Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cardiovasc Diabetol ; 23(1): 98, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493287

ABSTRACT

BACKGROUND: Telomere Length (TL), a marker of cellular aging, holds promise as a biomarker to elucidate the molecular mechanism of diabetes. This study aimed to investigate whether shorter telomeres are associated with a higher risk of type 2 diabetes mellitus (T2DM) incidence in patients with coronary heart disease; and to determine whether the most suitable dietary patterns, particularly a Mediterranean diet or a low-fat diet, can mitigate the development of diabetes in these patients after a follow-up period of five years. METHODS: The CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (CORDIOPREV study) was a single-centre, randomised clinical trial done at the Reina Sofia University Hospital in Córdoba, Spain. Patients with established coronary heart disease (aged 20-75 years) were randomly assigned in a 1:1 ratio by the Andalusian School of Public Health to receive two healthy diets. Clinical investigators were masked to treatment assignment; participants were not. Quantitative-PCR was used to assess TL measurements. FINDINGS: 1002 patients (59.5 ± 8.7 years and 82.5% men) were enrolled into Mediterranean diet (n = 502) or a low-fat diet (n = 500) groups. In this analysis, we included all 462 patients who did not have T2DM at baseline. Among them, 107 patients developed T2DM after a median of 60 months. Cox regression analyses showed that patients at risk of short telomeres (TL < percentile 20th) are more likely to experience T2DM than those at no risk of short telomeres (HR 1.65, p-value 0.023). In terms of diet, patients at high risk of short telomeres had a higher risk of T2DM incidence after consuming a low-fat diet compared to patients at no risk of short telomeres (HR 2.43, 95CI% 1.26 to 4.69, p-value 0.008), while no differences were observed in the Mediterranean diet group. CONCLUSION: Patients with shorter TL presented a higher risk of developing T2DM. This association could be mitigated with a specific dietary pattern, in our case a Mediterranean diet, to prevent T2DM in patients with coronary heart disease. TRIAL REGISTRATION: Clinicaltrials.gov number NCT00924937.


Subject(s)
Cardiovascular Diseases , Coronary Disease , Diabetes Mellitus, Type 2 , Diet, Mediterranean , Female , Humans , Male , Biomarkers , Cardiovascular Diseases/epidemiology , Coronary Disease/diagnosis , Coronary Disease/epidemiology , Coronary Disease/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Telomere , Young Adult , Adult , Middle Aged , Aged
2.
Eur J Nutr ; 63(1): 291-302, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37870657

ABSTRACT

PURPOSE: Oxidative stress has been reported to cause telomere attrition, which triggers cell apoptosis. Apoptosis of neurocytes may play an essential role in the pathogenesis of neurodegenerative diseases. This study hypothesized that folic acid (FA) supplementation decreased neurocyte apoptosis by alleviating oxidative stress-induced telomere attrition in 25-month-old Sprague Dawley (SD) rats. METHODS: Three-month-old male SD rats were randomly divided into four diet groups by different concentrations of folic acid in equal numbers, with intervention for 22 months. Folate, homocysteine (Hcy), reactive oxygen species (ROS) levels, antioxidant activities, and telomere length in the brain tissues were tested at 11, 18, and 22 months of intervention, and 8-hydroxy-deoxyguanosine (8-OHdG) levels, neurocyte apoptosis and telomere length in the cerebral cortex and hippocampal regions were tested during the 22-month intervention. An automated chemiluminescence system, auto-chemistry analyzer, Q-FISH, qPCR, and TUNEL assay were used in this study. RESULTS: The rats had lower folate concentrations and higher Hcy, ROS, and 8-OHdG concentrations in brain tissue with aging. However, FA supplementation increased folate concentrations and antioxidant activities while decreasing Hcy, ROS, and 8-OHdG levels in rat brain tissue after 11, 18, and 22 months of intervention. Furthermore, FA supplementation alleviated telomere length shortening and inhibited neurocyte apoptosis during the 22-month intervention. CONCLUSION: FA supplementation alleviated oxidative stress-induced telomere attrition and inhibited apoptosis of neurocytes in 25-month-old rats.


Subject(s)
Antioxidants , Folic Acid , Rats , Male , Animals , Folic Acid/pharmacology , Antioxidants/pharmacology , Reactive Oxygen Species , Rats, Sprague-Dawley , Oxidative Stress , Apoptosis , 8-Hydroxy-2'-Deoxyguanosine , Telomere
3.
Mol Ecol ; 32(21): 5812-5822, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37792396

ABSTRACT

Life-history theory suggests that ageing is one of the costs of reproduction. Accordingly, a higher reproductive allocation is expected to increase the deterioration of both the somatic and the germinal lines through enhanced telomere attrition. In most species, males' reproductive allocation mainly regards traits that increase mating and fertilization success, that is sexually selected traits. In this study, we tested the hypothesis that a higher investment in sexually selected traits is associated with a reduced relative telomere length (RTL) in the guppy (Poecilia reticulata), an ectotherm species characterized by strong pre- and postcopulatory sexual selection. We first measured telomere length in both the soma and the sperm over guppies' lifespan to see whether there was any variation in telomere length associated with age. Second, we investigated whether a greater investment in pre- and postcopulatory sexually selected traits is linked to shorter telomere length in both the somatic and the sperm germinal lines, and in young and old males. We found that telomeres lengthened with age in the somatic tissue, but there was no age-dependent variation in telomere length in the sperm cells. Telomere length in guppies was significantly and negatively correlated with sperm production in both tissues and life stages considered in this study. Our findings indicate that telomere length in male guppies is strongly associated with their reproductive investment (sperm production), suggesting that a trade-off between reproduction and maintenance is occurring at each stage of males' life in this species.


Subject(s)
Poecilia , Semen , Animals , Male , Spermatozoa/physiology , Sexual Behavior, Animal , Reproduction/genetics , Muscles , Poecilia/genetics
4.
Mol Ecol ; 32(19): 5429-5447, 2023 10.
Article in English | MEDLINE | ID: mdl-37658759

ABSTRACT

Telomeres are chromosome protectors that shorten during eukaryotic cell replication and in stressful conditions. Developing individuals are susceptible to telomere erosion when their growth is fast and resources are limited. This is critical because the rate of telomere attrition in early life is linked to health and life span of adults. The metabolic telomere attrition hypothesis (MeTA) suggests that telomere dynamics can respond to biochemical signals conveying information about the organism's energetic state. Among these signals are glucocorticoids, hormones that promote catabolic processes, potentially impairing costly telomere maintenance, and nucleotides, which activate anabolic pathways through the cellular enzyme target of rapamycin (TOR), thus preventing telomere attrition. During the energetically demanding growth phase, the regulation of telomeres in response to two contrasting signals - one promoting telomere maintenance and the other attrition - provides an ideal experimental setting to test the MeTA. We studied nestlings of a rapidly developing free-living passerine, the great tit (Parus major), that either received glucocorticoids (Cort-chicks), nucleotides (Nuc-chicks) or a combination of both (NucCort-chicks), comparing these with controls (Cnt-chicks). As expected, Cort-chicks showed telomere attrition, while NucCort- and Nuc-chicks did not. NucCort-chicks was the only group showing increased expression of a proxy for TOR activation (the gene TELO2), of mitochondrial enzymes linked to ATP production (cytochrome oxidase and ATP-synthase) and a higher efficiency in aerobically producing ATP. NucCort-chicks had also a higher expression of telomere maintenance genes (shelterin protein TERF2 and telomerase TERT) and of enzymatic antioxidant genes (glutathione peroxidase and superoxide dismutase). The findings show that nucleotide availability is crucial for preventing telomere erosion during fast growth in stressful environments.


Subject(s)
Passeriformes , Telomere , Humans , Animals , Adult , Telomere/genetics , Glucocorticoids , Nucleotides , Passeriformes/genetics , Adenosine Triphosphate , Telomere Shortening
5.
Eur J Nutr ; 62(4): 1867-1878, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36859557

ABSTRACT

PURPOSE: Previous evidence indicated anti-ageing potential of docosahexaenoic acid (DHA), but the underlying mechanism remains unclear. We investigated protective effect of DHA on telomere attrition and lipid disturbance in male mice with premature ageing caused by telomerase deficiency. METHODS: Wild-type (WT) and fourth-generation telomerase-deficient (G4 Terc-/-, Terc knockout, KO) male mice (C57BL/6, 2 months old) were fed control diet (WT-C and KO-C groups) or DHA-enriched diet containing 0.80% DHA by weight (WT-DHA and KO-DHA groups) for 10 months. The ageing phenotypes and metabolic level [carbon dioxide emission, oxygen consumption, and respiratory exchange ratio (RER)] were assessed at the end of the experiment. Telomere length in various tissues and the hepatic gene and protein expression for regulating lipid synthesis and lipolysis were measured. Data were tested using one- or two-factor ANOVA. RESULTS: In KO male mice, DHA prevented weight loss, corrected high RER, and reduced fat loss. Telomere shortening was reduced by 22.3%, 25.5%, and 13.5% in heart, liver, and testes of the KO-DHA group compared with those in the KO-C group. The KO-DHA group exhibited higher gene transcription involved in glycerol-3-phosphate pathway [glycerol-3-phosphate acyltransferase (Gpat)], lower gene expression of ß-oxidation [carnitine palmitoyltransferase 1a (Cpt1a)], and upregulation of proteins in lipid synthesis [mammalian target of rapamycin complex 1 (mTORC1) and sterol responsive element binding protein 1 (SREBP1)] in liver than the KO-C group. CONCLUSION: Long-term DHA intervention attenuates telomere attrition and promotes lipid synthesis via the tuberous sclerosis complex 2 (TSC2)-mTORC1-SREBP1 pathway in KO male mice.


Subject(s)
Docosahexaenoic Acids , Telomerase , Animals , Mice , Male , Docosahexaenoic Acids/pharmacology , Telomerase/genetics , Glycerol , Mice, Inbred C57BL , Telomere , Phosphates , Mice, Knockout , Mammals/genetics , Mammals/metabolism
6.
Cereb Cortex ; 32(2): 286-297, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34223882

ABSTRACT

Folic acid (FA) has been reported to inhibit astrocyte apoptosis and improve aging-induced disorders; however, its role in telomere attrition remains unclear. In present study, 4-month-old senescence-accelerated mouse prone 8 (SAMP8) mice were assigned to four treatment groups for the in vivo experiment: FA-deficient diet (FA-D) group, FA-normal diet (FA-N) group, low FA-supplemented diet (FA-L) group, and high FA-supplemented diet (FA-H) group. These mice were euthanized when 10 months old. There was also a young SAMP8 (4 months old) control group (Con-Y) fed with FA-normal diet. In in vitro study, primary cultures of astrocytes from hippocampus and cerebral cortex were incubated for five generations with various concentrations of FA (0-40 µM) and were assigned to five groups: FA 0 µM (generation 5), FA 10 µM (generation 5), FA 20 µM (generation 5), FA 40 µM (generation 5), and FA 10 µM (generation 1). The results showed that FA supplementation inhibited aging-induced astrocytosis, astrocyte apoptosis, neurodegeneration, and prevented telomere attrition in hippocampus and cortex of SAMP8 mice. FA supplementation also decreased apoptosis and telomere attrition, and increased telomerase activity, in primary cultures of astrocytes. These results showed that it may be one of the mechanisms that FA inhibiting aging-induced apoptosis of astrocyte by alleviating telomere attrition.


Subject(s)
Astrocytes , Folic Acid , Aging , Animals , Apoptosis , Folic Acid/pharmacology , Mice , Telomere
7.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674498

ABSTRACT

The relationship between sleep and micronutrients, including magnesium, is implicated in its regulation. The effects of low magnesium and other micronutrients on sleep disruption and telomere loss are not well understood. The present study was carried out in 172 healthy elderly subjects from South Australia. Plasma micronutrients including magnesium were measured. Each participant provided information about their sleep hours (<7 h or ≥7 h). Lymphocyte telomere length (TL) was measured by real-time qPCR assay. Plasma magnesium level was significantly low in subjects who sleep less than 7 h (p = 0.0002). TL was significantly shorter in people who are low in magnesium and sleep less than 7 h (p = 0.01). Plasma homocysteine (Hcy) is negatively associated with magnesium (r = −0.299; p < 0.0001). There is a significant interaction effect of magnesium and Hcy on sleep duration (p = 0.04) and TL (p = 0.003). Our results suggest that inadequate magnesium levels have an adverse impact on sleep and telomere attrition rate in cognitively normal elderly people, and this may be exacerbated by low levels of vitamin B12 and folate that elevate Hcy concentration.


Subject(s)
Magnesium , Vitamin B 12 , Humans , Aged , Australia , Folic Acid , Telomere/genetics , Sleep , Micronutrients , Homocysteine
8.
Semin Cell Dev Biol ; 101: 104-110, 2020 05.
Article in English | MEDLINE | ID: mdl-31879264

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease characterized by progressive scarring of the lung tissue, leading to respiratory failure. There is no cure for IPF, and current anti-fibrotic treatments modestly arrest its further progression. IPF prevalence and incidence increase with age, which is a recognized risk factor. Intense clinical and basic research over the last fifteen years has shown that hallmarks of accelerated aging are present in the lungs of patients with IPF. Different cell types in IPF lungs exhibit premature hallmarks of aging, including telomere attrition and cellular senescence. In this Review, we discuss recent insights into the mechanisms behind these age-related alterations and their contribution to the development of lung fibrosis. We focus on the genetic and molecular basis of telomere attrition in alveolar type II epithelial cells, which promote cellular senescence and lung fibrosis. Mechanistically, senescent cells secrete pro-fibrotic factors that activate scar-forming myofibroblasts. Ultimately, senescent alveolar epithelial cells lose their regenerative capacity, impeding fibrosis resolution. In addition, mitochondrial dysfunction is strongly associated with the appearance of senescent epithelial cells and senescent myofibroblasts in IPF, which persist in the fibrotic tissue by adapting their metabolic pathways and becoming resistant to apoptosis. We discuss emerging novel therapeutic strategies to treat IPF by targeting cellular senescence with the so-called senotherapeutics.


Subject(s)
Antifibrinolytic Agents/pharmacology , Cellular Senescence/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Animals , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology
9.
Cancer ; 128(16): 3109-3119, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35670038

ABSTRACT

BACKGROUND: Cancer treatments are thought to accelerate biological aging, although this trajectory is highly variable. Depression is more prevalent in breast cancer survivors and is thought to be a vulnerability factor for biological aging. A lifetime history of depression and cumulative lifetime number of depression episodes could hypothetically be associated with an accelerated rate of biological aging as indexed by attrition of telomere length in a prospective cohort of breast cancer survivors who were not currently depressed. METHODS: Breast cancer survivors (n = 206) without current depression were recruited from a large community-based health plan and were assessed for depression history by a structured diagnostic interview. Blood specimens were provided at baseline and every 8 months over 24 months to measure peripheral blood mononuclear cell (PBMC) telomere length. Mixed linear models examined associations of depression history and number of depression episodes with change in telomere length, adjusting for demographic, comorbidity, and cancer-specific factors. RESULTS: In the fully adjusted model, depression history predicted attrition of PBMC telomere length over 24 months (Beta [SE] = -.006 [.002], p = .001). Greater number of depressive episodes over the lifetime was also associated with accelerated attrition of PBMC telomere length over 24 months (Beta [SE] = -.004 [.001], p = .001). CONCLUSIONS: In breast cancer survivors without current depression, telomere attrition over 24 months was greatest in those with a lifetime depression history, particularly those with the greatest number of episodes of major depressive disorder over their lifetime. Depression history and its cumulative burden may contribute to accelerated biological aging, with implications for risk of morbidity and mortality in breast cancer survivors.


Subject(s)
Breast Neoplasms , Cancer Survivors , Depressive Disorder, Major , Breast Neoplasms/genetics , Cohort Studies , Depression/epidemiology , Female , Humans , Leukocytes, Mononuclear , Longitudinal Studies , Prospective Studies , Telomere
10.
BMC Med ; 20(1): 153, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35477473

ABSTRACT

BACKGROUND: Prenatal maternal tobacco smoking is a predictor of child attention-deficit/hyperactivity disorder (ADHD) and is associated with offspring telomere length (TL). In this study, we examine the relationship between maternal prenatal smoking, infant TL, and maternal report of early childhood symptoms of ADHD. METHODS: One-hundred and eighty-one mother-infant dyads were followed prospectively for the infant's first 18 months of life. Prenatal smoking was assessed from maternal report and medical records. TL was measured from infant buccal swab DNA obtained across the first 18 months of life. ADHD symptoms were obtained from maternal report on the Child Behavior Check List. Multiple regression models tested the relation between prenatal smoking and both ADHD symptoms and infant TL. Additional analyses tested whether the change in infant TL influenced the relation between prenatal smoking and ADHD symptoms. RESULTS: Sixteen percent of mothers reported prenatal smoking. Infant TL at 4, 12, and 18 months of age were correlated. Consistent with previous cross-sectional studies linking shorter offspring TL to maternal prenatal smoking, maternal prenatal smoking predicted greater telomere shortening from four to 18 months of infant age (ß = - 5.797, 95% CI [-10.207, -1.386]; p = 0.010). Maternal depression was positively associated with both prenatal smoking (odds ratio (OR): 4.614, 95% CI [1.733, 12.282]; p = 0.002) and child ADHD symptoms (ß = 4.713, 95% CI [2.073, 7.354]; p = 0.0006). To prevent confounding, analyses examined the relation between TL, ADHD symptoms, and prenatal smoking only in non-depressed mothers. In non-depressed mothers, infant TL attrition across the first 18 months moderated the relation between smoking and child ADHD. CONCLUSIONS: The findings extend previous studies linking prenatal smoking to shorter infant TL by providing data demonstrating the effect on TL trajectory. The relation between prenatal smoking and early infant ADHD symptoms was moderated by the change in TL. The findings provide novel initial evidence suggesting that TL dynamics are one mechanistic pathway influencing the relation between maternal prenatal smoking and ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Prenatal Exposure Delayed Effects , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/etiology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Longitudinal Studies , Pregnancy , Telomere , Tobacco Smoking
11.
Mol Ecol ; 31(23): 5917-5932, 2022 12.
Article in English | MEDLINE | ID: mdl-34437736

ABSTRACT

The prediction that telomere length (TL) shortens with increasing age is a major element in considering the role of telomeres as a key player in evolution. While telomere attrition is found in humans both in vitro and in vivo, the increasing number of studies reporting diverse age-specific patterns of TL challenges the hypothesis of a universal decline of TL with increasing age. Here, we performed a meta-analysis to estimate the relationship between TL and age across 175 estimates encompassing 98 species of vertebrates. We found that, on average, TL does decline with increasing age during adulthood. However, this decline was weak and variable across vertebrate classes, and we also found evidence for a publication bias that might weaken our current evidence of decreasing TL with increasing age. We found no evidence for a faster decline in TL with increasing age when considering the juvenile stage (from birth to age at first reproduction) compared to the adult stage. Heterogeneity in TL ageing rates was explained by the method used to measure telomeres: detectable TL declines with increasing age were found only among studies using TRF with in-gel hybridisation and qFISH methods, but not in studies using qPCR and Southern blot-based TRF methods. While we confirmed that TL declines with increasing age in most adult vertebrates, our results identify an influence of telomere measurement methodology, which highlights the need to examine more thoroughly the effect of the method of measurement on TL estimates.


Subject(s)
Aging , Vertebrates , Adult , Humans , Animals , Aging/genetics , Vertebrates/genetics , Telomere/genetics , Telomere Shortening/genetics
12.
J Evol Biol ; 35(1): 81-90, 2022 01.
Article in English | MEDLINE | ID: mdl-34687577

ABSTRACT

Life-history theory predicts a trade-off between growth rates and lifespan, which is reflected by telomere length, a biomarker of somatic state. We investigated the correlation between telomere length and early-life growth of wild boar piglets, Sus scrofa, kept under semi-natural conditions with high food availability to examine our hypothesis that increased pre- and postnatal growth will lead to telomere length attrition, but that a high supply of nutrient may provide the possibility to compensate telomere loss via telomere repair mechanisms. As predicted, our data showed a clear negative correlation between birth body mass and initial telomere length: heavier neonates had shorter telomeres at birth, and we did not find an influence of the mother on initial telomere length. Body mass at birth correlated with body mass later in life and postnatal growth rate did not affect telomere length. We observed an increase in telomere length during postnatal development, suggesting that high food availability allowed piglets to invest into both, growth and telomere restoration. The increase in telomere length over the duration of the study was not accompanied by telomerase activity; thus, telomere elongation was caused either by alternative mechanisms or by short pulses of telomerase activity that we missed. Taken together, this study suggests a trade-off between investment into growth and telomere maintenance even before birth and the possibility to compensate telomere attrition during growth under high amounts of available energy.


Subject(s)
Silver , Telomere Shortening , Animals , Sus scrofa/genetics , Swine , Telomere , Telomere Homeostasis
13.
Lung ; 200(3): 401-407, 2022 06.
Article in English | MEDLINE | ID: mdl-35660961

ABSTRACT

Telomere attrition is an established ageing biomarker and shorter peripheral blood leukocyte telomere length has been associated with increased risks of respiratory diseases. However, whether telomere length in disease-relevant sputum immune cells of chronic respiratory disease patients is shortened and which pathways are dysfunctional are not clear. Here we measured telomere length from sputum samples of bronchiectasis and asthmatic subjects and determined that telomere length in sputum of bronchiectasis subjects was significantly shorter (Beta = - 1.167, PAdj = 2.75 × 10-4). We further performed global gene expression analysis and identified genes involved in processes such as NLRP3 inflammasome activation and regulation of adaptive immune cells when bronchiectasis sputum telomere length was shortened. Our study provides insights on dysfunctions related to shortened telomere length in sputum immune cells of bronchiectasis patients.


Subject(s)
Bronchiectasis , Sputum , Humans , Respiratory System , Telomere , Telomere Shortening
14.
Biol Lett ; 17(10): 20210409, 2021 10.
Article in English | MEDLINE | ID: mdl-34665991

ABSTRACT

As telomere length (TL) often predicts survival and lifespan, there is considerable interest in the origins of inter-individual variation in TL. Cross-generational effects of parental age on offspring TL are thought to be a key source of variation, but the rarity of longitudinal studies that examine the telomeres of successive offspring born throughout the lives of parents leaves such effects poorly understood. Here, we exploit TL measures of successive offspring produced throughout the long breeding tenures of parents in wild white-browed sparrow weaver (Plocepasser mahali) societies, to isolate the effects of within-parent changes in age on offspring TLs. Our analyses reveal the first evidence to date of a positive within-parent effect of advancing age on offspring TL: as individual parents age, they produce offspring with longer telomeres (a modest effect that persists into offspring adulthood). We consider the potential for pre- and post-natal mechanisms to explain our findings. As telomere attrition predicts offspring survival to adulthood in this species, this positive parental age effect could impact parent and offspring fitness if it arose via differential telomere attrition during offspring development. Our findings support the view that cross-generational effects of parental age can be a source of inter-individual variation in TL.


Subject(s)
Sparrows , Telomere , Animals , Animals, Wild , Longevity , Telomere/genetics , Telomere Shortening
15.
Chromosome Res ; 28(3-4): 259-276, 2020 12.
Article in English | MEDLINE | ID: mdl-32940874

ABSTRACT

Telomeres, the specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes, play a fundamental role in maintaining chromosomal stability and integrity, being one of the leading guardians of genome stability. In recent years, the identification and analysis of chromosomal aberrations involving telomeres has proven to be a unique tool to evaluate misrepaired and unrepaired chromosome damage in mammalian cells. Telomere instability constitutes an important source of genomic instability, a phenomenon characteristic of cancer cells, and also common in cells exposed to chemical or physical mutagens which induce chromosomal aberrations by producing chromosome breakage (clastogens). In the present review, we will focus on the chromosomal aberrations involving telomeres and their importance to determine the clastogen-induced genomic instability present in mammalian cells.


Subject(s)
Chromosome Aberrations/drug effects , Genomic Instability/drug effects , Mutagens/pharmacology , Telomere/drug effects , Telomere/genetics , Animals , Chromosomal Instability , Humans , Mammals , Organ Specificity/genetics , Risk Factors
16.
FASEB J ; 33(12): 14248-14253, 2019 12.
Article in English | MEDLINE | ID: mdl-31652401

ABSTRACT

Adults with comparatively short or long leukocyte telomere length (LTL) typically continue to display comparatively short or long LTL throughout life. This LTL tracking stems from the inability of person-to-person variation in age-dependent LTL shortening during adulthood to offset the wide interindividual LTL variation established prior to adult life. However, LTL tracking in children is unstudied. This study aimed to examine LTL shortening rates and tracking in children and their parents. Longitudinal study in children (n = 67) and their parents (n = 99), whose ages at baseline were 11.4 ± 0.3 and 43.4 ± 0.4 yr, respectively. LTL was measured by Southern blotting at baseline and ∼14 yr thereafter. LTL displayed tracking in both children [intraclass correlation coefficient (ICC) = 0.905, P < 0.001] and their parents (ICC = 0.856, P < 0.001). The children's rate of LTL shortening was twice that of their parents (40.7 ± 2.5 bp/yr; 20.3 ± 2.1 bp/yr, respectively; P < 0.0001). LTL tracking applies not only to adulthood but also to the second decade of life. Coupled with previous work showing that the interindividual variation in LTL across newborns is as wide as in their parents, these findings support the thesis that the LTL-adult disease connection is principally determined before the second decade of life, perhaps mainly at birth.-Benetos, A., Verhulst, S., Labat, C., Lai, T.-P., Girerd, N., Toupance, S., Zannad, F., Rossignol, P., Aviv, A. Telomere length tracking in children and their parents: implications for adult onset diseases.


Subject(s)
Aging , Telomere Homeostasis , Telomere Shortening , Adult , Child , Female , Humans , Longitudinal Studies , Male , Parents
17.
Biol Blood Marrow Transplant ; 25(3): 496-504, 2019 03.
Article in English | MEDLINE | ID: mdl-30266676

ABSTRACT

After allogeneic hematopoietic cell transplantation (allo-HCT), transplanted cells rapidly undergo multiple rounds of division. This may cause extensive telomere attrition, which could potentially prohibit further cell division and lead to increased mortality. We therefore characterized the development in telomere length after nonmyeloablative allo-HCT in 240 consecutive patients transplanted because of hematologic malignancies and tested the hypothesis that extensive telomere attrition post-transplant is associated with low overall survival. Telomere length was measured using quantitative PCR in mononuclear cells obtained from donors and recipients pretransplant and in follow-up samples from recipients post-transplant. Telomere attrition at 9 to 15 months post-transplant was calculated as the difference between recipient telomere length at 9 to 15 months post-transplant and donor pretransplant telomere length, divided by donor pretransplant telomere length. Although allo-HCT led to shorter mean telomere length in recipients when compared with donors, recipients had longer mean telomere length 9 to 15 months post-transplant than they had pretransplant. When compared with donor telomeres, recipients with extensive telomere attrition at 9 to 15 months post-transplant had low overall survival (10-year survival from 9 to 15 months post-transplant and onward: 68% in the tertile with least telomere attrition, 57% in the middle tertile, and 39% in the tertile with most attrition; log-rank P = .01). Similarly, after adjusting for potential confounders, recipients with extensive telomere attrition had high all-cause mortality (multivariable adjusted hazard ratio, 1.84 per standard deviation of telomere attrition at 9 to 15 months post-transplant; 95% confidence interval, 1.25 to 2.72; P = .002) and high relapse-related mortality (subhazard ratio, 2.07; 95% confidence interval, 1.14 to 3.76; P = .02). Taken together, telomere attrition may be a clinically relevant marker for identifying patients at high risk of mortality.


Subject(s)
Hematologic Neoplasms/mortality , Hematopoietic Stem Cell Transplantation/methods , Leukocytes, Mononuclear/ultrastructure , Telomere Shortening , Telomere/metabolism , Adult , Female , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/mortality , Humans , Male , Middle Aged , Survival Analysis , Telomere/ultrastructure , Transplantation Conditioning , Transplantation, Homologous , Young Adult
18.
Immun Ageing ; 16: 12, 2019.
Article in English | MEDLINE | ID: mdl-31285747

ABSTRACT

BACKGROUND: T cells play a key role in controlling viral infections; however, the underlying mechanisms regulating their functions during human viral infections remain incompletely understood. Here, we used CD4 T cells derived from individuals with chronic viral infections or healthy T cells treated with camptothecin (CPT) - a topoisomerase I (Top 1) inhibitor - as a model to investigate the role of DNA topology in reprogramming telomeric DNA damage responses (DDR) and remodeling T cell functions. RESULTS: We demonstrated that Top 1 protein expression and enzyme activity were significantly inhibited, while the Top 1 cleavage complex (TOP1cc) was trapped in genomic DNA, in T cells derived from individuals with chronic viral (HCV, HBV, or HIV) infections. Top 1 inhibition by CPT treatment of healthy CD4 T cells caused topological DNA damage, telomere attrition, and T cell apoptosis or dysfunction via inducing Top1cc accumulation, PARP1 cleavage, and failure in DNA repair, thus recapitulating T cell dysregulation in the setting of chronic viral infections. Moreover, T cells from virally infected subjects with inhibited Top 1 activity were more vulnerable to CPT-induced topological DNA damage and cell apoptosis, indicating an important role for Top 1 in securing DNA integrity and cell survival. CONCLUSION: These findings provide novel insights into the molecular mechanisms for immunomodulation by chronic viral infections via disrupting DNA topology to induce telomeric DNA damage, T cell senescence, apoptosis and dysfunction. As such, restoring the impaired DNA topologic machinery may offer a new strategy for maintaining T cell function against human viral diseases.

19.
Int J Mol Sci ; 21(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861819

ABSTRACT

Astrocytes are the most widely distributed cells in the brain, and astrocyte apoptosis may play an important role in the pathogenesis of neurodegenerative diseases. Folate is required for the normal development of the nervous system, but its effect on astrocyte apoptosis is unclear. In this study, we hypothesized that folic acid (the therapeutic form of folate) decreases astrocyte apoptosis by preventing oxidative stress-induced telomere attrition. Primary cultures of astrocytes were incubated for 12 days with various concentrations of folic acid (0-40 µmol/L), then cell proliferation, apoptosis, intracellular folate concentration, intracellular homocysteine (Hcy) concentration, intracellular reactive oxygen species (ROS) levels, telomeric DNA oxidative damage, and telomere length were determined. The results showed that folic acid deficiency decreased intracellular folate, cell proliferation, and telomere length, whereas it increased Hcy concentration, ROS levels, telomeric DNA oxidative damage, and apoptosis. In contrast, folic acid dose-dependently increased intracellular folate, cell proliferation, and telomere length but it decreased Hcy concentration, ROS levels, telomeric DNA oxidative damage, and apoptosis. In conclusion, folic acid inhibited apoptosis in astrocytes. The underlying mechanism for this protective effect may be that folic acid decreased oxidative stress and thereby prevented telomeric DNA oxidative damage and telomere attrition.


Subject(s)
Apoptosis/drug effects , Astrocytes/drug effects , Folic Acid/pharmacology , Oxidative Stress/drug effects , Vitamin B Complex/pharmacology , Animals , Antioxidants/pharmacology , Astrocytes/cytology , Astrocytes/metabolism , Cells, Cultured , Rats, Sprague-Dawley , Telomere/drug effects , Telomere/metabolism
20.
J Transl Med ; 16(1): 35, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29463269

ABSTRACT

BACKGROUND: Cross-sectional investigations report shorter telomeres in patients with heart failure (HF); however, no studies describe telomere length (TL) trajectory and its relationship with HF progression. Here we aimed to investigate telomere shortening over time and its relationship to outcomes. METHODS: Our study cohort included 101 ambulatory patients with HF. Blood samples were collected at baseline (n = 101) and at the 1-year follow-up (n = 54). Using flow-FISH analysis of circulating monocytes, we simultaneously measured three monocyte subsets-classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++)-and their respective TLs based on FITC-labeled PNA probe hybridization. The primary endpoints were all-cause death and the composite of all-cause death or HF-related hospitalization, assessed at 2.3 ± 0.6 years. All statistical analyses were executed by using the SPSS 15.0 software, and included Student's t test and ANOVA with post hoc Scheffe analysis, Pearson or Spearman rho correlation and univariate Cox regression when applicable. RESULTS: We found high correlations between TL values of different monocyte subsets: CD14++CD16+ vs. CD14++CD16-, R = 0.95, p < 0.001; CD14++CD16+ vs. CD14+CD16++, R = 0.90, p < 0.001; and CD14++CD16- vs. CD14+CD16++, R = 0.89, p < 0.001. Mean monocyte TL exhibited significant attrition from baseline to the 1-year follow-up (11.1 ± 3.3 vs. 8.3 ± 2.1, p < 0.001). TL did not significantly differ between monocyte subsets at either sampling time-point (all p values > 0.1). Cox regression analyses did not indicate that TL or ΔTL was associated with all-cause death or the composite endpoint. CONCLUSIONS: Overall, this longitudinal study demonstrated a ~ 22% reduction of TL in monocytes from ambulatory patients with HF within 1 year. TL and ΔTL were not related to outcomes over long-term follow-up.


Subject(s)
Heart Failure/metabolism , In Situ Hybridization, Fluorescence , Monocytes/metabolism , Telomere/metabolism , Aged , Female , Hospitalization , Humans , Longitudinal Studies , Male , Proportional Hazards Models , Telomere Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL