Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Publication year range
1.
J Neurochem ; 165(6): 827-841, 2023 06.
Article in English | MEDLINE | ID: mdl-36978267

ABSTRACT

There are a number of G-protein-coupled receptors (GPCRs) that are considered "orphan receptors" because the information on their known ligands is incomplete. Yet, these receptors are important targets to characterize, as the discovery of their ligands may lead to potential new therapies. GPR75 was recently deorphanized because at least two ligands appear to bind to it, the chemokine CCL5 and the eicosanoid 20-Hydroxyeicosatetraenoic acid. Recent reports suggest that GPR75 may play a role in regulating insulin secretion and obesity. However, little is known about the function of this receptor in the brain. To study the function of GPR75, we have generated a knockout (KO) mouse model of this receptor and we evaluated the role that this receptor plays in the adult hippocampus by an array of histological, proteomic, and behavioral endpoints. Using RNAscope® technology, we identified GPR75 puncta in several Rbfox3-/NeuN-positive cells in the hippocampus, suggesting that this receptor has a neuronal expression. Proteomic analysis of the hippocampus in 3-month-old GPR75 KO animals revealed that several markers of synapses, including synapsin I and II are downregulated compared with wild type (WT). To examine the functional consequence of this down-regulation, WT and GPR75 KO mice were tested on a hippocampal-dependent behavioral task. Both contextual memory and anxiety-like behaviors were significantly altered in GPR75 KO, suggesting that GPR75 plays a role in hippocampal activity.


Subject(s)
Fear , Hippocampus , Receptors, G-Protein-Coupled , Animals , Mice , Hippocampus/metabolism , Ligands , Mice, Knockout , Proteomics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
2.
J Biol Chem ; 297(5): 101300, 2021 11.
Article in English | MEDLINE | ID: mdl-34648765

ABSTRACT

Highly organized circuits of enteric neurons are required for the regulation of gastrointestinal functions, such as peristaltism or migrating motor complex. However, the factors and molecular mechanisms that regulate the connectivity of enteric neurons and their assembly into functional neuronal networks are largely unknown. A better understanding of the mechanisms by which neurotrophic factors regulate this enteric neuron circuitry is paramount to understanding enteric nervous system (ENS) physiology. EphB2, a receptor tyrosine kinase, is essential for neuronal connectivity and plasticity in the brain, but so far its presence and function in the ENS remain largely unexplored. Here we report that EphB2 is expressed preferentially by enteric neurons relative to glial cells throughout the gut in rats. We show that in primary enteric neurons, activation of EphB2 by its natural ligand ephrinB2 engages ERK signaling pathways. Long-term activation with ephrinB2 decreases EphB2 expression and reduces molecular and functional connectivity in enteric neurons without affecting neuronal density, ganglionic fiber bundles, or overall neuronal morphology. This is highlighted by a loss of neuronal plasticity markers such as synapsin I, PSD95, and synaptophysin, and a decrease of spontaneous miniature synaptic currents. Together, these data identify a critical role for EphB2 in the ENS and reveal a unique EphB2-mediated molecular program of synapse regulation in enteric neurons.


Subject(s)
Enteric Nervous System/enzymology , MAP Kinase Signaling System , Neuronal Plasticity , Neurons/enzymology , Receptor, EphB2/metabolism , Synapses/metabolism , Animals , Female , Rats , Rats, Sprague-Dawley
3.
Molecules ; 27(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364071

ABSTRACT

Alzheimer's disease (AD) has been associated with the hallmark features of cholinergic dysfunction, amyloid beta (Aß) aggregation and impaired synaptic transmission, which makes the associated proteins, such as ß-site amyloid precursor protein cleaving enzyme 1 (BACE I), acetylcholine esterase (AChE) and synapsin I, II and III, major targets for therapeutic intervention. The present study investigated the therapeutic potential of three major phytochemicals of Rosmarinus officinalis, ursolic acid (UA), rosmarinic acid (RA) and carnosic acid (CA), based on their binding affinity with AD-associated proteins. Detailed docking studies were conducted using AutoDock vina followed by molecular dynamic (MD) simulations using Amber 20. The docking analysis of the selected molecules showed the binding energies of their interaction with the target proteins, while MD simulations comprising root mean square deviation (RMSD), root mean square fluctuation (RMSF) and molecular mechanics/generalized born surface area (MM/GBSA) binding free energy calculations were carried out to check the stability of bound complexes. The drug likeness and the pharmacokinetic properties of the selected molecules were also checked through the Lipinski filter and ADMETSAR analysis. All these bioactive compounds demonstrated strong binding affinity with AChE, BACE1 and synapsin I, II and III. The results showed UA and RA to be potential inhibitors of AChE and BACE1, exhibiting binding energies comparable to those of donepezil, used as a positive control. The drug likeness and pharmacokinetic properties of these compounds also demonstrated drug-like characteristics, indicating the need for further in vitro and in vivo investigations to ascertain their therapeutic potential for AD.


Subject(s)
Alzheimer Disease , Rosmarinus , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Rosmarinus/metabolism , Cholinesterase Inhibitors/chemistry , Amyloid beta-Peptides/therapeutic use , Synapsins/therapeutic use , Acetylcholinesterase/metabolism , Molecular Dynamics Simulation
4.
Molecules ; 27(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35164225

ABSTRACT

Excessive release of glutamate induces excitotoxicity and causes neuronal damage in several neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for preventing and treating neurological disorders. Dehydrocorydaline (DHC), an active alkaloid compound isolated from Corydalis yanhusuo, possesses neuroprotective capacity. The present study investigated the effect of DHC on glutamate release using a rat brain cortical synaptosome model. Our results indicate that DHC inhibited 4-aminopyridine (4-AP)-evoked glutamate release and elevated intrasynaptosomal calcium levels. The inhibitory effect of DHC on 4-AP-evoked glutamate release was prevented in the presence of the vesicular transporter inhibitor bafilomycin A1 and the N- and P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC but not the intracellular inhibitor of Ca2+ release dantrolene or the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157. Moreover, the inhibitory effect of DHC on evoked glutamate release was prevented by the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) inhibitor PD98059. Western blotting data in synaptosomes also showed that DHC significantly decreased the level of ERK1/2 phosphorylation and synaptic vesicle-associated protein synapsin I, the main presynaptic target of ERK. Together, these results suggest that DHC inhibits presynaptic glutamate release from cerebrocortical synaptosomes by suppressing presynaptic voltage-dependent Ca2+ entry and the MAPK/ERK/synapsin I signaling pathway.


Subject(s)
Alkaloids/pharmacology , Calcium/metabolism , Cerebral Cortex/drug effects , Corydalis/chemistry , Glutamic Acid/metabolism , Nerve Tissue/drug effects , Neuroprotective Agents/pharmacology , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels/chemistry , Cerebral Cortex/metabolism , Male , Nerve Tissue/metabolism , Rats , Rats, Sprague-Dawley
5.
Cereb Cortex ; 30(3): 1393-1406, 2020 03 14.
Article in English | MEDLINE | ID: mdl-31504258

ABSTRACT

Neurotransmitters can be released either synchronously or asynchronously with respect to action potential timing. Synapsins (Syns) are a family of synaptic vesicle (SV) phosphoproteins that assist gamma-aminobutyric acid (GABA) release and allow a physiological excitation/inhibition balance. Consistently, deletion of either or both Syn1 and Syn2 genes is epileptogenic. In this work, we have characterized the effect of SynI knockout (KO) in the regulation of GABA release dynamics. Using patch-clamp recordings in hippocampal slices, we demonstrate that the lack of SynI impairs synchronous GABA release via a reduction of the readily releasable SVs and, in parallel, increases asynchronous GABA release. The effects of SynI deletion on synchronous GABA release were occluded by ω-AgatoxinIVA, indicating the involvement of P/Q-type Ca2+channel-expressing neurons. Using in situ hybridization, we show that SynI is more expressed in parvalbumin (PV) interneurons, characterized by synchronous release, than in cholecystokinin or SOM interneurons, characterized by a more asynchronous release. Optogenetic activation of PV and SOM interneurons revealed a specific reduction of synchronous release in PV/SynIKO interneurons associated with an increased asynchronous release in SOM/SynIKO interneurons. The results demonstrate that SynI is differentially expressed in interneuron subpopulations, where it boosts synchronous and limits asynchronous GABA release.


Subject(s)
Interneurons/physiology , Synapsins/physiology , Synaptic Transmission , gamma-Aminobutyric Acid/physiology , Animals , Calcium Channels, P-Type/physiology , Calcium Channels, Q-Type/physiology , Hippocampus/physiology , Inhibitory Postsynaptic Potentials , Male , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity , Synapsins/genetics
6.
J Neurosci ; 39(35): 7006-7018, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31270156

ABSTRACT

Although the reduction of viral loads in people with HIV undergoing combination antiretroviral therapy has mitigated AIDS-related symptoms, the prevalence of neurological impairments has remained unchanged. HIV-associated CNS dysfunction includes impairments in memory, attention, memory processing, and retrieval. Here, we show a significant site-specific increase in the phosphorylation of Syn I serine 9, site 1, in the frontal cortex lysates and synaptosome preparations of male rhesus macaques infected with simian immunodeficiency virus (SIV) but not in uninfected or SIV-infected antiretroviral therapy animals. Furthermore, we found that a lower protein phosphatase 2A (PP2A) activity, a phosphatase responsible for Syn I (S9) dephosphorylation, is primarily associated with the higher S9 phosphorylation in the frontal cortex of SIV-infected macaques. Comparison of brain sections confirmed higher Syn I (S9) in the frontal cortex and greater coexpression of Syn I and PP2A A subunit, which was observed as perinuclear aggregates in the somata of the frontal cortex of SIV-infected macaques. Synaptosomes from SIV-infected animals were physiologically tested using a synaptic vesicle endocytosis assay and FM4-64 dye showing a significantly higher baseline depolarization levels in synaptosomes of SIV+-infected than uninfected control or antiretroviral therapy animals. A PP2A-activating FDA-approved drug, FTY720, decreased the higher synaptosome depolarization in SIV-infected animals. Our results suggest that an impaired distribution and lower activity of serine/threonine phosphatases in the context of HIV infection may cause an indirect effect on the phosphorylation levels of essential proteins involving in synaptic transmission, supporting the occurrence of specific impairments in the synaptic activity during SIV infection.SIGNIFICANCE STATEMENT Even with antiretroviral therapy, neurocognitive deficits, including impairments in attention, memory processing, and retrieval, are still major concerns in people living with HIV. Here, we used the rhesus macaque simian immunodeficiency virus model with and without antiretroviral therapy to study the dynamics of phosphorylation of key amino acid residues of synapsin I, which critically impacts synaptic vesicle function. We found a significant increase in synapsin I phosphorylation at serine 9, which was driven by dysfunction of serine/threonine protein phosphatase 2A in the nerve terminals. Our results suggest that an impaired distribution and lower activity of serine/threonine phosphatases in the context of HIV infection may cause an indirect effect on the phosphorylation levels of essential proteins involved in synaptic transmission.


Subject(s)
Frontal Lobe/metabolism , Protein Phosphatase 2/metabolism , Simian Acquired Immunodeficiency Syndrome/metabolism , Synapses/metabolism , Synapsins/metabolism , Animals , Frontal Lobe/virology , Macaca mulatta , Male , Neurons/metabolism , Neurons/virology , Phosphorylation , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus , Synapses/virology , Synaptic Transmission/physiology , Synaptosomes/metabolism , Synaptosomes/virology , Viral Load
7.
J Neurochem ; 150(3): 264-281, 2019 08.
Article in English | MEDLINE | ID: mdl-31148170

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain scaffolding protein with kinase and GTPase activities involved in synaptic vesicle (SV) dynamics. While its role in Parkinson's disease has been largely investigated, little is known about LRRK2 physiological role and until now few proteins have been described as substrates. We have previously demonstrated that LRRK2 through its WD40 domain interacts with synapsin I, an important SV-associated phosphoprotein involved in neuronal development and in the regulation of neurotransmitter release. To test whether synapsin I is substrate for LRRK2 and characterize the properties of its phosphorylation, we used in vitro kinase and binding assays as well as cellular model and site-direct mutagenesis. Using synaptosomes in superfusion, patch-clamp recordings in autaptic WT and synapsin I KO cortical neurons and SypHy assay on primary cortical culture from wild-type and BAC human LRRK2 G2019S mice we characterized the role of LRRK2 kinase activity on glutamate release and SV trafficking. Here we reported that synapsin I is phosphorylated by LRRK2 and demonstrated that the interaction between LRRK2 WD40 domain and synapsin I is crucial for this phosphorylation. Moreover, we showed that LRRK2 phosphorylation of synapsin I at threonine 337 and 339 significantly reduces synapsin I-SV/actin interactions. Using complementary experimental approaches, we demonstrated that LRRK2 controls glutamate release and SV dynamics in a kinase activity and synapsin I-dependent manner. Our findings show that synapsin I is a LRRK2 substrate and describe a novel mechanisms of regulation of glutamate release by LRRK2 kinase activity.


Subject(s)
Glutamic Acid/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Synapsins/metabolism , Synaptic Transmission/physiology , Animals , Brain/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Phosphorylation , Synaptic Vesicles/metabolism
8.
Cell Mol Neurobiol ; 38(3): 627-633, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28608000

ABSTRACT

The anorexigenic molecule nesfatin-1 has recently been taken as a potential mood regulator, but the potential mechanisms remain unknown. Results of our previous study have demonstrated that nesfatin-1 could induce anxiety- and depression-like behaviors in rats, accompanied by the hyperactivity of the hypothalamic-pituitary-adrenal axis and the imbalanced mRNA expression of synaptic vesicle proteins. To explore the potential neurobiological mechanism underlying the effect of nesfatin-1 on the synaptic plasticity, the human neuroblastoma SH-SY5Y cells were cultured and treated with different concentrations of nesfatin-1 in the present study. The mRNA and protein expressions of corticotropin-releasing hormone (CRH) were measured via real-time fluorescent quantitative PCR and western blot, respectively. The protein expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated-ERK1/2 (p-ERK1/2), and synapsin I were detected via western blot. The results confirmed that nesfatin-1 (10-9~10-7 mol/L) could up-regulate the expression of CRH. Moreover, nesfatin-1 (10-9~10-7 mol/L) could also increase the protein expressions of p-ERK1/2 and synapsin I, and these effects could be blocked by CP376395, a selective antagonist of CRH type 1 receptor (CRHR1). Furthermore, the increased expression of synapsin I induced by nesfatin-1 could also be reversed by PD98059, a specific inhibitor of the p-ERK. These results indicated that CRHR1 might mediate the effect of nesfatin-1 on the expressions of synapsin I via ERK1/2 signaling pathway.


Subject(s)
Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , MAP Kinase Signaling System , Nerve Tissue Proteins/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Synapsins/drug effects , Aminopyridines/pharmacology , Cell Line , Corticotropin-Releasing Hormone/drug effects , Corticotropin-Releasing Hormone/metabolism , Flavonoids/pharmacology , Humans , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinases/drug effects , Mitogen-Activated Protein Kinases/metabolism , Neurons/drug effects , Neurons/metabolism , Nucleobindins , Phosphorylation , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Receptors, Corticotropin-Releasing Hormone/drug effects , Synapsins/metabolism , Up-Regulation/drug effects
9.
J Anesth ; 32(6): 856-865, 2018 12.
Article in English | MEDLINE | ID: mdl-30293142

ABSTRACT

PURPOSE: Angiotensin II (Ang II) has been shown to be involved in neurological disorders. Propofol demonstrated neuroprotective effects in neurons. METHODS: Mouse hippocampal HT22 cells were pre-treated with propofol, followed by Ang II treatment. The expression of synaptic proteins (synapsin I and PSD95) was examined. The effects of propofol on Ang II-induced NADPH oxidase expression and superoxide anion generation were examined. The effects of propofol on intracellular calcium concentration, the activation of calcium/calmodulin-dependent protein kinase II (CaMKII), and protein kinase C (PKC) were measured. RESULTS: Ang II reduced the expression of synapsin I and PSD95, which was attenuated by propofol. Ang II-induced effects were blocked by Ang II type 1 receptor (AT1 receptor) blocker. Ang II induced the expression of NADPH oxidase and caused superoxide anion accumulation, which were attenuated by propofol. In addition, propofol induced intracellular calcium concentration, and activated CaMKII as well as PKCß. Importantly, the Ang II-mediated effects were diminished by α-tocopherol, and the propofol-mediated effects were alleviated by calcium chelator, CaMKII inhibitor, and PKCß inhibitor. CONCLUSION: Ang II, via AT1 receptor, induced oxidative stress and reduced the expression of synapsin I and PSD95 in HT22 cells. Propofol may increase synapsin I and PSD95 expression by inhibiting oxidative stress and stimulating calcium signaling pathway.


Subject(s)
Angiotensin II/metabolism , Calcium Signaling/drug effects , Hippocampus/drug effects , Propofol/pharmacology , Animals , Calcium/metabolism , Cell Line , Hippocampus/metabolism , Mice , NADPH Oxidases/metabolism , Neurons/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Receptor, Angiotensin, Type 1/metabolism , Superoxides/metabolism
10.
J Neurosci ; 36(16): 4624-34, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27098703

ABSTRACT

Growing evidence indicates that sphingosine-1-P (S1P) upregulates glutamate secretion in hippocampal neurons. However, the molecular mechanisms through which S1P enhances excitatory activity remain largely undefined. The aim of this study was to identify presynaptic targets of S1P action controlling exocytosis. Confocal analysis of rat hippocampal neurons showed that S1P applied at nanomolar concentration alters the distribution of Synapsin I (SynI), a presynaptic phosphoprotein that controls the availability of synaptic vesicles for exocytosis. S1P induced SynI relocation to extrasynaptic regions of mature neurons, as well as SynI dispersion from synaptic vesicle clusters present at axonal growth cones of developing neurons. S1P-induced SynI relocation occurred in a Ca(2+)-independent but ERK-dependent manner, likely through the activation of S1P3 receptors, as it was prevented by the S1P3 receptor selective antagonist CAY1044 and in neurons in which S1P3 receptor was silenced. Our recent evidence indicates that microvesicles (MVs) released by microglia enhance the metabolism of endogenous sphingolipids in neurons and stimulate excitatory transmission. We therefore investigated whether MVs affect SynI distribution and whether endogenous S1P could be involved in the process. Analysis of SynI immunoreactivity showed that exposure to microglial MVs induces SynI mobilization at presynaptic sites and growth cones, whereas the use of inhibitors of sphingolipid cascade identified S1P as the sphingolipid mediating SynI redistribution. Our data represent the first demonstration that S1P induces SynI mobilization from synapses, thereby indicating the phosphoprotein as a novel target through which S1P controls exocytosis. SIGNIFICANCE STATEMENT: Growing evidence indicates that the bioactive lipid sphingosine and its metabolite sphingosine-1-P (S1P) stimulate excitatory transmission. While it has been recently clarified that sphingosine influences directly the exocytotic machinery by activating the synaptic vesicle protein VAMP2 to form SNARE fusion complexes, the molecular mechanism by which S1P promotes neurotransmission remained largely undefined. In this study, we identify Synapsin I, a presynaptic phosphoprotein involved in the control of availability of synaptic vesicles for exocytosis, as the key target of S1P action. In addition, we provide evidence that S1P can be produced at mature axon terminals as well as at immature growth cones in response to microglia-derived signals, which may be important to stabilize nascent synapses and to restore or potentiate transmission.


Subject(s)
Lysophospholipids/physiology , Presynaptic Terminals/metabolism , Sphingosine/analogs & derivatives , Synapses/metabolism , Synapsins/biosynthesis , Animals , Cells, Cultured , Female , Hippocampus/chemistry , Hippocampus/cytology , Hippocampus/metabolism , Lysophospholipids/analysis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Presynaptic Terminals/chemistry , Rats , Rats, Sprague-Dawley , Sphingosine/analysis , Sphingosine/physiology , Synapses/chemistry , Synapsins/analysis
11.
J Neuroinflammation ; 14(1): 90, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28438174

ABSTRACT

BACKGROUND: Despite previous evidence for a potent inflammatory response after a traumatic brain injury (TBI), it is unknown whether exercise preconditioning (EP) improves outcomes after a TBI by modulating inflammatory responses. METHODS: We performed quantitative real-time PCR (qPCR) to quantify the genes encoding 84 cytokines and chemokines in the peripheral blood and used ELISA to determine both the cerebral and blood levels of interleukin-6 (IL-6). We also performed the chromatin immunoprecipitation (ChIP) assay to evaluate the extent of nuclear factor kappa-B (NF-κB) binding to the DNA elements in the IL-6 promoter regions. Also, we adopted the Western blotting assay to measure the cerebral levels of heat shock protein (HSP) 70, synapsin I, and ß-actin. Finally, we performed both histoimmunological and behavioral assessment to measure brain injury and neurological deficits, respectively. RESULTS: We first demonstrated that TBI upregulated nine pro-inflammatory and/or neurodegenerative messenger RNAs (mRNAs) in the peripheral blood such as CXCL10, IL-18, IL-16, Cd-70, Mif, Ppbp, Ltd, Tnfrsf 11b, and Faslg. In addition to causing neurological injuries, TBI also upregulated the following 14 anti-inflammatory and/or neuroregenerative mRNAs in the peripheral blood such as Ccl19, Ccl3, Cxcl19, IL-10, IL-22, IL-6, Bmp6, Ccl22, IL-7, Bmp7, Ccl2, Ccl17, IL-1rn, and Gpi. Second, we observed that EP inhibited both neurological injuries and six pro-inflammatory and/or neurodegenerative genes (Cxcl10, IL-18, IL-16, Cd70, Mif, and Faslg) but potentiated four anti-inflammatory and/or neuroregenerative genes (Bmp6, IL-10, IL-22, and IL-6). Prior depletion of cerebral HSP70 with gene silence significantly reversed the beneficial effects of EP in reducing neurological injuries and altered gene profiles after a TBI. A positive Pearson correlation exists between IL-6 and HSP70 in the peripheral blood or in the cerebral levels. In addition, gene silence of cerebral HSP70 significantly reduced the overexpression of NF-κB, IL-6, and synapsin I in the ipsilateral brain regions after an EP in rats. CONCLUSIONS: TBI causes neurological deficits associated with stimulating several pro-inflammatory gene profiles but inhibiting several anti-inflammatory gene profiles of cytokines and chemokines. Exercise protects against neurological injuries via stimulating an anti-inflammatory HSP70/NF-κB/IL-6/synapsin I axis in the injured brains.


Subject(s)
Brain Injuries, Traumatic/metabolism , HSP70 Heat-Shock Proteins/metabolism , Interleukin-6/metabolism , NF-kappa B/metabolism , Physical Conditioning, Animal/physiology , Synapsins/metabolism , Animals , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/prevention & control , Male , Physical Conditioning, Animal/methods , Random Allocation , Rats , Rats, Wistar
12.
Mol Cell Neurosci ; 71: 102-13, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26704905

ABSTRACT

Growing evidence indicates that GQ1b, one of the gangliosides members, contributes to synaptic transmission and synapse formation. Previous studies have shown that GQ1b could enhance depolarization induced neurotransmitter release, while the role of GQ1b in asynchronous release is still largely unknown. Here in our result, we found low concentration of GQ1b, but not GT1b or GD1b (which were generated from GQ1b by plasma membrane-associated sialidases), evoked asynchronous dopamine (DA) release from both clonal rat pheochromocytoma PC12 cells and rat striatal slices significantly. The release peaked at 2 min after GQ1b exposure, and lasted for more than 6 min. This effect was caused by the enhancement of intracellular Ca(2+) and the activation of Pyk2. Inhibition of Pyk2 by PF-431396 (a dual inhibitor of Pyk2 and FAK) or Pyk2 siRNA abolished DA release induced by GQ1b. Moreover, Pyk2 Y402, but not other tyrosine site, was phosphorylated at the peaking time. The mutant of Pyk2 Y402 (Pyk2-Y402F) was built to confirm the essential role of Y402 activation. Further studies revealed that activated Pyk2 stimulated ERK1/2 and p-38, while only the ERK1/2 activation was indispensable for GQ1b induced DA release, which interacted with Synapsin I directly and led to its phosphorylation, then depolymerization of F-actin, thus contributed to DA release. In conclusion, low concentration of GQ1b is able to enhance asynchronous DA release through Pyk2/ERK/Synapsin I/actin pathway. Our findings provide new insights into the role of GQ1b in neuronal communication, and implicate the potential application of GQ1b in neurological disorders.


Subject(s)
Dopamine/metabolism , Exocytosis , Focal Adhesion Kinase 2/metabolism , Gangliosides/metabolism , Actins/metabolism , Animals , Calcium/metabolism , Dopaminergic Neurons/metabolism , Focal Adhesion Kinase 2/genetics , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mutation , PC12 Cells , Protein Binding , Rats , Rats, Sprague-Dawley , Second Messenger Systems , Synapsins/metabolism
13.
Biomed Environ Sci ; 30(6): 432-443, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28705267

ABSTRACT

OBJECTIVE: To investigate acrylamide (ACR)-induced subacute neurotoxic effects on the central nervous system (CNS) at the synapse level in rats. METHODS: Thirty-six Sprague Dawley (SD) rats were randomized into three groups, (1) a 30 mg/kg ACR-treated group, (2) a 50 mg/kg ACR-treated group, and (3) a normal saline (NS)-treated control group. Body weight and neurological changes were recorded each day. At the end of the test, cerebral cortex and cerebellum tissues were harvested and viewed using light and electron microscopy. Additionally, the expression of Synapsin I and P-Synapsin I in the cerebral cortex and cerebellum were investigated. RESULTS: The 50 mg/kg ACR-treated rats showed a significant reduction in body weight compared with untreated individuals (P < 0.05). Rats exposed to ACR showed a significant increase in gait scores compared with the NS control group (P < 0.05). Histological examination indicated neuronal structural damage in the 50 mg/kg ACR treatment group. The active zone distance (AZD) and the nearest neighbor distance (NND) of synaptic vesicles in the cerebral cortex and cerebellum were increased in both the 30 mg/kg and 50 mg/kg ACR treatment groups. The ratio of the distribution of synaptic vesicles in the readily releasable pool (RRP) was decreased. Furthermore, the expression levels of Synapsin I and P-Synapsin I in the cerebral cortex and cerebellum were decreased in both the 30 mg/kg and 50 mg/kg ACR treatment groups. CONCLUSION: Subacute ACR exposure contributes to neuropathy in the rat CNS. Functional damage of synaptic proteins and vesicles may be a mechanism of ACR neurotoxicity.


Subject(s)
Acrylamide/toxicity , Cerebellum/drug effects , Cerebral Cortex/drug effects , Neurotoxicity Syndromes/pathology , Synapses/drug effects , Animals , Cerebellum/cytology , Cerebral Cortex/cytology , Drug Administration Schedule , Gait , Gene Expression Regulation/drug effects , Male , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Synapsins/genetics , Synapsins/metabolism , Synaptic Vesicles/drug effects , Synaptic Vesicles/physiology , Weight Loss/drug effects
14.
Neurobiol Dis ; 95: 122-33, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27425885

ABSTRACT

Abnormal Glu release occurs in the spinal cord of SOD1(G93A) mice, a transgenic animal model for human ALS. Here we studied the mechanisms underlying Glu release in spinal cord nerve terminals of SOD1(G93A) mice at a pre-symptomatic disease stage (30days) and found that the basal release of Glu was more elevated in SOD1(G93A) with respect to SOD1 mice, and that the surplus of release relies on synaptic vesicle exocytosis. Exposure to high KCl or ionomycin provoked Ca(2+)-dependent Glu release that was likewise augmented in SOD1(G93A) mice. Equally, the Ca(2+)-independent hypertonic sucrose-induced Glu release was abnormally elevated in SOD1(G93A) mice. Also in this case, the surplus of Glu release was exocytotic in nature. We could determine elevated cytosolic Ca(2+) levels, increased phosphorylation of Synapsin-I, which was causally related to the abnormal Glu release measured in spinal cord synaptosomes of pre-symptomatic SOD1(G93A) mice, and increased phosphorylation of glycogen synthase kinase-3 at the inhibitory sites, an event that favours SNARE protein assembly. Western blot experiments revealed an increased number of SNARE protein complexes at the nerve terminal membrane, with no changes of the three SNARE proteins and increased expression of synaptotagmin-1 and ß-Actin, but not of an array of other release-related presynaptic proteins. These results indicate that the abnormal exocytotic Glu release in spinal cord of pre-symptomatic SOD1(G93A) mice is mainly based on the increased size of the readily releasable pool of vesicles and release facilitation, supported by plastic changes of specific presynaptic mechanisms.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Glutamic Acid/metabolism , Receptors, Presynaptic/metabolism , Synaptosomes/metabolism , Actins/metabolism , Animals , Disease Models, Animal , Exocytosis/physiology , Mice, Transgenic , Spinal Cord/metabolism , Superoxide Dismutase/metabolism
15.
Dev Growth Differ ; 58(8): 664-676, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27671506

ABSTRACT

Human pluripotent embryonal carcinoma (NT2) cells are increasingly considered as a suitable model for in vitro developmental toxicity and neurotoxicity (DT/DNT) studies as they undergo neuronal differentiation upon stimulation with retinoic acid (RA) and allow toxicity testing at different stages of maturation. However, differentiation of NT2 cells is not straightforward. There are different protocols available in the literature reporting varying results with regard to differentiation efficiency, expression of neuronal markers and morphological characteristics of differentiated cells. Yet, the efficiency of available protocols has not been systematically compared. To address this question, we quantified the number and size of cell cluster formed during differentiation using published and modified protocols and analyzed the abundance of neuronal and non-neuronal expression markers using immunocytochemistry. In the course of the experiments we observed that differentiation results strongly depend on the cell density at differentiation-initiation as well as on the type of used cell culture plastic ware. Based on those observations and the results from our comparative analysis, we created our own optimized and robust protocol that reproducibly reveals differentiated cells with high yield. We conclude that our method may be superior to differentiation of NT2 cells for systematic in vitro-based primary screening for developmental toxicants and neurotoxicants at different stages of maturation over previous protocols used. Our approach will also contribute to reduce animal testing in the context of the 3Rs.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation , Neurons/metabolism , Pluripotent Stem Cells/metabolism , Cell Line, Tumor , Humans , Neurons/cytology , Pluripotent Stem Cells/cytology
16.
Neurochem Res ; 41(11): 2993-3003, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27473385

ABSTRACT

Cisplatin is the most effective and neurotoxic platinum chemotherapeutic agent. It induces a peripheral neuropathy characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. Most symptoms occur nearby distal axonal branches and axonal degeneration might induce peripheral neuropathy regardless neuronal apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect neurite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. We investigated the early effects of cisplatin on axonal plasticity by using non-cytotoxic concentrations of cisplatin and PC12 cells as a model of neurite outgrowth and differentiation. PC12 cells express NGF-receptors (trkA) and respond to NGF by forming neurites, branches and synaptic vesicles. For comparison, we used a neuronal model (SH-SY5Y cells) that does not express trkA nor responds to NGF. Cisplatin did not change NGF expression in PC12 cells and decreased neurite outgrowth in both models, suggesting a NGF/trkA independent mechanism. It also reduced axonal growth (GAP-43) and synaptic (synapsin I and synaptophysin) proteins in PC12 cells, without inducing mitochondrial damage or apoptosis. Therefore, cisplatin might affect axonal plasticity before DNA damage, NGF/trkA down-regulation, mitochondrial damage or neuronal apoptosis. This is the first study to show that neuroplasticity-related proteins might be early targets of the neurotoxic action of cisplatin and their role on cisplatin-induced peripheral neuropathy should be investigated in vivo.


Subject(s)
Cisplatin/pharmacology , Nerve Growth Factor/metabolism , Neuronal Outgrowth/drug effects , Neuronal Plasticity/drug effects , Animals , Axons/drug effects , Axons/metabolism , Cell Differentiation/drug effects , Down-Regulation/drug effects , GAP-43 Protein/metabolism , Neurites/drug effects , Neurites/physiology , PC12 Cells , Rats , Receptors, Nerve Growth Factor/metabolism
17.
Molecules ; 21(3): 260, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26927040

ABSTRACT

Eucommia ulmoides Oliver (E. ulmoides) is a traditional Chinese medicine with many beneficial effects, used as a tonic medicine in China and other countries. Chlorogenic acid (CGA) is an important compound in E. ulmoides with neuroprotective, cognition improvement and other pharmacological effects. However, it is unknown whether chlorogenic acid-enriched Eucommia ulmoides Oliver bark has antidepressant potential through neuron protection, serotonin release promotion and penetration of blood-cerebrospinal fluid barrier. In the present study, we demonstrated that CGA could stimulate axon and dendrite growth and promote serotonin release through enhancing synapsin I expression in the cells of fetal rat raphe neurons in vitro. More importantly, CGA-enriched extract of E. ulmoides (EUWE) at 200 and 400 mg/kg/day orally administered for 7 days showed antidepressant-like effects in the tail suspension test of KM mice. Furthermore, we also found CGA could be detected in the the cerebrospinal fluid of the rats orally treated with EUWE and reach the level of pharmacological effect for neuroprotection by UHPLC-ESI-MS/MS. The findings indicate CGA is able to cross the blood-cerebrospinal fluid barrier to exhibit its neuron protection and promotion of serotonin release through enhancing synapsin I expression. This is the first report of the effect of CGA on promoting 5-HT release through enhancing synapsin I expression and CGA-enriched EUWE has antidepressant-like effect in vivo. EUWE may be developed as the natural drugs for the treatment of depression.


Subject(s)
Antidepressive Agents/pharmacology , Chlorogenic Acid/pharmacology , Depression/drug therapy , Eucommiaceae/chemistry , Nootropic Agents/pharmacology , Raphe Nuclei/drug effects , Synapsins/genetics , Administration, Oral , Animals , Antidepressive Agents/isolation & purification , Blood-Brain Barrier/metabolism , Chlorogenic Acid/isolation & purification , Depression/genetics , Depression/metabolism , Depression/physiopathology , Disease Models, Animal , Drugs, Chinese Herbal , Fetus , Gene Expression , Hindlimb Suspension , Male , Mice , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Nootropic Agents/isolation & purification , Permeability , Plant Bark/chemistry , Plant Extracts/chemistry , Raphe Nuclei/metabolism , Raphe Nuclei/physiopathology , Rats , Serotonin/biosynthesis , Serotonin/metabolism , Synapsins/agonists , Synapsins/metabolism
18.
J Neurochem ; 132(2): 218-29, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25351927

ABSTRACT

It has recently been proposed that extracellular signal-regulated kinases 1 and 2 (ERK1/2) are one of the factors mediating seizure development. We hypothesized that inhibition of ERK1/2 activity could prevent audiogenic seizures by altering GABA and glutamate release mechanisms. Krushinsky-Molodkina rats, genetically prone to audiogenic seizure, were recruited in the experiments. Animals were i.p. injected with an inhibitor of ERK1/2 SL 327 at different doses 60 min before audio stimulation. We demonstrated for the first time that inhibition of ERK1/2 activity by SL 327 injections prevented seizure behavior and this effect was dose-dependent and correlated with ERK1/2 activity. The obtained data also demonstrated unchanged levels of GABA production, and an increase in the level of vesicular glutamate transporter 2. The study of exocytosis protein expression showed that SL 327 treatment leads to downregulation of vesicle-associated membrane protein 2 and synapsin I, and accumulation of synaptosomal-associated protein 25 (SNAP-25). The obtained data indicate that the inhibition of ERK1/2 blocks seizure behavior presumably by altering the exocytosis machinery, and identifies ERK1/2 as a potential target for the development of new strategies for seizure treatment. Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are one of the factors mediating seizure development. Here we report that inhibition of ERK1/2 by SL 327 prevented seizure behavior and this effect was dose-dependent and correlated with ERK1/2 activity. Accumulation of VGLUT2 was associated with differential changing of synaptic proteins VAMP2, SNAP-25 and synapsin I. The obtained data indicate that the inhibition of ERK1/2 alters neurotransmitter release by changing the exocytosis machinery, thus preventing seizures.


Subject(s)
Aminoacetonitrile/analogs & derivatives , Epilepsy, Reflex/drug therapy , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Acoustic Stimulation/adverse effects , Aminoacetonitrile/pharmacology , Aminoacetonitrile/therapeutic use , Animals , Brain/metabolism , CREB-Binding Protein/metabolism , Epilepsy, Reflex/enzymology , Epilepsy, Reflex/genetics , Exocytosis/drug effects , Female , Glutamic Acid/metabolism , MAP Kinase Signaling System/physiology , Male , Mitogen-Activated Protein Kinase 1/physiology , Mitogen-Activated Protein Kinase 3/physiology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/physiology , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational/drug effects , Rats , Rats, Mutant Strains , Reaction Time/drug effects , Synapses/drug effects , Synapses/metabolism , Synapsins/metabolism , Synaptosomal-Associated Protein 25/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Vesicular Glutamate Transport Protein 2/biosynthesis , Vesicular Glutamate Transport Protein 2/genetics , gamma-Aminobutyric Acid/biosynthesis , gamma-Aminobutyric Acid/metabolism
19.
J Neurosci Res ; 93(6): 893-901, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25612898

ABSTRACT

Brain oxytocin regulates a variety of social and affiliative behaviors and affects also learning and memory. However, mechanisms of its action at the level of neuronal circuits are not fully understood. The present study tests the hypothesis that molecular factors required for memory formation and synaptic plasticity, including brain-derived neurotrophic factor, neural growth factor, nestin, microtubule-associated protein 2 (MAP2), and synapsin I, are enhanced by central administration of oxytocin. We also investigated whether oxytocin enhances object recognition and acts as anxiolytic agent. Therefore, male Wistar rats were infused continuously with oxytocin (20 ng/µl) via an osmotic minipump into the lateral cerebral ventricle for 7 days; controls were infused with vehicle. The object recognition test, open field test, and elevated plus maze test were performed on the sixth, seventh, and eighth days from starting the infusion. No significant effects of oxytocin on anxious-like behavior were observed. The object recognition test showed that oxytocin-treated rats significantly preferred unknown objects. Oxytocin treatment significantly increased gene expression and protein levels of neurotrophins, MAP2, and synapsin I in the hippocampus. No changes were observed in nestin expression. Our results provide the first direct evidence implicating oxytocin as a regulator of brain plasticity at the level of changes of neuronal growth factors, cytoskeletal proteins, and behavior. The data support assumption that oxytocin is important for short-term hippocampus-dependent memory.


Subject(s)
Gene Expression Regulation/drug effects , Microtubule-Associated Proteins/metabolism , Nerve Growth Factors/metabolism , Oxytocin/administration & dosage , Recognition, Psychology/drug effects , Synapsins/metabolism , Animals , Brain/drug effects , Brain/metabolism , Drug Delivery Systems , Exploratory Behavior/drug effects , Injections, Intraventricular , Male , Maze Learning/drug effects , Microtubule-Associated Proteins/genetics , Nerve Growth Factors/genetics , Rats , Rats, Wistar , Synapsins/genetics
20.
Neurochem Res ; 40(12): 2443-60, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26012367

ABSTRACT

Our aim was to review the processes of glutamate release from both biochemical and neurophysiological points of view. A large body of evidence now indicates that glutamate is specifically accumulated into synaptic vesicles, which provides strong support for the concept that glutamate is released from synaptic vesicles and is the major excitatory neurotransmitter. Evidence suggests the notion that synaptic vesicles, in order to sustain the neurotransmitter pool of glutamate, are endowed with an efficient mechanism for vesicular filling of glutamate. Glutamate-loaded vesicles undergo removal of Synapsin I by CaM kinase II-mediated phosphorylation, transforming to the release-ready pool. Vesicle docking to and fusion with the presynaptic plasma membrane are thought to be mediated by the SNARE complex. The Ca(2+)-dependent step in exocytosis is proposed to be mediated by synaptotagmin.


Subject(s)
Excitatory Amino Acids/metabolism , Excitatory Amino Acids/physiology , Glutamic Acid/metabolism , Glutamic Acid/physiology , Animals , Energy Metabolism/physiology , Humans , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/physiology , Synapses/metabolism , Synaptic Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL