Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.610
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 35: 337-370, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28142321

ABSTRACT

Transcriptomics, the high-throughput characterization of RNAs, has been instrumental in defining pathogenic signatures in human autoimmunity and autoinflammation. It enabled the identification of new therapeutic targets in IFN-, IL-1- and IL-17-mediated diseases. Applied to immunomonitoring, transcriptomics is starting to unravel diagnostic and prognostic signatures that stratify patients, track molecular changes associated with disease activity, define personalized treatment strategies, and generally inform clinical practice. Herein, we review the use of transcriptomics to define mechanistic, diagnostic, and predictive signatures in human autoimmunity and autoinflammation. We discuss some of the analytical approaches applied to extract biological knowledge from high-dimensional data sets. Finally, we touch upon emerging applications of transcriptomics to study eQTLs, B and T cell repertoire diversity, and isoform usage.


Subject(s)
Autoimmune Diseases/diagnosis , Inflammation/diagnosis , Transcriptome , Autoimmune Diseases/immunology , Datasets as Topic , High-Throughput Nucleotide Sequencing , Humans , Inflammation/immunology , Information Storage and Retrieval , Molecular Targeted Therapy , Monitoring, Immunologic , Prognosis
2.
Trends Biochem Sci ; 49(9): 791-803, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38937222

ABSTRACT

Atherosclerosis, a chronic inflammatory condition, remains a leading cause of death globally, necessitating innovative approaches to target pro-atherogenic pathways. Recent advancements in the field of immunometabolism have highlighted the crucial interplay between metabolic pathways and immune cell function in atherogenic milieus. Macrophages and T cells undergo dynamic metabolic reprogramming to meet the demands of activation and differentiation, influencing plaque progression. Furthermore, metabolic intermediates intricately regulate immune cell responses and atherosclerosis development. Understanding the metabolic control of immune responses in atherosclerosis, known as athero-immunometabolism, offers new avenues for preventive and therapeutic interventions. This review elucidates the emerging intricate interplay between metabolism and immunity in atherosclerosis, underscoring the significance of metabolic enzymes and metabolites as key regulators of disease pathogenesis and therapeutic targets.


Subject(s)
Atherosclerosis , Macrophages , Atherosclerosis/metabolism , Atherosclerosis/immunology , Humans , Animals , Macrophages/metabolism , Macrophages/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/immunology
3.
Trends Immunol ; 44(12): 1014-1030, 2023 12.
Article in English | MEDLINE | ID: mdl-37951789

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal chronic interstitial lung disease (ILD) that affects lung mechanical functions and gas exchange. IPF is caused by increased fibroblast activity and collagen deposition that compromise the alveolar-capillary barrier. Identifying an effective therapy for IPF remains a clinical challenge. Chemokines are key proteins in cell communication that have functions in immunity as well as in tissue homeostasis, damage, and repair. Chemokine receptor signaling induces the activation and proliferation of lung-resident cells, including alveolar macrophages (AMs) and fibroblasts. AMs are an important source of chemokines and cytokines during IPF. We highlight the complexity of this system and, based on insights from genetic and transcriptomic studies, propose a new role for homeostatic chemokine imbalance in IPF, with implications for putative therapeutic targets.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/etiology , Idiopathic Pulmonary Fibrosis/metabolism , Chemokines/metabolism , Macrophages, Alveolar , Cytokines/metabolism , Signal Transduction , Lung
4.
Proc Natl Acad Sci U S A ; 120(40): e2300215120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37774095

ABSTRACT

The phenomenon of protein phase separation (PPS) underlies a wide range of cellular functions. Correspondingly, the dysregulation of the PPS process has been associated with numerous human diseases. To enable therapeutic interventions based on the regulation of this association, possible targets should be identified. For this purpose, we present an approach that combines the multiomic PandaOmics platform with the FuzDrop method to identify PPS-prone disease-associated proteins. Using this approach, we prioritize candidates with high PandaOmics and FuzDrop scores using a profiling method that accounts for a wide range of parameters relevant for disease mechanism and pharmacological intervention. We validate the differential phase separation behaviors of three predicted Alzheimer's disease targets (MARCKS, CAMKK2, and p62) in two cell models of this disease. Overall, the approach that we present generates a list of possible therapeutic targets for human diseases associated with the dysregulation of the PPS process.


Subject(s)
Alzheimer Disease , Multiomics , Humans , Proteins , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase
5.
Semin Cancer Biol ; 106-107: 58-86, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197810

ABSTRACT

Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110ß, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.

6.
Article in English | MEDLINE | ID: mdl-39354291

ABSTRACT

The mitochondrion is an essential cell organelle known as the powerhouse of the cell. Mitochondrial ribosomal proteins (MRPs) are nuclear encoded, synthesised in the cytoplasm but perform their main functions in the mitochondria, which includes translation, transcription, cell death and maintenance. However, MRPs have also been implicated in cancer, particularly advanced disease and metastasis across a broad range of cancer types, where they play a central role in cell survival and progression. For some, their altered expression has been investigated as potential prognostic markers, and/or therapeutic targets, which is the focus of this review. Several therapies targeting MRPs are currently approved by the Food and Drug Administration and the European Medicines Agency for use in other diseases, revealing the opportunity for repurposing their use in advanced and metastatic cancer. Herein, we review the evidence supporting key MRPs as molecular drivers of advanced disease in multiple cancer types. We also highlight promising avenues for future use of MRPs as precision targets in the treatment of late-stage cancers for which there are currently very limited effective treatment options.

7.
Cancer Metastasis Rev ; 43(1): 501-574, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37792223

ABSTRACT

Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.


Subject(s)
Hypoxia-Inducible Factor 1 , Neoplasms , Humans , Cell Line, Tumor , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Neoplasms/drug therapy , Neoplasms/pathology , Neovascularization, Pathologic , Signal Transduction
8.
Cancer Metastasis Rev ; 43(3): 1055-1074, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38558156

ABSTRACT

Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.


Subject(s)
Neoplasm Metastasis , RNA, Circular , Urologic Neoplasms , Humans , RNA, Circular/genetics , RNA, Circular/physiology , Animals , Urologic Neoplasms/genetics , Urologic Neoplasms/pathology , Urologic Neoplasms/therapy , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
9.
Hum Genomics ; 18(1): 42, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659038

ABSTRACT

BACKGROUND: The integration of transcriptomic, proteomic, druggable genetic and metabolomic association studies facilitated a comprehensive investigation of molecular features and shared pathways for cancers' development and progression. METHODS: Comprehensive approaches consisting of transcriptome-wide association studies (TWAS), proteome-wide association studies (PWAS), summary-data-based Mendelian randomization (SMR) and MR were performed to identify genes significantly associated with cancers. The results identified in above analyzes were subsequently involved in phenotype scanning and enrichment analyzes to explore the possible health effects and shared pathways. Additionally, we also conducted MR analysis   to investigate metabolic pathways related to cancers. RESULTS: Totally 24 genes (18 transcriptomic, 1 proteomic and 5 druggable genetic) showed significant associations with cancers risk. All genes identified in multiple methods were mainly enriched in nuclear factor erythroid 2-related factor 2 (NRF2) pathway. Additionally, biosynthesis of ubiquinol and urate were found to play an important role in gastrointestinal tumors. CONCLUSIONS: A set of putatively causal genes and pathways relevant to cancers were identified in this study, shedding light on the shared biological processes for tumorigenesis and providing compelling genetic evidence to prioritize anti-cancer drugs development.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/drug therapy , Genome-Wide Association Study , Proteomics , Transcriptome/genetics , Mendelian Randomization Analysis , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Metabolomics/methods , Metabolic Networks and Pathways/genetics , Genetic Predisposition to Disease , Multiomics
10.
J Pathol ; 262(3): 377-389, 2024 03.
Article in English | MEDLINE | ID: mdl-38180387

ABSTRACT

High-fat diet (HFD) mouse models are widely used in research to develop medications to treat non-alcoholic fatty liver disease (NAFLD), as they mimic the steatosis, inflammation, and hepatic fibrosis typically found in this complex human disease. The aims of this study were to identify a complete transcriptomic signature of these mouse models and to characterize the transcriptional impact exerted by different experimental anti-steatotic treatments. For this reason, we conducted a systematic review and meta-analysis of liver transcriptomic studies performed in HFD-fed C57BL/6J mice, comparing them with control mice and HFD-fed mice receiving potential anti-steatotic treatments. Analyzing 21 studies broaching 24 different treatments, we obtained a robust HFD transcriptomic signature that included 2,670 differentially expressed genes and 2,567 modified gene ontology biological processes. Treated HFD mice generally showed a reversion of this HFD signature, although the extent varied depending on the treatment. The biological processes most frequently reversed were those related to lipid metabolism, response to stress, and immune system, whereas processes related to nitrogen compound metabolism were generally not reversed. When comparing this HFD signature with a signature of human NAFLD progression, we identified 62 genes that were common to both; 10 belonged to the group that were reversed by treatments. Altered expression of most of these 10 genes was confirmed in vitro in hepatocytes and hepatic stellate cells exposed to a lipotoxic or a profibrogenic stimulus, respectively. In conclusion, this study provides a vast amount of information about transcriptomic changes induced during the progression and regression of NAFLD and identifies some relevant targets. Our results may help in the assessment of treatment efficacy, the discovery of unmet therapeutic targets, and the search for novel biomarkers. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Liver/pathology , Diet, High-Fat , Mice, Inbred C57BL , Gene Expression Profiling
11.
Mol Cell Proteomics ; 22(6): 100567, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37172717

ABSTRACT

Nasopharyngeal carcinoma (NPC), a malignant tumor distinctly characterized by ethnic and geographic distribution, is highly prevalent in Southern China and Southeast Asia. However, the molecular mechanisms of NPC have not been fully revealed at the proteomic level. In this study, 30 primary NPC samples and 22 normal nasopharyngeal epithelial tissues were collected for proteomics analysis, and a relatively complete proteomics landscape of NPC was depicted for the first time. By combining differential expression analysis, differential co-expression analysis, and network analysis, potential biomarkers and therapeutic targets were identified. Some identified targets were verified by biological experiments. We found that 17-AAG, a specific inhibitor of the identified target heat shock protein 90 (HSP90), could be a potential therapeutic drug for NPC. Finally, consensus clustering identified two NPC subtypes with specific molecular features. The subtypes and the related molecules were verified by an independent data set and may have different progression-free survival. The results of this study provide a comprehensive understanding of the proteomics molecular signatures of NPC and provide new perspectives and inspiration for prognostic determination and treatment of NPC.


Subject(s)
Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma , Carcinoma/metabolism , Nasopharyngeal Neoplasms/metabolism , Proteomics/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
12.
Mol Cell Proteomics ; 22(7): 100578, 2023 07.
Article in English | MEDLINE | ID: mdl-37209814

ABSTRACT

Increasing proteomic studies focused on epithelial ovarian cancer (EOC) have attempted to identify early disease biomarkers, establish molecular stratification, and discover novel druggable targets. Here we review these recent studies from a clinical perspective. Multiple blood proteins have been used clinically as diagnostic markers. The ROMA test integrates CA125 and HE4, while the OVA1 and OVA2 tests analyze multiple proteins identified by proteomics. Targeted proteomics has been widely used to identify and validate potential diagnostic biomarkers in EOCs, but none has yet been approved for clinical adoption. Discovery of proteomic characterization of bulk EOC tissue specimens has uncovered a large number of dysregulated proteins, proposed new stratification schemes, and revealed novel targets of therapeutic potential. A major hurdle facing clinical translation of these stratification schemes based on bulk proteomic profiling is intra-tumor heterogeneity, namely that single tumor specimens may harbor molecular features of multiple subtypes. We reviewed over 2500 interventional clinical trials of ovarian cancers since 1990 and cataloged 22 types of interventions adopted in these trials. Among 1418 clinical trials which have been completed or are not recruiting new patients, about 50% investigated chemotherapies. Thirty-seven clinical trials are at phase 3 or 4, of which 12 focus on PARP, 10 on VEGFR, 9 on conventional anti-cancer agents, and the remaining on sex hormones, MEK1/2, PD-L1, ERBB, and FRα. Although none of the foregoing therapeutic targets were discovered by proteomics, newer targets discovered by proteomics, including HSP90 and cancer/testis antigens, are being tested also in clinical trials. To accelerate the translation of proteomic findings to clinical practice, future studies need to be designed and executed to the stringent standards of practice-changing clinical trials. We anticipate that the rapidly evolving technology of spatial and single-cell proteomics will deconvolute the intra-tumor heterogeneity of EOCs, further facilitating their precise stratification and superior treatment outcomes.


Subject(s)
Neoplasms, Glandular and Epithelial , Ovarian Neoplasms , Humans , Female , Carcinoma, Ovarian Epithelial , Proteomics , WAP Four-Disulfide Core Domain Protein 2 , Biomarkers, Tumor , Algorithms , Ovarian Neoplasms/pathology , Proteins/metabolism
13.
Article in English | MEDLINE | ID: mdl-39321991

ABSTRACT

Cough and itch are protective mechanisms in the body. Cough occurs as a reflex motor response to foreign body inhalation, while itch is a sensation that similarly evokes a scratch response to remove irritants from the skin. Both cough and itch can last for sustained periods, leading to debilitating chronic disorders that negatively impact quality of life. Understanding the parallels and differences between chronic cough and chronic itch may be paramount to developing novel therapeutic approaches. In this article, we identify connections in the mechanisms contributing to the complex cough and scratch reflexes and summarize potential shared therapeutic targets. An online search was performed using various search engines, including PubMed, Web of Science, Google Scholar, and ClinicalTrials.gov from 1983 to 2024. Articles were assessed for quality, and those relevant to the objective were analyzed and summarized. The literature demonstrated similarities in the triggers, peripheral and central nervous system processing, feedback mechanisms, immunologic mediators, and receptors involved in the cough and itch responses, with the neuronal sensitization processes exhibiting the greatest parallels between cough and itch. Given the substantial impact on quality of life, novel therapies targeting similar neuroimmune pathways may apply to both itch and cough and provide new avenues for enhancing their management.

14.
Semin Cancer Biol ; 92: 28-41, 2023 07.
Article in English | MEDLINE | ID: mdl-36924812

ABSTRACT

The family of mammalian E2F transcription factors (E2Fs) comprise of 8 members (E2F1-E2F8) classified as activators (E2F1-E2F3) and repressors (E2F4-E2F8) primarily regulating the expression of several genes related to cell proliferation, apoptosis and differentiation, mainly in a cell cycle-dependent manner. E2F activity is frequently controlled via the retinoblastoma protein (pRb), cyclins, p53 and the ubiquitin-proteasome pathway. Additionally, genetic or epigenetic changes result in the deregulation of E2F family genes expression altering S phase entry and apoptosis, an important hallmark for the onset and development of cancer. Although studies reveal E2Fs to be involved in several human malignancies, the mechanisms underlying the role of E2Fs in oral cancer lies nascent and needs further investigations. This review focuses on the role of E2Fs in oral cancer and the etiological factors regulating E2Fs activity, which in turn transcriptionally control the expression of their target genes, thus contributing to cell proliferation, metastasis, and drug/therapy resistance. Further, we will discuss therapeutic strategies for E2Fs, which may prevent oral tumor growth, metastasis, and drug resistance.


Subject(s)
Mouth Neoplasms , Transcription Factors , Animals , Humans , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , Transcription Factors/genetics , Cell Cycle , Cell Cycle Proteins/metabolism , Mouth Neoplasms/genetics , Mammals/metabolism
15.
Semin Cell Dev Biol ; 123: 74-81, 2022 03.
Article in English | MEDLINE | ID: mdl-34303607

ABSTRACT

Gut hormones secreted from enteroendocrine cells following nutrient ingestion modulate metabolic processes including glucose homeostasis and food intake, and several of these gut hormones are involved in the regulation of the energy demanding process of bone remodelling. Here, we review the gut hormones considered or known to be involved in the gut-bone crosstalk and their role in orchestrating adaptions of bone formation and resorption as demonstrated in cellular and physiological experiments and clinical trials. Understanding the physiology and pathophysiology of the gut-bone axis may identify adverse effects of investigational drugs aimed to treat metabolic diseases such as type 2 diabetes and obesity and new therapeutic candidates for the treatment of bone diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Hormones , Diabetes Mellitus, Type 2/metabolism , Enteroendocrine Cells/metabolism , Gastrointestinal Hormones/metabolism , Gastrointestinal Tract/metabolism , Humans , Obesity/metabolism
16.
J Cell Mol Med ; 28(17): e70065, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39233332

ABSTRACT

Glioblastoma multiforme (GBM) is a malignant tumour with a poor prognosis. Therefore, potential treatment strategies and novel therapeutic targets have gained increased attention. Our data showed that the ethanol extract of Vanilla planifolia stem (VAS) significantly decreased the viability and the colony formation of GBM cells. Moreover, VAS induced the cleavage of MAP1LC3, a marker of autophagy. Further RNA-seq and bioinformatic analysis revealed 4248 differentially expressed genes (DEGs) between VAS-treated GBM cells and the control cells. Protein-protein interactions between DEGs with fold changes less than -3 and more than 5 were further analysed, and we found that 16 and 9 hub DEGs, respectively, were correlated with other DEGs. Further qPCR experiments confirmed that 14 hub DEGs was significantly downregulated and 9 hub DEGs was significantly upregulated. In addition, another significantly downregulated DEG, p21-activated kinase 6 (PAK6), was correlated with the overall survival of GBM patients. Further validation experiments confirmed that VAS significantly reduced the mRNA and protein expression of PAK6, which led to the abolition of cell viability and colony formation. These findings demonstrated that VAS reduced cell viability, suppressed colony formation and induced autophagy and revealed PAK6 and other DEGs as potential therapeutic targets for GBM treatment.


Subject(s)
Autophagy , Gene Expression Regulation, Neoplastic , Glioblastoma , Plant Extracts , p21-Activated Kinases , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Plant Extracts/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Autophagy/drug effects , Cell Survival/drug effects , Plant Stems/chemistry , Ethanol , Cell Proliferation/drug effects , Protein Interaction Maps/drug effects , Cell Death/drug effects
17.
J Cell Mol Med ; 28(7): e18159, 2024 04.
Article in English | MEDLINE | ID: mdl-38494861

ABSTRACT

Gastric cancer (GC) represents a major global health burden and is responsible for a significant number of cancer-related fatalities. Its complex nature, characterized by heterogeneity and aggressive behaviour, poses considerable challenges for effective diagnosis and treatment. Single-cell RNA sequencing (scRNA-seq) has emerged as an important technique, offering unprecedented precision and depth in gene expression profiling at the cellular level. By facilitating the identification of distinct cell populations, rare cells and dynamic transcriptional changes within GC, scRNA-seq has yielded valuable insights into tumour progression and potential therapeutic targets. Moreover, this technology has significantly improved our comprehension of the tumour microenvironment (TME) and its intricate interplay with immune cells, thereby opening avenues for targeted therapeutic strategies. Nonetheless, certain obstacles, including tumour heterogeneity and technical limitations, persist in the field. Current endeavours are dedicated to refining protocols and computational tools to surmount these challenges. In this narrative review, we explore the significance of scRNA-seq in GC, emphasizing its advantages, challenges and potential applications in unravelling tumour heterogeneity and identifying promising therapeutic targets. Additionally, we discuss recent developments, ongoing efforts to overcome these challenges, and future prospects. Although further enhancements are required, scRNA-seq has already provided valuable insights into GC and holds promise for advancing biomedical research and clinical practice.


Subject(s)
Biomedical Research , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Gene Expression Profiling , Sequence Analysis, RNA , Tumor Microenvironment/genetics
18.
J Cell Physiol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888012

ABSTRACT

Sepsis is a systemic inflammatory reaction caused by infection, and severe sepsis can develop into septic shock, eventually leading to multiorgan dysfunction and even death. In recent years, studies have shown that mitochondrial damage is closely related to the occurrence and development of sepsis. Recent years have seen a surge in concern over mitochondrial DNA (mtDNA), as anomalies in this material can lead to cellular dysfunction, disruption of aerobic respiration, and even death of the cell. In this review, we discuss the latest findings on the mechanisms of mitochondrial damage and the molecular mechanisms controlling mitochondrial mtDNA release. We also explored the connection between mtDNA misplacement and inflammatory activation. Additionally, we propose potential therapeutic targets of mtDNA for sepsis treatment.

19.
Glia ; 72(2): 227-244, 2024 02.
Article in English | MEDLINE | ID: mdl-37650384

ABSTRACT

Microglia are the resident phagocytes of the brain, where they primarily function in the clearance of dead cells and the removal of un- or misfolded proteins. The impaired activity of receptors or proteins involved in phagocytosis can result in enhanced inflammation and neurodegeneration. RNA-seq and genome-wide association studies have linked multiple phagocytosis-related genes to neurodegenerative diseases, while the knockout of such genes has been demonstrated to exert protective effects against neurodegeneration in animal models. The failure of microglial phagocytosis influences AD-linked pathologies, including amyloid ß accumulation, tau propagation, neuroinflammation, and infection. However, a precise understanding of microglia-mediated phagocytosis in Alzheimer's disease (AD) is still lacking. In this review, we summarize current knowledge of the molecular mechanisms involved in microglial phagocytosis in AD across a wide range of pre-clinical, post-mortem, ex vivo, and clinical studies and review the current limitations regarding the detection of microglia phagocytosis in AD. Finally, we discuss the rationale of targeting microglial phagocytosis as a therapeutic strategy for preventing AD or slowing its progression.


Subject(s)
Alzheimer Disease , Animals , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Microglia/metabolism , Genome-Wide Association Study , Phagocytosis , Brain/metabolism
20.
Mol Cancer ; 23(1): 122, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844984

ABSTRACT

Metastasis remains the principal cause of cancer-related lethality despite advancements in cancer treatment. Dysfunctional epigenetic alterations are crucial in the metastatic cascade. Among these, super-enhancers (SEs), emerging as new epigenetic regulators, consist of large clusters of regulatory elements that drive the high-level expression of genes essential for the oncogenic process, upon which cancer cells develop a profound dependency. These SE-driven oncogenes play an important role in regulating various facets of metastasis, including the promotion of tumor proliferation in primary and distal metastatic organs, facilitating cellular migration and invasion into the vasculature, triggering epithelial-mesenchymal transition, enhancing cancer stem cell-like properties, circumventing immune detection, and adapting to the heterogeneity of metastatic niches. This heavy reliance on SE-mediated transcription delineates a vulnerable target for therapeutic intervention in cancer cells. In this article, we review current insights into the characteristics, identification methodologies, formation, and activation mechanisms of SEs. We also elaborate the oncogenic roles and regulatory functions of SEs in the context of cancer metastasis. Ultimately, we discuss the potential of SEs as novel therapeutic targets and their implications in clinical oncology, offering insights into future directions for innovative cancer treatment strategies.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Animals , Epigenesis, Genetic , Molecular Targeted Therapy , Epithelial-Mesenchymal Transition
SELECTION OF CITATIONS
SEARCH DETAIL