Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Publication year range
1.
Int J Toxicol ; : 10915818241231249, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342963

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 28 soy-derived ingredients as used in cosmetic products. These ingredients are reported to primarily function as antioxidants, skin protectants, skin-conditioning agents, and hair-conditioning agents. The Panel considered the available data relating to the safety of these ingredients in cosmetic formulations, and concluded that 24 of the 28 soy-derived ingredients are safe in cosmetics in the present practices of use and concentration described in this safety assessment. The Panel also concluded that the available data are insufficient to make a determination that Glycine Max (Soybean) Callus Culture, Glycine Max (Soybean) Callus Culture Extract, Glycine Max (Soybean) Callus Extract, and Glycine Max (Soybean) Phytoplacenta Conditioned Media are safe under the intended conditions of use in cosmetic formulations.

2.
New Phytol ; 239(5): 1834-1851, 2023 09.
Article in English | MEDLINE | ID: mdl-36829298

ABSTRACT

Central metabolism produces amino and fatty acids for protein and lipids that establish seed value. Biosynthesis of storage reserves occurs in multiple organelles that exchange central intermediates including two essential metabolites, malate, and pyruvate that are linked by malic enzyme. Malic enzyme can be active in multiple subcellular compartments, partitioning carbon and reducing equivalents for anabolic and catabolic requirements. Prior studies based on isotopic labeling and steady-state metabolic flux analyses indicated malic enzyme provides carbon for fatty acid biosynthesis in plants, though genetic evidence confirming this role is lacking. We hypothesized that increasing malic enzyme flux would alter carbon partitioning and result in increased lipid levels in soybeans. Homozygous transgenic soybean plants expressing Arabidopsis malic enzyme alleles, targeting the translational products to plastid or outside the plastid during seed development, were verified by transcript and enzyme activity analyses, organelle proteomics, and transient expression assays. Protein, oil, central metabolites, cofactors, and acyl-acyl carrier protein (ACPs) levels were quantified overdevelopment. Amino and fatty acid levels were altered resulting in an increase in lipids by 0.5-2% of seed biomass (i.e. 2-9% change in oil). Subcellular targeting of a single gene product in central metabolism impacts carbon and reducing equivalent partitioning for seed storage reserves in soybeans.


Subject(s)
Arabidopsis , Carbon , Carbon/metabolism , Glycine max/metabolism , Seeds/metabolism , Fatty Acids/metabolism , Arabidopsis/genetics
3.
Molecules ; 27(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35807366

ABSTRACT

In this study, thirty-eight isoflavone derivatives were comprehensively identified and quantified from the raw, steamed and fermented seeds of four selected soybean cultivars based on UPLC-DAD-QToF/MS results with reference to the previously reported LC-MS library and flavonoid database, and summarized by acylated group including glucosides (Glu), malonyl-glucosides (Mal-Glu), acetyl-glucosides (Ac-Glu), succinyl-glucosides (Suc-Glu) and phosphorylated conjugates (Phos) in addition to aglycones. Among them, Suc-Glu and Phos derivatives were newly generated due to fermentation by B. subtilis AFY-2 (cheonggukjang). In particular, Phos were characterized for the first time in fermented soy products using Bacillus species. From a proposed roadmap on isoflavone-based biotransformation, predominant Mal-Glu (77.5-84.2%, raw) decreased rapidly by decarboxylation and deesterification into Ac-Glu and Glu (3.5-8.1% and 50.0-72.2%) during steaming, respectively. As fermentation continued, the increased Glu were mainly succinylated and phosphorylated as well as gradually hydrolyzed into their corresponding aglycones. Thus, Suc-Glu and Phos (17.3-22.4% and 1.5-5.4%, 36 h) determined depending on cultivar type and incubation time, and can be considered as important biomarkers generated during cheonggukjang fermentation. Additionally, the changes of isoflavone profile can be used as a fundamental report in applied microbial science as well as bioavailability research from fermented soy foods.


Subject(s)
Isoflavones , Fermentation , Glucosides/metabolism , Isoflavones/metabolism , Seeds/metabolism , Glycine max/metabolism
4.
New Phytol ; 229(2): 920-934, 2021 01.
Article in English | MEDLINE | ID: mdl-32939760

ABSTRACT

Seed weight is one of the most important agronomic traits in soybean for yield improvement and food production. Several quantitative trait loci (QTLs) associated with the trait have been identified in soybean. However, the genes underlying the QTLs and their functions remain largely unknown. Using forward genetic methods and CRISPR/Cas9 gene editing, we identified and characterized the role of GmKIX8-1 in the control of organ size in soybean. GmKIX8-1 belongs to a family of KIX domain-containing proteins that negatively regulate cell proliferation in plants. Consistent with this predicted function, we found that loss-of-function GmKIX8-1 mutants showed a significant increase in the size of aerial plant organs, such as seeds and leaves. Likewise, the increase in organ size is due to increased cell proliferation, rather than cell expansion, and increased expression of CYCLIN D3;1-10. Lastly, molecular analysis of soybean germplasms harboring the qSw17-1 QTL for the big-seeded phenotype indicated that reduced expression of GmKIX8-1 is the genetic basis of the qSw17-1 phenotype.


Subject(s)
Glycine max , Quantitative Trait Loci , Chromosome Mapping , Organ Size , Phenotype , Quantitative Trait Loci/genetics , Seeds/genetics , Glycine max/genetics
5.
Transgenic Res ; 30(5): 675-686, 2021 10.
Article in English | MEDLINE | ID: mdl-33963986

ABSTRACT

Soybean seeds are an ideal host for the production of recombinant proteins because of their high content of proteins, long-term stability of seed proteins under ambient conditions, and easy establishment of efficient purification protocols. In this study, a polypeptide fusion strategy was applied to explore the capacity of elastin-like polypeptide (ELP) and γ-zein fusions in increasing the accumulation of the recombinant protein in soybean seeds. Transgenic soybean plants were generated to express the γ-zein- or ELP-fused green fluorescent protein (GFP) under the control of the soybean seed-specific promoter of ß-conglycinin alpha subunit (BCSP). Significant differences were observed in the accumulation of zein-GFP and GFP-ELP from that of the unfused GFP in transgenic soybean seeds based on the total soluble protein (TSP), despite the low-copy of T-DNA insertions and similar expression at the mRNA levels in selected transgenic lines. The average levels of zein-GFP and GFP-ELP accumulated in immature seeds of these transgenic lines were 0.99% and 0.29% TSP, respectively, compared with 0.07% TSP of the unfused GFP. In mature soybean seeds, the accumulation of zein-GFP and GFP-ELP proteins was 1.8% and 0.84% TSP, an increase of 3.91- and 1.82-fold, respectively, in comparison with that of the unfused GFP (0.46% TSP). Confocal laser scanning analysis showed that both zein-GFP and GFP-ELP were abundantly deposited in many small spherical particles of transgenic seeds, while there were fewer such florescence signals in the same cellular compartments of the unfused GFP-expressing seeds. Despite increased recombinant protein accumulation, there were no significant changes in the total protein and oil content in seeds between the transgenic and non-transformed plants, suggesting the possible presence of threshold limits of total protein accumulation in transgenic soybean seeds. Overall, our results indicate that γ-zein and ELP fusions significantly increased the accumulation of the recombinant protein, but exhibited no significant influence on the total protein and oil content in soybean seeds.


Subject(s)
Glycine max , Zein , Elastin/genetics , Peptides , Plants, Genetically Modified/genetics , Recombinant Fusion Proteins/genetics , Seeds/genetics , Glycine max/genetics , Zein/genetics
6.
J Appl Microbiol ; 129(3): 652-664, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32196866

ABSTRACT

AIMS: This study aimed to apply the volatile organic compounds from Streptomyces philanthi RL-1-178 (VOCs RL-1-178) as a fumigant to protect soybean seeds against the two aflatoxin-producing fungi in stored soybean seeds. METHODS AND RESULTS: The antifungal bioassay tests on potato dextrose agar (PDA) dishes showed that 30 g l-1 wheat seed inoculum of S. philanthi RL-1-178 exhibited total (100%) inhibition on Aspergillus parasiticus TISTR 3276 and Aspergillus flavus PSRDC-4. Identification of the VOCs RL-1-178 using GC-MS revealed 39 compounds with the most abundant substances being geosmin (13·75%) followed by l-linalool (13·55%), 2-mercaptoethanol (9·71%) and heneicosane (5·96%). Comparison on the efficacy of the VOCs RL-1-178 (at 30 g l-1 wheat seed culture) and their four major components (100 µl l-1 each) on the suppression of the two aflatoxin-producing fungi on PDA plates revealed that the VOCs RL-1-178 as well as geosmin, l-linalool and 2-mercaptoethanol completely inhibited (100%) mycelial growth while heneicosane showed only 70·7% inhibition. Use of the VOCs RL-1-178 (30 g l-1 ) as a biofumigant on stored soybean seeds resulted in complete protection (100%) against the infection as well as complete inhibition on production of aflatoxin (B1 , B2 and G2 ) (analysed by HPLC) by the two aflatoxin-producing fungi. CONCLUSIONS: The VOCs RL-1-178 displayed strong inhibitory effects on A. parasiticus TISTR 3276 and A. flavus PSRDC-4 as well as inhibited aflatoxin (B1 , B2 and G2 ) production. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings suggest that the VOCs RL-1-178 can be applied as a biofumigant to control the two aflatoxin-producing fungi on stored seeds products.


Subject(s)
Aspergillus/drug effects , Fumigation/methods , Glycine max/microbiology , Pest Control, Biological/methods , Streptomyces/metabolism , Aflatoxins/biosynthesis , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Aspergillus/growth & development , Aspergillus/metabolism , Seeds/microbiology
7.
Expert Rev Proteomics ; 16(9): 795-804, 2019 09.
Article in English | MEDLINE | ID: mdl-31398080

ABSTRACT

Introduction: The last decade has yielded significant developments in the field of proteomics, especially in mass spectrometry (MS) and data analysis tools. In particular, a shift from gel-based to MS-based proteomics has been observed, thereby providing a platform with which to construct proteome atlases for all life forms. Nevertheless, the analysis of plant proteomes, especially those of samples that contain high-abundance proteins (HAPs), such as soybean seeds, remains challenging. Areas covered: Here, we review recent progress in soybean seed proteomics and highlight advances in HAPs depletion methods and peptide pre-fractionation, identification, and quantification methods. We also suggest a pipeline for future proteomic analysis, in order to increase the dynamic coverage of the soybean seed proteome. Expert opinion: Because HAPs limit the dynamic resolution of the soybean seed proteome, the depletion of HAPs is a prerequisite of high-throughput proteome analysis, and owing to the use of two-dimensional gel electrophoresis-based proteomic approaches, few soybean seed proteins have been identified or characterized. Recent advances in proteomic technologies, which have significantly increased the proteome coverage of other plants, could be used to overcome the current complexity and limitation of soybean seed proteomics.


Subject(s)
Glycine max/genetics , Proteome/genetics , Seeds/genetics , Soybean Proteins/genetics , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Proteomics , Soybean Proteins/isolation & purification
8.
Sensors (Basel) ; 19(23)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795146

ABSTRACT

Hyperspectral imaging is a nondestructive testing technology that integrates spectroscopy and iconology technologies, which enables us to quickly obtain both internal and external information of objects and identify crop seed varieties. First, the hyperspectral images of ten soybean seed varieties were collected and the reflectance was obtained. Savitzky-Golay smoothing (SG), first derivative (FD), standard normal variate (SNV), fast Fourier transform (FFT), Hilbert transform (HT), and multiplicative scatter correction (MSC) spectral reflectance pretreatment methods were used. Then, the feature wavelengths and feature information of the pretreated spectral reflectance data were extracted using competitive adaptive reweighted sampling (CARS), the successive projections algorithm (SPA), and principal component analysis (PCA). Finally, 5 classifiers, Bayes, support vector machine (SVM), k-nearest neighbor (KNN), ensemble learning (EL), and artificial neural network (ANN), were used to identify seed varieties. The results showed that MSC-CARS-EL had the highest accuracy among the 90 combinations, with training set, test set, and 5-fold cross-validation accuracies of 100%, 100%, and 99.8%, respectively. Moreover, the contribution of spectral pretreatment to discrimination accuracy was higher than those of feature extraction and classifier selection. Pretreatment methods determined the range of the identification accuracy, feature-selective methods and classifiers only changed within this range. The experimental results provide a good reference for the identification of other crop seed varieties.

9.
Molecules ; 25(1)2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31905957

ABSTRACT

Convolutional neural network (CNN) can be used to quickly identify crop seed varieties. 1200 seeds of ten soybean varieties were selected, hyperspectral images of both the front and the back of the seeds were collected, and the reflectance of soybean was derived from the hyperspectral images. A total of 9600 images were obtained after data augmentation, and the images were divided into a training set, validation set, and test set with a 3:1:1 ratio. Pretrained models (AlexNet, ResNet18, Xception, InceptionV3, DenseNet201, and NASNetLarge) after fine-tuning were used for transfer training. The optimal CNN model for soybean seed variety identification was selected. Furthermore, the traditional machine learning models for soybean seed variety identification were established by using reflectance as input. The results show that the six models all achieved 91% accuracy in the validation set and achieved accuracy values of 90.6%, 94.5%, 95.4%, 95.6%, 96.8%, and 97.2%, respectively, in the test set. This method is better than the identification of soybean seed varieties based on hyperspectral reflectance. The experimental results support a novel method for identifying soybean seeds rapidly and accurately, and this method also provides a good reference for the identification of other crop seeds.


Subject(s)
Glycine max/classification , Image Processing, Computer-Assisted/methods , Deep Learning , Feasibility Studies , Neural Networks, Computer , Seeds/classification
11.
Prep Biochem Biotechnol ; 47(8): 768-775, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28644760

ABSTRACT

Soybean seed coat peroxidase (SBP) is a valuable enzyme having a broad variety of applications in analytical chemistry, biochemistry, and food processing. In the present study, the sscp gene (Gene ID: 548068) was optimized based on the preferred codon usage of Escherichia coli, synthesized, and expressed in E. coli BL21(DE3). SDS-PAGE and western blot analysis of this expressed protein revealed that its molecular weight is approximately 39 kDa. The effects of induction temperature, concentration of isopropyl-ß-D-thiogalactoside and hemin, induction time, expression time were optimized to enhance SBP production with a maximum activity of 11.23 U/mL (8.64 U/mg total protein). Furthermore, the kinetics of enzyme-catalyzed reactions of recombinant protein was determined. When 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) was used as substrate, optimum reaction temperature and pH of the enzyme were 85°C and 5.0, respectively. The effects of metal ions on the enzymatic reaction were also further investigated. The SBP was successfully expressed in E. coli BL21(DE3) which would provide a more efficient production strategy for industrial applications of SBP.


Subject(s)
Cloning, Molecular , Escherichia coli/genetics , Glycine max/enzymology , Peroxidases/genetics , Cloning, Molecular/methods , Kinetics , Peroxidases/metabolism , Plasmids/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Glycine max/genetics , Glycine max/metabolism , Substrate Specificity , Temperature
12.
J Sci Food Agric ; 97(10): 3342-3347, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27981593

ABSTRACT

BACKGROUND: Isoflavones, such as genistein and daidzein, are produced in soybean seed [Glycine max (L.) Merr.] and may be associated with health benefits in the human diet. More research is required to determine the effect of agronomic soybean treatments on isoflavone concentration. In this study from 2012 to 2014 at Michigan State University and Breckenridge locations, we have evaluated agronomic input management systems which are marketed to increase or protect potential soybean grain yield, including: nitrogen fertilization, herbicide-defoliant, foliar applied fertilizer, a biological-based foliar application, foliar applied fungicide, foliar applied insecticide, a seed applied fungicide, and a maximized seed treatment that included fungicide and insecticide as well as an inoculant and lipo-chitooligosaccharide nodulation promoter, for their effect on soybean seed genistein and daidzein concentrations. RESULTS: Paired comparisons were made between treatments receiving a designated management input and those without the input. Year and location had a significant effect on isoflavone concentrations. Agronomic management inputs impacted soybean seed daidzein concentrations in 15 of 48 field observations and genistein concentrations in 11 of 48 observations. CONCLUSION: The research supports findings that soybean seed isoflavone levels exhibit a location specific response, and the temporal variability experienced between years appears to influence changes in soybean isoflavone levels more than location. © 2016 Society of Chemical Industry.


Subject(s)
Crop Production/methods , Genistein/analysis , Glycine max/chemistry , Isoflavones/analysis , Environment , Fertilizers/analysis , Genistein/metabolism , Isoflavones/metabolism , Michigan , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Glycine max/growth & development , Glycine max/metabolism
14.
Proteomics ; 15(10): 1706-16, 2015 May.
Article in English | MEDLINE | ID: mdl-25545850

ABSTRACT

Seed coat color is an important attribute determining consumption of soybean seeds. Soybean cultivar Mallikong (M) has yellow seed coat while its naturally mutated cultivar Mallikong mutant (MM), has brown colored seed coat. We used integrated proteomics and metabolomics approach to investigate the differences between seed coats of M and MM during different stages of seed development (4, 5, and 6 weeks after flowering). 2DE profiling of total seed coat proteins from three stages showed 178 differentially expressed spots between M and MM of which 172 were identified by MALDI-TOF/TOF. Of these, 62 were upregulated and 105 were downregulated in MM compared with M, while five spots were detected only in MM. Proteins involved in primary metabolism showed downregulation in MM suggesting energy in MM might be utilized for proanthocyanidin biosynthesis via secondary metabolic pathways that leads to the development of brown seed coat color. Besides, downregulation of two isoforms of isoflavone reductase indicated reduced isoflavones in seed coat of MM that was confirmed by quantitative estimation of total and individual isoflavones using HPLC. We propose that low isoflavones level in MM may offer a high substrate for proanthocyanidin production that results in the development of brown seed coat in MM.


Subject(s)
Glycine max/metabolism , Metabolomics/methods , Pigmentation , Proteomics/methods , Seeds/metabolism , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Gene Ontology , Models, Biological , Plant Proteins/metabolism , Principal Component Analysis , Proteome/metabolism , Secondary Metabolism
15.
Food Chem ; 456: 139883, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38870803

ABSTRACT

Wild soybean (Glycine soja) is known for its high flavonoid contents, yet the distribution of flavonoids in the seeds is not well understood. Herein, we utilized matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and metabolomics methods to systematically investigate flavonoid differences in the seed coats and embryos of G. soja and G. max. The results of flavonoid profiles and total flavonoid content analyses revealed that flavonoid diversity and abundance in G. soja seed coats were significantly higher than those in G. max whereas the levels were similar in embryos. Specifically, 23 unique flavonoids were identified in the seed coats of G. soja, including procyanidins, epicatechin derivatives, and isoflavones. Using MALDI-MSI, we further delineated the distribution of the important flavonoids in the cotyledons, hypocotyls, and radicles of the two species. These findings imply that G. soja holds considerable breeding potential to enhance the nutritional and stress resistance traits of G. max.


Subject(s)
Flavonoids , Glycine max , Seeds , Glycine max/chemistry , Glycine max/growth & development , Glycine max/metabolism , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Flavonoids/analysis , Flavonoids/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
16.
Heliyon ; 10(10): e31313, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831811

ABSTRACT

Approaches aiming to recover proteins without denaturation represent attractive strategies. To accomplish this, a membrane lysis agent based on poly(styrene-alt-maleic acid) or PSMA was synthesized by photopolymerization using Irgacure® 2959 and carbon tetrabromide (CBr4) as a radical initiator and a reversible chain transfer agent, respectively. Structural elucidation of our in-house synthesized PSMA, so-called photo-PSMA, was performed by using NMR spectroscopy. The use of this photo-PSMA in soybean enzyme extraction was also demonstrated for the first time in this study. Without a severe cell rupture, energy input or any organic solvent, recovery of lipolytic enzymes directly into nanometric-sized particles was accomplished in one-step process. Due to the improved structural regularity along the photo-PSMA backbone, the most effective protective reservoir for enzyme immobilization was generated through the PSMA aggregation. Formation of such reservoir enabled soybean enzymes to be shielded from the surroundings and resolved in their full functioning state. This was convinced by the increased specific lipolytic activity to 1,950 mU/mg, significantly higher than those of sodium dodecyl sulfate (SDS) and the two commercially-available PSMA sources (1000P and 2000P). Our photo-PSMA had thus demonstrated its great potential for cell lyse application, especially for soybean hydrolase extraction.

17.
Antioxidants (Basel) ; 13(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38539844

ABSTRACT

Soybeans rank among the top five globally produced crops. Black soybeans contain anthocyanins in their seed coat, offering strong antioxidant and anti-inflammatory benefits. This study explores the protective effects of black soybean seed coat (BSSC) against acute liver injury (ALI) in mice. Mice pretreated with BSSC crude extract showed reduced liver damage, inflammation, and apoptosis. High doses (300 mg/kg) of the extract decreased levels of proinflammatory cytokines (IL-6, IFN-γ) and increased levels of anti-inflammatory ones (IL-4, IL-10), alongside mitigating liver pathological damage. Additionally, it influenced the Nrf2/HO-1 pathway and reduced levels of apoptosis-related proteins. In vitro, the compounds delphinidin-3-O-glucoside (D3G) and cyanidin-3-O-glucoside (C3G) in BSSC were found to modulate cytokine levels, suggesting their role in ALI protection. The study concludes that BSSC extract, particularly due to D3G and C3G, effectively protects against LPS-induced ALI in mice by inhibiting inflammation, oxidative stress, and apoptosis.

18.
Mycobiology ; 51(6): 463-467, 2023.
Article in English | MEDLINE | ID: mdl-38179121

ABSTRACT

Soybean is one of the world's most widely cultivated food crops, and soybean seeds are supplied from national seed resources in Korea. However, the transmission of seed-borne diseases through infected soybean seeds is problematic. Among these diseases, soybean seed decay is caused by Diaporthe spp. Infecting the pods, and the infected seeds show rotting symptoms. Most diseased seeds are removed during the selection process; however, it is difficult to distinguish infected seeds that do not display symptoms. Hence, a sequence-based method was devised to screen Diaporthe-infected seeds. Based on the nuclear ribosomal internal transcribe spacer (ITS) region of the pathogen, a primer was designed to distinguish the infection from other soybean seed pathogens. As a result of the comparison between healthy and Diaporthe-diseased seeds by using the primers, Diaporthe was detected only in the diseased seeds. Therefore, it is possible to distribute healthy soybean seeds by detecting Diaporthe-diseased seeds at the genetic level using the Diaporthe-specific primers.

19.
J Food Sci ; 88(11): 4457-4471, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37799104

ABSTRACT

This study aimed to characterize and microencapsulate soybean seed coats phenolic compounds by spray-drying, evaluating physicochemical properties and storage stability. Different extraction methodologies were used to obtain crude extract (SCE), ethyl acetate fraction, water fraction, and bound phenolic extract. Extraction yield, total phenolic and flavonoid contents, and antioxidant capacity were determined. HPLC-electrospray ionization source-MS/MS analysis was performed on SCE. Microencapsulation by spray-drying of SCE incorporating 10%, 20%, and 30% maltodextrin (MD) was carried out. Drying yield (DY), encapsulation efficiency (EE), moisture, morphology and particle size, dry, and aqueous storage stability were evaluated on the microcapsules. SCE had 7.79 g/100 g polyphenolic compounds (mainly isoflavones and phenolic acids) with antioxidant activity. Purification process by solvent partitioning allowed an increase of phenolic content and antioxidant activity. Microcapsules with 30% MD exhibited the highest DY, EE, and stability. Microencapsulated polyphenolic compounds from soybean seed coats can be used as functional ingredients in food products. PRACTICAL APPLICATION: Soybean seed coat is a usually discarded agro-industrial by-product, which presents antioxidant compounds of interest to human health. These compounds are prone to oxidation due to their chemical structure; therefore, microencapsulation is a viable and reproducible solution to overcome stability-related limitations. Microencapsulation of soybean seed coats polyphenols is an alternative which protects and extends the stability of phenolic compounds that could be potentially incorporated into food products as a natural additive with antioxidant properties.


Subject(s)
Antioxidants , Glycine max , Humans , Antioxidants/chemistry , Glycine max/chemistry , Capsules/chemistry , Tandem Mass Spectrometry , Plant Extracts/chemistry , Phenols/analysis , Seeds/chemistry , Water/analysis
20.
Plants (Basel) ; 12(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765420

ABSTRACT

Plant transcriptomes offer a valuable resource for studying viral communities (viromes). In this study, we explore how plant transcriptome data can be applied to virome research. We analyzed 40 soybean transcriptomes across different growth stages and identified six viruses: broad bean wilt virus 2 (BBWV2), brassica yellow virus (BrYV), beet western yellow virus (BWYV), cucumber mosaic virus (CMV), milk vetch dwarf virus (MDV), and soybean mosaic virus (SMV). SMV was the predominant virus in both Glycine max (GM) and Glycine soja (GS) cultivars. Our analysis confirmed its abundance in both, while BBWV2 and CMV were more prevalent in GS than GM. The viral proportions varied across developmental stages, peaking in open flowers. Comparing viral abundance measured by viral reads and fragments per kilobase of transcript per million (FPKM) values revealed insights. SMV showed similar FPKM values in GM and GS, but BBWV2 and CMV displayed higher FPKM proportions in GS. Notably, the differences in viral abundance between GM and GS were generally insignificant based on the FPKM values across developmental stages, except for the apical bud stage in four GM cultivars. We also detected MDV, a multi-segmented virus, in two GM samples, with variable proportions of its segments. In conclusion, our study demonstrates the potential of plant transcriptomes for virome research, highlighting their strengths and limitations.

SELECTION OF CITATIONS
SEARCH DETAIL