Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Virol ; 97(4): e0182922, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36943056

ABSTRACT

Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.


Subject(s)
Models, Molecular , Rhabdoviridae , Ribonucleoproteins , Viral Proteins , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism , Rhabdoviridae/chemistry , Rhabdoviridae/drug effects , Viral Proteins/chemistry , Viral Proteins/metabolism , Protein Structure, Quaternary , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Cryoelectron Microscopy , Suramin/pharmacology
2.
Fish Shellfish Immunol ; 139: 108920, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37385462

ABSTRACT

Spring viraemia of carp virus (SVCV), a highly pathogenic rhabdovirus, could cause spring viraemia of carp (SVC) with up to 90% lethality. Like other rhabdoviruses, the entry of SVCV into susceptible cells was mediated by a single envelope glycoprotein G. Specific inhibitors targeting the glycoprotein were the most effective means to alleviate the epidemic. The programs including SWISS-MODEL, I-TASSER, Phyre2 and AlphaFold2 were used to build a three-dimensional structural model of glycoprotein. The structural comparison between SVCV-G and homology protein VSV-G revealed that the SVCV glycoprotein ectodomain (residues 19 to 466) folded into four distinct domains. Based on the potential small molecule binding sites on glycoprotein surfaces, virtual screening of the anti-SVCV drug libraries was performed using Autodock software and 4'-(8-(4-Methylimidazole)-octyloxy)-arctigenin (MOA) with a high binding affinity was identified. The solubility enhancer tags including trigger factor and maltose binding protein were fused with the ectodomain of glycoprotein, and the target protein with a purity of about 90% was successfully obtained. The interaction confirmation tests revealed that the fluorescence intensity of a characteristic peak induced by the endogenous chromophores in glycoprotein was decreased with the addition of MOA, indicating changes in the microenvironment of glycoprotein. Moreover, the interaction could cause a slight conformational change in glycoprotein, as shown by the content of ß-turn, ß-folding, and random coil of protein all increased with the decrease of α-helix content after the addition of MOA compound. These results demonstrated that MOA could act as a novel drug against fish rhabdovirus via direct targeting of glycoprotein.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Rhabdoviridae Infections/veterinary , Glycoproteins/metabolism , Fishes/metabolism , Carps/metabolism
3.
Fish Shellfish Immunol ; 142: 109102, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37758095

ABSTRACT

Rhomboid domain-containing protein 3 (Rhbdd3) is a member of the rhomboid family, which can modulate the innate immune response in mammals. Nonetheless, the function and regulatory mechanism of fish Rhbdd3 during viral infection have not been characterized. In this study, Rhbdd3 was firstly cloned from common carp (Cyprinus carpio) and nominated as CcRhbdd3. Phylogenetically characterization showed that CcRhbdd3 shared a relatively long evolutionary distance with its mammalian homologs. In vivo experiment demonstrated that spring viraemia of carp virus (SVCV) infection promoted the expression of CcRhbdd3 in the liver, spleen, kidney and muscle tissues. Furthermore, overexpression of CcRhbdd3 significantly inhibited SVCV propagation, whereas knockdown of CcRhbdd3 markedly promoted SVCV replication in susceptible cells. RNA-seq and following validation showed that CcRhbdd3 overexpression upregulated the expression of several RIG-I signaling related genes, including TRIM25, TRAF2, MDA5, LGP2, IFN1, IFN3, RIG-I, IRF3 and ISG15. Moreover, CcRhbdd3 promoted the expression of NF-κB, a central immune regulator. Subcellular localization experiments showed that CcRhbdd3 was primarily distributed in the cytoplasm and co-localized with Rab5 in the early endosomes. Truncation experiments further demonstrated that the C-terminus containing the ubiquitin-binding associated domain, was crucial for both the subcellular localization and antiviral activity of CcRhbdd3. The findings in this study provide new insight into the host antiviral mechanism against aquatic RNA virus infection, and will facilitate the development of therapeutic strategies for the infection of SVCV.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Carps/metabolism , Fish Proteins/chemistry , Rhabdoviridae/physiology , Immunity, Innate/genetics , Signal Transduction , Antiviral Agents , Mammals/metabolism
4.
J Fish Dis ; 46(12): 1343-1355, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635442

ABSTRACT

Spring viraemia of carp (SVC) is an infectious disease responsible for severe economic losses for various cyprinid species, particularly common carp (Cyprinus carpio carpio). The causative agent is the Rhabdovirus carpio or SVC virus (SVCV), a member of the Sprivivirus genus, within the Rhabdoviridae family. Phylogenetically, SVCV is divided into four genogroups (SVCV a, SVCV b, SVCV c and SVCV d), which have a reasonable correlation with the geographical distribution of the virus. In the late twentieth century, the disease was widespread in Serbian aquaculture and caused massive deaths in common carp. This study aimed to molecularly characterize the circulating SVCV isolates in Serbia over a 17-year period. The genetic relationships between 21 SVCV isolates from common carp and rainbow trout in Serbia between 1992 and 2009 were determined based on the partial nucleotide sequence of the glycoprotein gene (G gene). The phylogenetic analysis showed that the dominant SVCV isolates in Serbia belong to the SVCV d genogroup, with only one isolate belonging to genogroup SVCV b. The SVCV strains circulating in Serbia exhibited high homogeneity, as several isolates shared 100% similarity within these genogroups. Most Serbian isolates belonged to SVCV d1 and d2 subgroups, with one isolate notably different and included in a new subgroup SVCV d5. Understanding the SVCV genetic variants circulating in Serbia would be helpful in future epizootic investigations.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Viremia , Phylogeny , Serbia/epidemiology , Fish Diseases/epidemiology , Rhabdoviridae Infections/epidemiology , Rhabdoviridae Infections/veterinary
5.
Fish Shellfish Immunol ; 127: 306-317, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35753558

ABSTRACT

Common carp (Cyprinus carpio L.) is one of the most widely cultivated fish in China. Spring viraemia of carp virus (SVCV) is a highly pathogenic virus and has often caused excessive losses in carp pond fisheries. Innate immune play important roles against virus infection. To better understand the immune response of common carp against SVCV infection, transcriptome analysis was performed using the Illumina Novaseq 6000 platform. It was showed that a total of 3953 differentially expressed unigenes were identified, and the RLR signaling pathway were significantly enriched after SVCV infection. Subsequently, the role of RLR signaling pathway in SVCV infection was studied. The results showed that common carp RIG-I (CcRIG-I) and TRIM25 (CcTRIM25) significantly decreased the replication of SVCV by inducing the phosphorylation of TBK1, IRF3 and p65 and the expression of ifn-1, viperin, isg15 and mx. Further studies illustrated that CcTRIM25 could positive regulate CcRIG-I mediated downstream signaling pathway. Finally, the mechanism of CcTRIM25 promoting CcRIG-I-mediated signaling was investigated. CcTRIM25 could interact with the caspase activation and recruitment domain (CARD) of CcRIG-I and promoted K63-linked polyubiquitination of CcRIG-I. Altogether, the study revealed a mechanism of CcTRIM25 regulating CcRIG-I mediated immune response in SVCV infection.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Carps/genetics , Rhabdoviridae/physiology , Signal Transduction , Viremia
6.
J Fish Dis ; 44(10): 1587-1594, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34165796

ABSTRACT

Spring viraemia of carp (SVC) caused by spring viraemia of carp virus (SVCV) can infect almost all fish of cyprinids, which bring huge economic losses to aquaculture. Glycoprotein (G), as the most important antigenic determinant protein of SVCV, is widely considered as an effective method against SVCV. In our previous study, we found that G3 (131 aa) is the potential dominant antigen epitope that induces strong immune responses similar to G protein (510 aa). Here, in order to further improve the immune effect, we reported a subunit vaccine (PEG-G3) constructed by PEG-modified dominant epitope protein (G3). The results of serum antibody production, enzyme activities and immune-related genes expression showed that PEG-G3 induces significantly stronger immune protective responses against SVCV than G3. PEG modification significantly increased the serum antibody level of the vaccine, which increased significantly after immunization and reached the peak at 21 day post-vaccination. T-AOC and AKP activities in the lowest concentration group (5 µg) of PEG-G3 were significantly higher than those in the highest concentration group (20 µg) of G3. In PEG-G3 group, the expression of almost all genes increased at least 4 times compared with the control group. After 14-day challenge, the RPS (relative percentage survival) of the highest concentration of PEG-G3 group was 53.6%, while that of G3 group is 38.9%. Therefore, this work shows that PEG modification and dominant epitope screening may be effective methods to improve the immune protective effect of vaccines and to resist the infection of aquatic animal viral diseases.


Subject(s)
Carps , Fish Diseases/prevention & control , Immunization/veterinary , Rhabdoviridae Infections/veterinary , Rhabdoviridae/immunology , Vaccines, Subunit/immunology , Viral Vaccines/immunology , Animals , Epitopes/immunology , Fish Diseases/virology , Immunity , Rhabdoviridae Infections/prevention & control , Rhabdoviridae Infections/virology , Vaccines, Subunit/administration & dosage , Viral Vaccines/administration & dosage
7.
J Fish Dis ; 44(12): 1925-1936, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34383969

ABSTRACT

Immersion vaccination of single-walled carbon nanotubes loaded with mannose-modified glycoprotein (SWCNTs-MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. However, immunization procedure optimization for SWCNTs-MG vaccine against SVCV has not been reported. In this study, accordingly, a full-factor experiment was designed to optimize the immunization procedure of SWCNTs-MG vaccine by three aspects of vaccine dose (30 mg/L, 40 mg/L and 50 mg/L), immunization density (8 fish L-1 , 24 fish L-1 and 48 fish L-1 ) and immunization time (6, 12 and 24 hr). Furthermore, we used the immunization group (A1B2C1, 30 mg/L, 24 fish L-1 and 6 hr) in the previous study as a positive control (PC) to evaluate the immunization effect optimized conditions from the expression of immune-related genes and relative percentage survival (RPS). At 28 days post-vaccination (DPV), common carps were intraperitoneal injected SVCV challenged test indicated that the A1B2C2 group (30 mg/L, 24 fish L-1 , 12 hr) displayed superiority of protective efficacy compare with other groups and the RPS with 77.9%, which was 15.6% higher than the PC group of RPS with 62.3%. Moreover, the expression of immune-related genes such as IL-10, CD4 and MHC-II was also significantly higher than PC group. The specific experimental flow chart is shown in Figure 1. Conclusively, these results demonstrated that vaccine dose, immunization density and immunization time are 30 mg/L, 24 fish L-1 and 12 hr, which is the more appropriate immunization programme with juvenile carp for SWCNTs-MG vaccine. This study provides a profitable reference for improving the immune efficiency of aquatic immersion vaccine. [Figure: see text].


Subject(s)
Fish Diseases/virology , Immunization/veterinary , Rhabdoviridae Infections/veterinary , Viral Vaccines/administration & dosage , Animals , Aquaculture , Carps , Fish Diseases/prevention & control , Immersion , Immunization/methods , Mannose , Nanotubes, Carbon , Rhabdoviridae , Rhabdoviridae Infections/prevention & control , Vaccines, Subunit/administration & dosage
8.
J Fish Dis ; 44(12): 2021-2029, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34431113

