four yeast PPINs, experimental results have shown that BOPS has an improvement of about 5% compared with the SOTA model. In addition, we constructed a weighted Homo sapiens PPIN based on STRINGdb and BioGRID, and BOPS gets the best result in it. These results give new insights into the identification of small protein complexes, and the weighted Homo sapiens PPIN provides more data for related research.


Subject(s)
Protein Interaction Mapping , Protein Interaction Maps , Algorithms , Cell Cycle Proteins/metabolism , Computational Biology/methods , Humans , Nuclear Proteins/metabolism , Protein Interaction Mapping/methods , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism
20.
Plant Mol Biol ; 105(3): 321-332, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33128723

ABSTRACT

KEY MESSAGE: A candidate gene, designate PpRPH, in the D locus was identified to control fruit acidity in peach. Fruit acidity has a strong impact on organoleptic quality of fruit. Peach fruit acidity is controlled by a large-effect D locus on chromosome 5. In this study, the D locus was mapped to a 509-kb interval, with two markers, 5dC720 and 5C1019, co-segregating with the non-acid/acid trait of peach fruit. Within this interval, a candidate gene encoding a putative small protein, designated PpRPH, showed a consistency between gene expression and fruit acidity, with up- and down-regulation in non-acidic and acidic fruits, respectively. Transient ectopic expression of PpRPH in tobacco leaves caused an increase of pH by approximately 40% compared to the control transformed with empty vector. Whereas, the concentrations of citrate and malate decreased significantly by 22% and 37%, respectively, with respect to the empty vector control. All these results suggest that PpRPH is a strong candidate gene of the D locus. These findings contribute to our overall understanding of the complex mechanism underlying fruit acidity in peach as well as that in other fruit crops.


Subject(s)
Genes, Plant , Genetic Association Studies , Genetic Loci , Prunus persica/genetics , Base Sequence , Chromosome Mapping , Chromosome Segregation/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Genetic Markers , Genotype , Hydrogen-Ion Concentration , Polymorphism, Genetic , Quantitative Trait, Heritable , Reproducibility of Results , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL