Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Small ; 20(13): e2310038, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37963847

ABSTRACT

Superelastic aerogels with rapid response and recovery times, as well as exceptional shape recovery performance even from large deformation, are in high demand for wearable sensor applications. In this study, a novel conductive and superelastic cellulose-based aerogel is successfully developed. The aerogel incorporates networks of cellulose sub-micron fibers and carbon black (SMF/CB) nanoparticles, achieved through a combination of dual ice templating assembly and electrostatic assembly methods. The incorporation of assembled cellulose sub-micron fibers imparts remarkable superelasticity to the aerogel, enabling it to retain 94.6% of its original height even after undergoing 10 000 compression/recovery cycles. Furthermore, the electrostatically assembled CB nanoparticles contribute to exceptional electrical conductivity in the cellulose-based aerogel. This combination of electrical conductivity and superelasticity results in an impressive response time of 7.7 ms and a recovery time of 12.8 ms for the SMF/CB aerogel, surpassing many of the aerogel sensors reported in previous studies. As a proof of concept, the SMF/CB aerogel is utilized to construct a pressure sensor and a sensing array, which exhibit exceptional responsiveness to both minor and substantial human motions, indicating its significant potential for applications in human health monitoring and human-machine interaction.

2.
Proc Natl Acad Sci U S A ; 118(24)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34117121

ABSTRACT

Superelastic materials capable of recovering large nonlinear strains are ideal for a variety of applications in morphing structures, reconfigurable systems, and robots. However, making oxide materials superelastic has been a long-standing challenge due to their intrinsic brittleness. Here, we fabricate ferroelectric BaTiO3 (BTO) micropillars that not only are superelastic but also possess excellent fatigue resistance, lasting over 1 million cycles without accumulating residual strains or noticeable variation in stress-strain curves. Phase field simulations reveal that the large recoverable strains of BTO micropillars arise from surface tension-modulated 90° domain switching and thus are size dependent, while the small energy barrier and ultralow energy dissipation are responsible for their unprecedented cyclic stability among superelastic materials. This work demonstrates a general strategy to realize superelastic and fatigue-resistant domain switching in ferroelectric oxides for many potential applications.

3.
J Environ Manage ; 358: 120909, 2024 May.
Article in English | MEDLINE | ID: mdl-38642487

ABSTRACT

Achieving an equilibrium between exceptional oil absorption and remarkable elasticity has emerged as a formidable challenge for magnetic porous materials designed for oil absorption. Here, we propose an original, magnetic and superhydrophobic cellulose nanofibril (CNF) based aerogel system with a rope-ladder like skeleton by to greatly improve the issue. Within this system, CNF as the skeleton was combined with multiwalled carbon nanotubes (MWCNT)@Fe3O4 as the magnetic and enhanced component, both methyltrimethoxysilane (MTMS) and acetonitrile-extracted lignin (AEL) as the soft-hard associating constituents. The resultant CNF based aerogel shows a rope-ladder like pore structure to contribute to high elasticity and excellent oil absorption (28.34-61.09 g/g for various oils and organic solvents) under the synergistic effect of Fe3O4@MWCNT, AEL and MTMS, as well as good specific surface area (27.97 m2/g), low density (26.4 mg/cm3). Notably, despite the introduced considerable proportion (0.5 times of mass-CNF) of Fe3O4@MWCNT, the aerogel retained an impressive compression-decompression rate (88%) and the oil absorption efficiency of above 87% for various oils due to the soft-hard associating structure supported by both MTMS and AEL. This study provides a prospective strategy to balance between high elasticity and excellent oil absorption of CNF based aerogel doping inorganic particles.


Subject(s)
Cellulose , Hydrophobic and Hydrophilic Interactions , Nanofibers , Cellulose/chemistry , Nanofibers/chemistry , Oils/chemistry , Gels/chemistry , Nanotubes, Carbon/chemistry , Elasticity , Porosity
4.
Nano Lett ; 22(21): 8711-8718, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36315062

ABSTRACT

The widespread use of X-rays has prompted a surge in demand for effective and wearable shielding materials. However, the Pb-containing materials currently used to shield X-rays are commonly bulky, hard, and biotoxic, severely limiting their applications in wearable scenarios. Inspired by the nacre, we report on ultralight, superelastic, and nontoxic X-ray shielding nanofibrous aerogels with microarch-engineered brick/mortar structure by combining polyurethane/Bi2O3 nanofibers (brick) and Gd2O3 nanosheets (mortar). The synergistic attenuation effect toward X-rays from the reflection of microarches and absorption of Bi/Gd elements significantly enhances the shielding efficiency of aerogels, and microarches/robust nanofibrous networks endow the materials with superelasticity. The resultant materials exhibit integrated properties of superior X-ray shielding efficiency (91-100%), ultralow density (52 mg cm-3), large stretchability of 800% reversible elongation, and high water vapor permeability (8.8 kg m-2 day-1). The fabrication of such novel aerogels paves the way for developing next-generation effective and wearable X-ray shielding materials.


Subject(s)
Nacre , Nanofibers , Nacre/chemistry , Nanofibers/chemistry , X-Rays , Biomimetics , Bismuth
5.
Angew Chem Int Ed Engl ; 62(5): e202214809, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36445797

ABSTRACT

Cellulose aerogels are plagued by intermolecular hydrogen bond-induced structural plasticity, otherwise rely on chemicals modification to extend service life. Here, we demonstrate a petrochemical-free strategy to fabricate superelastic cellulose aerogels by designing hierarchical structures at multi scales. Oriented channels consolidate the whole architecture. Porous walls of dehydrated cellulose derived from thermal etching not only exhibit decreased rigidity and stickiness, but also guide the microscopic deformation and mitigate localized large strain, preventing structural collapse. The aerogels show exceptional stability, including temperature-invariant elasticity, fatigue resistance (∼5 % plastic deformation after 105  cycles), high angular recovery speed (1475.4° s-1 ), outperforming most cellulose-based aerogels. This benign strategy retains the biosafety of biomass and provides an alternative filter material for health-related applications, such as face masks and air purification.

6.
Biomed Eng Online ; 21(1): 3, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35012556

ABSTRACT

BACKGROUND: Demographic change is leading to an increase in the number of osteoporotic patients, so a rethink is required in implantology in order to be able to guarantee adequate anchoring stability in the bone. The functional modification of conventional standard screw implants using superelastic, structured Ti6Al4V anchoring elements promises great potential for increasing anchoring stability. METHODS: For this purpose, conventional screw implants were mechanically machined and extended so that structured-superelastic-positionable-Ti6Al4V anchoring elements could be used. The novel implants were investigated with three tests. The setup of the anchoring elements was investigated in CT studies in an artificial bone. In a subsequent simplified handling test, the handling of the functional samples was evaluated under surgical conditions. The anchorage stability compared to standard screw implants was investigated in a final pullout test according to ASTM F543-the international for the standard specification and test methods for metallic medical bone screws. RESULTS: The functionalization of conventional screw implants with structured superelastic Ti6Al4V anchoring elements is technically realizable. It was demonstrated that the anchoring elements can be set up in the artificial bone without any problems. The anchorage mechanism is easy to handle under operating conditions. The first simplified handling test showed that at the current point of the investigations, the anchoring elements have no negative influence on the surgical procedure (especially under the focus of screw implantation). Compared to conventional standard screws, more mechanical work is required to remove the functional patterns completely from the bone. CONCLUSION: In summary, it was shown that conventional standard screw implants can be functionalized with Ti6Al4V-structured NiTi anchoring elements and the new type of screws are suitable for orthopedic and neurosurgical use. A first biomechanical test showed that the anchoring stability could be increased by the anchoring elements.


Subject(s)
Bone Screws , Bone and Bones , Alloys , Biomechanical Phenomena , Humans , Materials Testing
7.
Clin Oral Investig ; 26(5): 3939-3947, 2022 May.
Article in English | MEDLINE | ID: mdl-35039941

ABSTRACT

OBJECTIVES: This study aims to evaluate the effects of cyclic loading on the bending moments and the developed stress state of austenitic and R-phase endodontic files through finite element analysis. MATERIALS AND METHODS: The mechanical properties of two groups of NiTi wires, austenite and R-phase, were measured in samples at two different conditions: uncycled and cycled. The cycled condition was achieved by subjecting samples of the two groups to 80% of the corresponding fatigue life under rotating bending efforts. The measured mechanical properties were then used in the finite element analysis, where the boundary and loading conditions were set to replicate a standard bending test. RESULTS: The results showed that mechanical cycling leads to decreasing stress levels and bending moments in the simulated files, especially in the austenitic ones. In comparison with austenite, R-phase presented a more stable mechanical behavior during cycling. CONCLUSIONS: The results show that the moment and stress calculated for an instrument under bending can be considerably decreased after some cyclic work. CLINICAL RELEVANCE: The fatigue related to the clinical use of an endodontic file decreases the moment (as well as the forces) imposed by the instrument during the shaping of a curved root canal. This decrease is directly related to the type of atomic array present in the alloy.


Subject(s)
Dental Alloys , Titanium , Equipment Design , Fatigue , Finite Element Analysis , Humans , Materials Testing , Root Canal Preparation , Stress, Mechanical
8.
Sensors (Basel) ; 22(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36298397

ABSTRACT

Shape memory alloy (SMA) micro cables have a wide potential for attenuation of vibrations and structural health monitoring due to energy dissipation. This work evaluates the effect of SMA thermomechanical coupling during dynamic cycling and the fatigue life of NiTi SMA micro cables submitted to tensile loadings at frequencies from 0.25 Hz to 10 Hz. The thermomechanical coupling was characterized using a previously developed methodology that identifies the self-heating frequency. When dynamically loaded above this frequency, the micro cable response is dominated by the self-heating, stiffening significantly during cycling. Once above the self-heating frequency, structural and functional fatigues of the micro cable were evaluated as a function of the loading frequency for the failure of each individual wire. All tests were performed on a single wire with equal cross-section area for comparison purposes. We observed that the micro cable's functional properties regarding energy dissipation capacity decreased throughout the cycles with increasing frequency. Due to the additional friction between the filaments of the micro cable, this dissipation capacity is superior to that of the single wire. Although its fatigue life is shorter, its delayed failure compared to a single wire makes it a more reliable sensor for structural health monitoring.


Subject(s)
Shape Memory Alloys , Titanium , Humans , Materials Testing , Stress, Mechanical , Titanium/chemistry , Fatigue
9.
Sensors (Basel) ; 22(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35590893

ABSTRACT

This work presents an experimental study related to the mechanical performance of a special design spring fabricated with a superelastic shape memory alloy (SMA-SE). For the experimental testing, the spring was coupled in a rotor machine, aiming to attenuate the mechanical vibration when the system went through a natural frequency without any external power source. It was verified that the reduction in instabilities stemmed from the better distribution of vibration force in the proposed device, as well as the damping capacity of the spring material. These findings showed that the application of the M-Shape device of SMA-SE for three different cases could reduce vibration up to 23 dB when compared to the situations without, and with, 1.5 mm of preload. The M-Shape device was shown to be efficient in reducing the mechanical vibration in a rotor system. This was due to the damping capacity of the SMA-SE material, and because the application did not require any external source of energy to generate phase transformation.

10.
Sensors (Basel) ; 21(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34770446

ABSTRACT

The mechanical loading frequency affects the functional properties of shape memory alloys (SMA). Thus, it is crucial to study its effect for the successful use of these materials in dynamic applications. Based on the superelastic cyclic behavior, this work presents an experimental methodology for the determination of the critical frequency of the self-heating of a NiTi Belleville conical spring. For this, cyclic compressive tests were carried out using a universal testing machine with loading frequencies ranging from 0.5 Hz to 10 Hz. The temperature variation during the cyclic tests was monitored using a micro thermocouple glued to the NiTi Belleville spring. Numerical simulations of the spring under quasi-static loadings were performed to assist the analysis. From the experimental methodology applied to the Belleville spring, a self-heating frequency of 1.7 Hz was identified. The self-heating is caused by the latent heat accumulation generated by successive cycles of stress-induced phase transformation in the material. At 2.0 Hz, an increase of 1.2 °C in the average temperature of the SMA device was verified between 1st and 128th superelastic cycles. At 10 Hz, the average temperature increase reached 7.9 °C and caused a 10% increase in the stiffness and 25% decrease in the viscous damping factor. Finally, predicted results of the force as a function of the loading frequency were obtained.


Subject(s)
Heating , Nickel , Alloys , Elasticity , Materials Testing , Temperature , Titanium
11.
Angew Chem Int Ed Engl ; 59(31): 13004-13012, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32342626

ABSTRACT

Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS-P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending-induced ferroelastic transition of TIPS-P, flexible single-crystal electronic devices were obtained that can tolerate strains (ϵ) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (µ>0.7 µ0 ). Our work will pave the way for high-performance ultraflexible single-crystal organic electronics for sensors, memories, and robotic applications.

12.
Angew Chem Int Ed Engl ; 59(21): 8285-8292, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32043757

ABSTRACT

Resilient and compressible three-dimensional nanomaterials comprising polymers, carbon, and metals have been prepared in diverse forms. However, the creation of thermostable elastic ceramic aerogels remains an enormous challenge. We demonstrate an in situ synthesis strategy to develop biomimetic silica nanofibrous (SNF) aerogels with superelasticity by integrating flexible electrospun silica nanofibers and rubber-like Si-O-Si bonding networks. The stable bonding structure among nanofibers is in situ constructed along with a fibrous freeze-shaping process. The resultant SNF aerogels exhibit integrated properties of ultralow density (>0.25 mg cm-3 ), temperature-invariant superelasticity up to 1100 °C, and robust fatigue resistance over one million compressions. The ceramic nature also endows the aerogels with fire resistance and ultralow thermal conductivity. The successful synthesis of the SNF aerogels opens new pathways for the design of superelastic ceramic aerogels in a structurally adaptive and scalable form.

13.
Angew Chem Int Ed Engl ; 59(11): 4340-4343, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-31912973

ABSTRACT

Mechanical twinning changes atomic, molecular, and crystal orientations along with directions of the anisotropic properties of the crystalline materials while maintaining single crystallinity in each domain. However, such deformability has been less studied in brittle organic crystals despite their remarkable anisotropic functions. Herein we demonstrate a direction-dependent mechanical twinning that shows superelasticity in one direction and ferroelasticity in two other directions in a single crystal of 1,3-bis(4-methoxyphenyl)urea. The crystal can undergo stepwise twinning and ferroelastically forms various shapes with multiple domains oriented in different directions, thereby affording a crystal that shows superelasticity in multiple directions. This adaptability and shape recoverability in a ferroelastic and superelastic single crystal under ambient conditions are of great importance in future applications of organic crystals as mechanical materials, such as in soft robotics.

14.
Small ; 14(45): e1802479, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30295015

ABSTRACT

2D transition metal carbides and nitrides (MXenes) have gained extensive attention recently due to their versatile surface chemistry, layered structure, and intriguing properties. The assembly of MXene sheets into macroscopic architectures is an important approach to harness their extraordinary properties. However, it is difficult to construct a freestanding, mechanically flexible, and 3D framework of MXene sheets owing to their weak intersheet interactions. Herein, an interfacial enhancement strategy to construct multifunctional, superelastic, and lightweight 3D MXene architectures by bridging individual MXene sheets with polyimide macromolecules is developed. The resulting lightweight aerogel exhibits superelasticity with large reversible compressibility, excellent fatigue resistance (1000 cycles at 50% strain), 20% reversible stretchability, and high electrical conductivity of ≈4.0 S m-1 . The outstanding mechanical flexibility and electrical conductivity make the aerogel promising for damping, microwave absorption coating, and flexible strain sensor. More interestingly, an exceptional microwave absorption performance with a maximum reflection loss of -45.4 dB at 9.59 GHz and a wide effective absorption bandwidth of 5.1 GHz are achieved.

15.
Sensors (Basel) ; 19(1)2018 Dec 23.
Article in English | MEDLINE | ID: mdl-30583587

ABSTRACT

This paper proposes a new force-displacement model for superelastic shape memory alloy (SMA) springs under complex loading and unloading. For the SMA wires used to make superelastic springs, a new multilinear constitutive model based on a modification of the 1D Motahari model is developed. In the modified model, the stress-strain relation curves are changed to fit the experimental results. Furthermore, the established force-displacement relationship of the springs considers the impact of not only the torque but also the moment on the cross sections of the SMA wires. Afterwards, a series of tension tests are performed on four NiTi helical spring specimens under various loading conditions. From the numerical simulations and experimental results, it is shown that, compared with the force-displacement curves for the SMA springs simulated by the Motahari model, those simulated by the proposed model can better approximate the experimental results. The new model inherits the advantage of simple computation of the multilinear constitutive model and can predict the force-displacement relation for superelastic SMA springs very well. Furthermore, due to the self-sensing properties of the SMA springs, the new model is very significant for establishing a new strategy for measuring the displacements or forces of SMA springs under complex loading and unloading.

16.
Nano Lett ; 17(6): 3725-3730, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28489391

ABSTRACT

The intriguing phenomenon of metal superelasticity relies on stress-induced martensitic transformation (SIMT), which is well-known to be governed by developing cooperative strain accommodation at multiple length scales. It is therefore scientifically interesting to see what happens when this natural length scale hierarchy is disrupted. One method is producing pillars that confine the sample volume to micrometer length scale. Here we apply yet another intervention, helium nanobubbles injection, which produces porosity on the order of several nanometers. While the pillar confinement suppresses superelasticity, we found the dispersion of 5-10 nm helium nanobubbles do the opposite of promoting superelasticity in a Ni53.5Fe19.5Ga27 shape memory alloy. The role of helium nanobubbles in modulating the competition between ordinary dislocation slip plasticity and SIMT is discussed.

17.
Adv Sci (Weinh) ; 11(25): e2401234, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38654685

ABSTRACT

Elasticity, featured by a recoverable strain, refers to the ability that materials can return to their original shapes after deformation. Typically, the elastic strains of most metals are well-known 0.2%. In shape memory alloys and high entropy alloys, the elastic strains can be several percent, as called superelasticity, which are all triggered by external stresses. A superelasticity induced by magnetic field, termed as magneto-superelasticity, is extremely important for contactless work of materials and for developing brand-new large stroke actuators and high efficiency energy transducers. In magnetic shape memory alloys, the twin boundary motion driven by magnetic field can output a strain of several percent. However, this strain is unrecoverable when removing the magnetic field and hence it is not magneto-superelasticity. Here, a giant magneto-superelasticity of 5% in a Ni34Co8Cu8Mn36Ga14 single crystal is reported by introducing arrays of ordered dislocations to form preferentially oriented martensitic variants during the magnetically induced reverse martensitic transformation. This work provides an opportunity to achieve high performance in functional materials by defect engineering.

18.
Materials (Basel) ; 17(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38998431

ABSTRACT

One of the most important challenges in endodontics is to have files that have excellent flexibility, toughness, and high fatigue life. Superelastic NiTi alloys have been a breakthrough and the new R-phase NiTi alloys promise to further optimize the good properties of NiTi alloys. In this work, two austenitic phase endodontic files with superelastic properties (Protaper and F6) and two austenitic phase files with the R-phase (M-wire and Reciproc) have been studied. The transformation temperatures were studied by calorimetry. Molds reproducing root canals at different angles (30, 45, and 70°) were obtained with cooling and loads simulating those used in the clinic. Mechanical cycles of different files were realized to fracture. Transformation temperatures were determined at different number of cycles. The different files were heat treated at 300 and 500 °C as the aging process, and the transformation temperatures were also determined. Scanning and transmission electron microscopy was used to observe the fractography and precipitates of the files. The results show that files with the R-phase have higher fracture cycles than files with only the austenitic phase. The fracture cycles depend on the angle of insertion in the root canal, with the angle of 70° being the one with the lowest fracture cycles in all cases. The R-Phase transformation increases the energy absorbed by the NiTi to produce the austenitic to R-phase and to produce the martensitic transformation causing the increase in the fracture cycles. Mechanical cycling leads to significant increases in the transformation temperatures Ms and Af as well as Rs and Rf. No changes in the transformation temperatures were observed for aging at 300 °C, but the appearance of Ni4Ti3 precipitates was observed in the aging treatments to the Nickel-rich files that correspond to those with the R transition. These results should be considered by endodontists to optimize the type of files for clinical therapy.

19.
ACS Appl Mater Interfaces ; 16(32): 42762-42771, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39096245

ABSTRACT

Elastic aerogels have become a research hot spot in both academia and industry recently. The reported elastic aerogels are all made of hard materials by controlling their shapes. Herein we report an elastic aerogel made of a polymer elastomer with entropy elasticity. In the aerogel, cross-linked carboxyl nitrile rubber nanoparticles with hydrophilicity are dispersed in hydrophobic derivative of styrene-maleic anhydride alternating copolymer, forming a very special micro-nano surface structure with hydrophilic protrusions and hydrophobic depressions on the aerogel wall; therefore, the aerogel is not only superelastic but also superamphiphilic. A leak-free phase-change composite was prepared using the aerogel and paraffin, which can maintain at phase change temperature of paraffin for a longer time than the traditional one. The aerogel is also extremely suitable for desalination evaporators in solar-driven interfacial evaporation technology due to its superamphiphilicity, superelasticity, and ability to absorb sunlight. Exceptional evaporation rate of 2.78 kg·m-2·h-1 and evaporation efficiency of 170% could be reached even without using expensive light-absorbing materials. The evaporation rate exceeds that of most evaporators with expensive light-absorbing materials, and the evaporation efficiency exceeds the theoretical limit of conventional 2D solar evaporators. Both the phase-change composite and the evaporator can be easily recovered because the novel superelastic aerogel reported in this work is also recyclable.

20.
J Mech Behav Biomed Mater ; 157: 106633, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943903

ABSTRACT

Developing new low modulus structures is important for reducing the risk of aseptic loosening during loading of implant materials. However, an alloy that may also confer some advantage at preventing septic loosening could dramatically improve the outcomes for patients. Nevertheless, the predictive power of current models remains limited to common alloying additions. As such, this study considers the mechanical properties of a range of Ti-Nb-Au superelastic alloys to elucidate the composition range for which low modulus structures can be achieved. These modulus values are compared to other critical design parameters such as strain recovery and strength. It was found that Au additions are effective at suppressing the formation of the ω phase and allow alloys with lower moduli to be achieved. It was also shown that low ß phase stability is critical for achieving the lowest modulus, and that this susceptibility to transform to a martensite may enable higher strengths to be achieved. However, this low ß phase stability also limits the strain recovery that may be achieved meaning these two properties are not necessarily independently tuneable. These data provide important context for the design of new systems containing unusual alloying additions such as Au.


Subject(s)
Alloys , Gold , Materials Testing , Niobium , Titanium , Alloys/chemistry , Titanium/chemistry , Niobium/chemistry , Gold/chemistry , Biocompatible Materials/chemistry , Mechanical Phenomena , Stress, Mechanical , Elastic Modulus
SELECTION OF CITATIONS
SEARCH DETAIL