ABSTRACT

The interactive applications of immunization route, vaccine type and delivery vectors are emerging as a key area of research within the field of mass immunization in fishery production. In an effort to improve DNA vaccine's immune efficiency in large-scale immunization, a promising bacterial ghost-loaded DNA vaccine was constructed based on Escherichia coli DH5α. In common carp was investigated the immune response to immersion immunization via related indicator analysis, and the challenge test of spring viraemia of carp virus (SVCV) was carried out. The result indicated that BG-loaded DNA vaccine induced higher serum antibody level than naked pEG-G. Simultaneously, the immunophysiological indicators and genes change at the more advanced levels in the BG/pEG-G immune group. At the treatment concentration of 20 mg/L of the BG/pEG-G group, IgM and IgZ expressions in vivo were markedly increased by 21.62 times and 6.91 times, respectively, and the relative percentage survival reached the peak of 59.57%. This study paves the way for future aquatic animal vaccine research, which aimed to develop the highly effective immersion vaccine system by delivery vectors, with the ultimate aim to prevent and restrict SVCV in actual production.


Subject(s)
Fish Diseases/immunology , Rhabdoviridae Infections/veterinary , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Aquaculture , Carps , Escherichia coli , Fish Diseases/virology , Immersion , Immunization/veterinary , Rhabdoviridae , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/prevention & control , Rhabdoviridae Infections/virology , Viral Vaccines/administration & dosage
9.
Fish Shellfish Immunol ; 92: 125-132, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31125665

ABSTRACT

Cytidine/uridine monophosphate kinase 2 (CMPK2) is known as a nucleoside monophosphate kinase in mitochondria to maintains intracellular UTP/CTP, and could be induced by immunostimulants LPS and Poly (I:C) in mammals, suggesting its potential antiviral and antibacterial role. In this study, CMPK2 was cloned and characterized in Fathead minnow (FHM) cells. In vivo analysis of tissue distribution revealed that CMPK2 transcript was detected in all the tissues of zebrafish (Danio rerio) examined in this study, particularly abundant in liver, spleen and kidney. In addition, indirect immunofluorescence showed that CMPK2 was localized in the cytoplasm of FHM cells. Expression of CMPK2 mRNA was significantly up-regulated following challenge with Spring viraemia of carp virus (SVCV), poly(I:C), or zebrafish IFN1 and IFN3 both in vitro and in vivo. Furthermore, overexpression and RNA interference of CMPK2 in SVCV-infected FHM cells showed significantly antiviral effect. In summary, this study for the first time shows the presence and distribution of CMPK2 in different tissues of zebrafish, but also demonstrates its antiviral potential against SVCV infection in vivo. These new findings could contribute to explain the molecular mechanism of the CMPK2 mediated antiviral function.


Subject(s)
Fish Diseases/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Nucleoside-Phosphate Kinase/genetics , Nucleoside-Phosphate Kinase/immunology , Zebrafish Proteins/genetics , Zebrafish Proteins/immunology , Zebrafish/genetics , Zebrafish/immunology , Amino Acid Sequence , Animals , Gene Expression Profiling/veterinary , Interferons/metabolism , Phylogeny , Rhabdoviridae/physiology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Sequence Alignment/veterinary
10.
J Fish Dis ; 42(5): 667-675, 2019 May.
Article in English | MEDLINE | ID: mdl-30874321

ABSTRACT

Spring viraemia of carp (SVC) is an infectious disease responsible for severe economic losses for various cyprinid species, particularly common carp (Cyprinus carpio carpio). The causative agent is the SVC virus (SVCV), a member of the Sprivivirus genus, Rhabdoviridae family, and a List 1 pathogen notifiable by the World Organization for Animal Health. This study describes the diagnosis of an SVCV pathogen isolated in October 2015 from wild common carp inhabiting a natural lagoon in central Mexico. While neither an epidemic nor fish mortalities were reported, the collected killed specimens exhibited clinical signs of disease (e.g., exopthalmia, moderate abdominal distension and haemorrhaging, as well as internal haemorrhages and adhesions). Histological results of injuries were consistent with the pathology caused by SVCV. This finding was supported by the isolation of a virus in EPC and BF-2 cells and subsequent RT-PCR confirmation of SVCV. The phylogenetic analyses of partial SVCV glycoprotein gene sequences classified the isolates into the Ia genogroup. These findings make this the first report of SVCV detection in Mexico, extending the southern geographical range of SVCV within North America. However, since this pathogen was detected in fish inhabiting a natural body of water without tributaries or effluents, it is difficult to estimate the risk of SVCV for other wild/feral cohabitating cyprinid species in the lagoon. The status of this virus is also unknown for other bodies of water within this region.


Subject(s)
Carps , Fish Diseases/diagnosis , Rhabdoviridae Infections/veterinary , Rhabdoviridae/isolation & purification , Sepsis/veterinary , Animals , Fish Diseases/virology , Glycoproteins/analysis , Mexico , Phylogeny , Rhabdoviridae Infections/diagnosis , Rhabdoviridae Infections/virology , Sepsis/diagnosis , Sepsis/virology , Viral Proteins/analysis
11.
Fish Shellfish Immunol ; 83: 386-396, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30243774

ABSTRACT

Coumarin forms an elite class of naturally occurring compounds that possess promising antiviral therapeutic perspectives. In the previous study, we designed and synthesized a coumarin derivative, 7-(4-benzimidazole-butoxy)-coumarin (BBC), to evaluate its antiviral activity on spring viraemia of carp virus (SVCV). In this study, our results show that BBC does not affect viral adhesion and delivery from endosomes to the cytosol, indicating BBC has no inhibitory activity in the early stage of viral infection. Further data are determined that BBC significantly declines SVCV-infected apoptosis and recovers caspase-3/8/9 activity. To reveal the pathway that affects Nrf2 translocation by BBC, we examine changes in protein kinase C (PKC) in EPC cells treated with BBC. We observe that BBC results in a higher phosphorylation of PKCα/ß that is involved in the activation of erythroid 2-related factor 2 (Nrf2) phosphorylation to favor Nrf2 translocation to nucleus at 24 and 48 h. In addition, the results show that BBC also up-regulates both antiviral responses, heme oxygenase-1 (HO-1) expression and cellular IFN response. Overall, this mechanism of action provides a new therapeutic target for the treatment of SVCV infection, and these results suggest that treatment with BBC is effective in reducing SVCV infection and differently regulates SVCV-induced undesirable conditions.


Subject(s)
Antiviral Agents/pharmacology , Coumarins/pharmacology , Rhabdoviridae/drug effects , Animals , Cell Line , Fish Proteins/metabolism , Fishes , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Phosphorylation/drug effects , Protein Kinase C beta/metabolism , Rhabdoviridae Infections/drug therapy
12.
J Fish Dis ; 41(1): 67-78, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28799647

ABSTRACT

Infectious haematopoietic necrosis virus (IHNV) and spring viraemia of carp virus (SVCV) are both rhabdoviruses of fish, listed as notifiable disease agents by the World Organization for Animal Health. Recombinant rhabdoviruses with heterologous gene substitutions have been engineered to study genetic determinants and assess the potential of these recombinant viruses for vaccine development. A recombinant IHNV (rIHNV), containing the full-length genome of a European IHNV strain, was modified by deleting the glycoprotein (G) gene and replacing it with a European SVCV G-gene to make the rIHNV-Gsvcv. The chimeric rIHNV-Gsvcv level of virulence in rainbow trout, common carp and koi was assessed, and its ability to induce a protective immune response in surviving koi against wild-type SVCV infection was tested. The rIHNV-Gsvcv infection of trout led to high mortality, ranging from 78% to 92.5%, after immersion. In contrast, no deaths occurred in juvenile common carp after infection with rIHNV-Gsvcv by either immersion or intraperitoneal (IP) injection. Similarly, koi infected with rIHNV-Gsvcv via IP injection had little to no mortality (≤9%). Koi that survived initial infection with a high dose of recombinant virus rIHNV-Gsvcv were protected against a virulent SVCV challenge resulting in a high relative per cent survival of 82.5%.


Subject(s)
Carps/virology , Infectious hematopoietic necrosis virus/pathogenicity , Oncorhynchus mykiss/virology , Rhabdoviridae Infections/veterinary , Animals , Fish Diseases/immunology , Fish Diseases/prevention & control , Fish Diseases/virology , Glycoproteins/genetics , Infectious hematopoietic necrosis virus/genetics , Infectious hematopoietic necrosis virus/immunology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/prevention & control , Vesiculovirus/genetics , Viral Vaccines/biosynthesis , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence
13.
Fish Shellfish Immunol ; 67: 211-217, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28602749

ABSTRACT

Different viruses could induced ROS generation to alter intracellular redox state in the host cells, and unbalanced redox state was suggested to have various effects on viral replication. In this study, we investigated the influence of reactive oxygen species (ROS) on replication of spring viraemia of carp virus (SVCV) in fish cells. After SVCV infection, there existed a time-dependent increase in ROS generation. The present results revealed that antioxidant N-acetyl-l-cysteine (NAC) resulted in a lower ROS levels and increased SVCV replication in EPC cell. In contrast, a GSH synthesis inhibitor buthionine sulfoximine (BSO) induced ROS generation and decreased SVCV replication. In addition, activation of NF-κB suppressed SVCV replication by using two inhibitors of cytokine-induced IκBα phosphorylation. More importantly, enhancement of the activity of NF-κB was found in BSO treatment, which indicated that dropped SVCV replication likely occurred via ROS activation of NF-κB. Overall, our results revealed that the SVCV infection and replication could generate ROS and be affected by the redox state, where this progression was associated with the alteration in NF-κB pathway induced by oxidative stress.


Subject(s)
Cyprinidae/virology , Fish Proteins/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Rhabdoviridae/physiology , Virus Replication , Animals , Cell Line , Cyprinidae/metabolism
14.
Fish Shellfish Immunol ; 55: 568-76, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27263115

ABSTRACT

Pattern recognition receptor (PRR) toll-like receptors (TLRs), antiviral agent interferon (IFN) and the effector IFN stimulated genes (ISGs) play a fundamental role in the innate immune response against viruses among all vertebrate classes. Common carp is a host for spring viraemia of carp virus (Rhabdovirus carpio, SVCV), which belong to Rhabdoviridae family. The present in-vivo experiment was conducted to investigate the expression of these innate immune factors in early phase as well as during recovery of SVCV infection by real-time quantitative reverse transcriptase polymerase chain reaction. A less lethal SVCV infection was generated in common carp (Cyprinus carpio) and was sampled at 3, 6, 12 h post infection (hpi), 1, 3, 5, 7 and 10 days post infection (dpi). At 3 hpi, the SVCV N gene was detected in all three fish and all three fish showed a relative fold increase of TLR2, TLR3 and TLR7, IFNa1, ISG15 and Vig1. Viral copies rapidly increased at 12 hpi then remained high until 5 dpi. When viral copy numbers were high, a higher expression of immune genes TLR2, TLR3, TLR7, IFNa1, IFNa2, IFNa1S, IFN regulatory factor 3 (IRF3), IRF7, interleukin 1ß (IL1ß), IL6, IL10, ADAR, ISG15, Mx1, PKR and Vig1 were observed. Viral copies were gradually reduced in 5 to 10 dpi fish, and also the immune response was considerably reduced but remained elevated. A high degree of correlation was observed between immune genes and viral copy number in each of the sampled fish at 12 hpi. The quick and prolonged elevated expression of the immune genes indicates their crucial role in survival of host against SVCV.


Subject(s)
Carps , Fish Diseases/immunology , Fish Proteins/genetics , Immunity, Innate , Interferons/genetics , Rhabdoviridae Infections/veterinary , Toll-Like Receptors/genetics , Animals , Fish Diseases/virology , Fish Proteins/metabolism , Immunologic Factors/genetics , Immunologic Factors/metabolism , Interferons/metabolism , Rhabdoviridae/physiology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/virology , Sequence Analysis, DNA/veterinary , Toll-Like Receptors/metabolism , Viremia/immunology , Viremia/veterinary , Viremia/virology
15.
Int J Mol Sci ; 17(10)2016 Oct 09.
Article in English | MEDLINE | ID: mdl-27735853

ABSTRACT

Tripartite motif-containing protein 32 (TRIM32) belongs to the tripartite motif (TRIM) family, which consists of a large number of proteins containing a RING (Really Interesting New Gene) domain, one or two B-box domains, and coiled coil motif followed by different C-terminal domains. The TRIM family is known to be implicated in multiple cellular functions, including antiviral activity. However, it is presently unknown whether TRIM32 of common carp (Cyprinus carpio) has the antiviral effect. In this study, the sequence, expression, and antiviral function of TRIM32 homolog from common carp were analyzed. The full-length coding sequence region of trim32 was cloned from common carp. The results showed that the expression of TRIM32 (mRNA) was highest in the brain, remained stably expressed during embryonic development, and significantly increased following spring viraemia of carp virus (SVCV) infection. Transient overexpression of TRIM32 in affected Epithelioma papulosum cyprinid cells led to significant decrease of SVCV production as compared to the control group. These results suggested a potentially important role of common carp TRIM32 in enhancing host immune response during SVCV infection both in vivo and in vitro.


Subject(s)
Antiviral Agents/metabolism , Carps/metabolism , Fish Proteins/metabolism , Tripartite Motif Proteins/metabolism , Amino Acid Sequence , Animals , Antiviral Agents/pharmacology , Carps/classification , Carps/growth & development , Cell Line , Cloning, Molecular , Embryonic Development/genetics , Fish Proteins/genetics , Microscopy, Fluorescence , Molecular Sequence Data , Open Reading Frames/genetics , Phylogeny , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sequence Alignment , Tissue Distribution , Tripartite Motif Proteins/genetics , Viruses/drug effects
16.
Viruses ; 15(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37632031

ABSTRACT

The efficacy of silver nanoparticles (AgNPs) was tested in vitro against three different fish viruses, causing significant economic damage in aquaculture. These viruses were the spring viraemia of carp virus (SVCV), European catfish virus (ECV), and Ictalurid herpesvirus 2 (IcHV-2). The safe concentration of AgNPs that did not cause cytotoxic effects in EPC cells proved to be 25 ng/mL. This dose of AgNPs decreased significantly (5-330×) the viral load of all three viruses in three different types of treatments (virus pre-treatment, cell pre-treatment, and cell post-treatment with the AgNPs). In a higher concentration, the AgNPs proved to be efficient against ECV and IcHV-2 even in a delayed post-cell-treatment experiment (AgNP treatment was applied 24 h after the virus inoculation). These first in vitro results against three devastating fish viruses are encouraging to continue the study of the applicability of AgNPs in aquaculture in the future.


Subject(s)
Catfishes , Ictalurivirus , Metal Nanoparticles , Animals , Antiviral Agents/pharmacology , Silver/pharmacology
17.
Virus Res ; 316: 198798, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35562080

ABSTRACT

Spring viraemia of carp virus (SVCV) poses a serious threat to aquaculture industry due to the lack of approved antiviral treatments. Therefore, a novel arctigenin derivative, 4-(2-methylimidazole) octanoxy-arctigenin (MON), was synthesized to assess the antiviral activity against SVCV in vitro and in vivo. The results indicated MON decreased the SVCV glycoprotein (G) gene expression in vitro by a maximum inhibitory rate of > 99% at 3.5 µM. Furthermore, MON showed the protective effect on epithelioma papulosum cyprinid (EPC) cells and considerably decreased the cytopathic effect (CPE). More importantly, MON inhibited SVCV G gene expression levels in vitro at the half-maximal activity (IC50) of 0.18 µM at 48 h. For in vivo studies, MON demonstrated anti-SVCV activity by enhancing the survival rate of zebrafish (Danio rerio) after infection via pelvic fin base injection. These results tended to be consistent with MON decreasing the SVCV titer of infected zebrafish. During this time, viral loads of the spleen and kidney have declined in SVSV-infected zebrafish. Based on the histopathological assay, MON exhibited the high protective effect in the spleen and kidney of SVCV-infected fish. Combined, MON is on track to become a novel agent to address SVCV infection in aquaculture.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Fish Diseases/drug therapy , Furans , Lignans , Rhabdoviridae Infections/drug therapy , Rhabdoviridae Infections/veterinary , Zebrafish
18.
Virol Sin ; 37(2): 277-283, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35249853

ABSTRACT

Since the anti-inflammatory effect of hydrogen has been widely known, it was supposed that hydrogen could suppress tissue damage by inhibiting virus-related inflammatory reactions. However, hydrogen is slightly soluble in water, which leads to poor effect of oral hydrogen-rich water therapy. In this study, the nano-bubble hydrogen water (nano-HW) (about 0.7 â€‹ppm) was prepared and its therapeutic effect against viral infection was investigated by utilizing spring viraemia of carp virus (SVCV)-infected zebrafish as model. Three-month-old zebrafish were divided into nano-HW treatment-treated group and aquaculture water treated group (control group). The results revealed that the cumulative mortality rate of SVCV-infected zebrafish was reduced by 40% after treatment with nano-bubble hydrogen water, and qRT-PCR results showed that SVCV replication was significantly inhibited. Histopathological examination staining showed that SVCV infection caused tissue damage was greatly alleviated after treatment with nano-bubble hydrogen water. Futhermore, SVCV infection caused reactive oxygen species (ROS) accumulation was significantly reduced upon nano-HW treatment. The level of proinflammatory cytokines IL-1ß, IL-8, and TNF-α was remarkably reduced in the nano-HW-treated group in vivo and in vitro. Taken together, our data demonstrated for the first time that nano-HW could inhibit the inflammatory response caused by viral infection in zebrafish, which suggests that nano-HW can be applied to antiviral research,and provides a novel therapeutic strategy for virus-caused inflammation related disease.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Animals , Fish Diseases/drug therapy , Hydrogen/pharmacology , Hydrogen/therapeutic use , Inflammation/drug therapy , Rhabdoviridae , Rhabdoviridae Infections/drug therapy , Water , Zebrafish
20.
Chemosphere ; 285: 131465, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34329124

ABSTRACT

Azoxystrobin (AZ) has entered aquatic ecosystems and produced serious damages to fish associated with potentially increasing the susceptibility to pathogens. This study characterized the defense abilities of fish by exposed to AZ on challenging with the infection of spring viraemia of carp virus (SVCV). The results showed that SVCV replication increased significantly in EPC cells and zebrafish that were exposed to up to 50 µg/L of AZ at 3, 5, 7, and 14 d. Intracellular biochemical assays indicated that AZ at 5 and 50 µg/L inhibited the activation of Nrf2-ARE pathway including a decrease in Nrf2 expression, Nrf2 phosphorylation, HO-1 content, and three antioxidant activities. While no significant difference in ERK1/2 and JNK MAPKs in zebrafish was observed, P38 phosphorylation was significantly decreased at 7 and 14 d, and the changes in MAPKs were more evident in EPC cells previously exposed to AZ at 7 d. These results revealed that AZ initially induced low phosphorylation of MAPKs, triggering the attenuation of Nrf2 phosphorylation to weaken Nrf2 translocation into the nucleus in a longer exposure period (more than 5 d). The data in the cells and fish also showed that antioxidant activities were decreased to some extent at 5-7 d for the cells and 7-14 d for the fish. Furthermore, interferon-related factors were decreased in AZ-exposed zebrafish, explaining the reason that fish can't resist the virus infection. Overall, the present study provided a new adverse threat of AZ by amplifying the viral outbreak to endanger ecological safety in aquatic environment.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Animals , Ecosystem , Pyrimidines , Rhabdoviridae , Strobilurins , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL