Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Pathol Int ; 73(5): 181-187, 2023 May.
Article in English | MEDLINE | ID: mdl-36825754

ABSTRACT

Approximately 40 families with multiple gastrointestinal stromal tumors (GISTs) and germline c-kit gene mutations have been reported. Three knock-in mouse models have been generated, and all the models showed a cecal GIST. In the present study, we established a cell line derived from cecal GIST in a familial GIST model mouse with KIT-Asp818Tyr. Since the established cells showed spindle-shaped morphology with atypical nuclei, and since immunohistochemistry revealed that they were positive for α-SMA but negative for KIT, CD34 and desmin, the phenotypes of the cells were reminiscent of dedifferentiated GIST-like ones but not the usual GIST-like ones. Gene expression analysis showed that the cell line, designated as DeGISTL1 cell, did not express c-kit gene apparently, but highly expressed HSP90 families and glutaminase 1. Pathway analysis of the cells revealed that metabolic pathway might promote their survival and growth. Pimitespib, a heat shock protein 90α/ß inhibitor, and Telaglenastat, a selective glutaminase 1 inhibitor, inhibited proliferation of DeGISTL1 cells and the combination of these showed an additive effect. DeGISTL1 cells might be a good model of dedifferentiated GISTs, and combination of Pimitespib and Telaglenastat could be a possible candidate for treatment strategy for them.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Mice , Animals , Gastrointestinal Stromal Tumors/pathology , Glutaminase/genetics , Glutaminase/therapeutic use , Antineoplastic Agents/therapeutic use , Germ-Line Mutation , Cell Line , Proto-Oncogene Proteins c-kit/genetics
2.
Anticancer Agents Med Chem ; 23(7): 779-785, 2023.
Article in English | MEDLINE | ID: mdl-36065917

ABSTRACT

BACKGROUND: Cancer is associated with metabolic changes from increased cell proliferation and growth. Compared to normal differentiated cells, MM cells use the glycolytic pathway even when adequate oxygen is present triggering "Glutamine addiction". OBJECTIVE: To investigate the single and combined effects of epigallocatechin-3-gallate (EGCG) and telaglenastat, a glutaminase inhibitor, on the proliferation and apoptosis of the multiple myeloma cell line KM3/BTZ. METHODS: KM3/BTZ cells were treated with different concentrations of telaglenastat and EGCG alone or in combination to investigate their effect on proliferation and apoptosis using the CCK8 assay, flow cytometry, and western blotting. The Chou-Talalay combination index analysis was used to explore the effect of telaglenastat combined with EGCG, while the Combination Index (CI) was calculated to analyze whether the combination of the two drugs had a synergistic effect. RESULTS: Telaglenastat and EGCG alone as well as in combination (5 µmol/L telaglenastat + 120 µmol/L EGCG) significantly inhibited the proliferation of KM3/BTZ cells compared to the inhibition effect of the control. Additionally, the combined treatment increased the proportion of KM3/BTZ cells in the G2 phase and decreased the proportion of cells in the G1 phase. The apoptosis rate of EGCG alone and the combined treatment was significantly higher than that of the control group. Bax protein expression was highest in the combined treatment group, whereas Bcl-2 expression was lowest, with the combined treatment group having the highest ratio of Bax/Bcl-2. CONCLUSION: Telaglenastat and EGCG act synergistically to inhibit cell proliferation and promote apoptosis in KM3/BTZ cells, possibly by targeting glutamine metabolism and glycolysis.


Subject(s)
Catechin , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Cell Line, Tumor , Glutaminase/pharmacology , Glutamine/pharmacology , Catechin/pharmacology , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation
3.
Cancer Biother Radiopharm ; 38(7): 475-485, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37253167

ABSTRACT

Background: Osteosarcoma (OS) is an aggressive pediatric cancer with unmet therapeutic needs. Glutaminase 1 (GLS1) inhibition, alone and in combination with metformin, disrupts the bioenergetic demands of tumor progression and metastasis, showing promise for clinical translation. Materials and Methods: Three positron emission tomography (PET) clinical imaging agents, [18F]fluoro-2-deoxy-2-D-glucose ([18F]FDG), 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT), and (2S, 4R)-4-[18F]fluoroglutamine ([18F]GLN), were evaluated in the MG63.3 human OS xenograft mouse model, as companion imaging biomarkers after treatment for 7 d with a selective GLS1 inhibitor (CB-839, telaglenastat) and metformin, alone and in combination. Imaging and biodistribution data were collected from tumors and reference tissues before and after treatment. Results: Drug treatment altered tumor uptake of all three PET agents. Relative [18F]FDG uptake decreased significantly after telaglenastat treatment, but not within control and metformin-only groups. [18F]FLT tumor uptake appears to be negatively affected by tumor size. Evidence of a flare effect was seen with [18F]FLT imaging after treatment. Telaglenastat had a broad influence on [18F]GLN uptake in tumor and normal tissues. Conclusions: Image-based tumor volume quantification is recommended for this paratibial tumor model. The performance of [18F]FLT and [18F]GLN was affected by tumor size. [18F]FDG may be useful in detecting telaglenastat's impact on glycolysis. Exploration of kinetic tracer uptake protocols is needed to define clinically relevant patterns of [18F]GLN uptake in patients receiving telaglenastat.


Subject(s)
Bone Neoplasms , Metformin , Osteosarcoma , Humans , Mice , Animals , Child , Fluorodeoxyglucose F18 , Tissue Distribution , Heterografts , Positron-Emission Tomography/methods , Disease Models, Animal , Osteosarcoma/diagnostic imaging , Osteosarcoma/drug therapy , Metformin/pharmacology , Metformin/therapeutic use , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/drug therapy , Biomarkers , Radiopharmaceuticals
4.
Front Oncol ; 12: 1070514, 2022.
Article in English | MEDLINE | ID: mdl-36465373

ABSTRACT

Mounting data suggest that cancer cell metabolism can be utilized therapeutically to halt cell proliferation, metastasis and disease progression. Radiation therapy is a critical component of cancer treatment in curative and palliative settings. The use of metabolism-based therapeutics has become increasingly popular in combination with radiotherapy to overcome radioresistance. Over the past year, a focus on glutamine metabolism in the setting of cancer therapy has emerged. In this mini-review, we discuss several important ways (DNA damage repair, oxidative stress, epigenetic modification and immune modulation) glutamine metabolism drives cancer growth and progression, and present data that inhibition of glutamine utilization can lead to radiosensitization in preclinical models. Future research is needed in the clinical realm to determine whether glutamine antagonism is a feasible synergistic therapy that can be combined with radiotherapy.

5.
Comput Biol Med ; 146: 105669, 2022 07.
Article in English | MEDLINE | ID: mdl-35654625

ABSTRACT

GLS1 enzymes (Glutaminase C (GAC) and kidney-type Glutaminase (KGA)) are gaining prominence as a target for tumor treatment including lung, breast, kidney, prostate, and colorectal. To date, several medicinal chemistry studies are being conducted to develop new and effective inhibitors against GLS1 enzymes. Telaglenastat, a drug that targets the allosteric site of GLS1, has undergone clinical trials for the first time for the therapy of solid tumors and hematological malignancies. A comprehensive computational investigation is performed to get insights into the inhibition mechanism of the Telaglenastat. Some novel inhibitors are also proposed against GLS1 enzymes using the drug repurposing approach using 2D-fingerprinting virtual screening method against 2.4 million compounds, application of pharmacokinetics, Molecular Docking, and Molecular Dynamic (MD) Simulations. A TIP3P water box of 10 Å was defined to solvate both enzymes to improve MD simulation reliability. The dynamics results were validated further by the MMGB/PBSA binding free energy method, RDF, and AFD analysis. Results of these computational analysis revealed a stable binding affinity of Telaglenastat, as well as an FDA approved drug Astemizole (IC50 ∼ 0.9 nM) and a novel para position oriented methoxy group containing Chembridge compound (Chem-64284604) that provides an effective inhibitory action against GAC and KGA.


Subject(s)
Glutaminase , Molecular Dynamics Simulation , Humans , Male , Cell Line, Tumor , Drug Repositioning , Enzyme Inhibitors/pharmacology , Glutaminase/chemistry , Glutaminase/metabolism , Molecular Docking Simulation , Reproducibility of Results
6.
Life Sci ; 291: 120274, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34990648

ABSTRACT

AIMS: The purpose of this study was to evaluate the heterogeneities of glutamine metabolism in EGFR-TKI-resistant lung cancer cells and its potential as a therapeutic target. MAIN METHODS: Cell proliferation and cell cycle assays was performed by IncuCyte real-time analysis and flow cytometry, respectively. Tumor growth was assessed in xenografts implanted with HCC827 GR. An isotopologue analysis was conducted by LC-MS/MS using 13C-(U)-glutamine labeling to determine the amounts of metabolites. Cellular ATP and mitochondrial oxidative phosphorylation were determined by XFp analysis. KEY FINDINGS: We found that the cell growth of the two acquired EGFR-TKI-resistant lung cancer cells lines (HCC827 GR and H292 ER) depends on glutamine. In HCC827 GR, glutamine deficiency caused reduced GSH synthesis and, subsequently, enhanced ROS generation relative to their parental cells, HCC827. On the other hand, in H292 ER, glutamine mainly acted as a carbon source for TCA-cycle intermediates, and its depletion led to reduced mitochondrial ATP production. CB-839, a specific GLS inhibitor, inhibited the latter's conversion of glutamine to glutamate and exerted enhanced anti-proliferating effects on the two acquired EGFR-TKI-resistant lung cancer cell lines versus their parental cell lines. Moreover, oral administration of CB-839 significantly suppressed HCC827 GR tumor growth in the xenograft model. SIGNIFICANCE: These findings suggest that glutamine dependency in acquired EGFR-TKI-resistant lung cancer is heterogeneous and that inhibition of glutamine metabolism by CB-839 may serve as a therapeutic tool for acquired EGFR-TKI-resistant lung cancer.


Subject(s)
Benzeneacetamides/pharmacology , Glutamine/metabolism , Lung Neoplasms/metabolism , Thiadiazoles/pharmacology , Apoptosis/drug effects , Benzeneacetamides/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatography, Liquid/methods , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , ErbB Receptors/metabolism , Glutamine/physiology , Humans , Mutation/drug effects , Protein Kinase Inhibitors/pharmacology , Tandem Mass Spectrometry/methods , Thiadiazoles/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL