Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Biol Evol ; 40(10)2023 10 04.
Article in English | MEDLINE | ID: mdl-37874344

ABSTRACT

Marine microbes like diatoms make up the base of marine food webs and drive global nutrient cycles. Despite their key roles in ecology, biogeochemistry, and biotechnology, we have limited empirical data on how forces other than adaptation may drive diatom diversification, especially in the absence of environmental change. One key feature of diatom populations is frequent extreme reductions in population size, which can occur both in situ and ex situ as part of bloom-and-bust growth dynamics. This can drive divergence between closely related lineages, even in the absence of environmental differences. Here, we combine experimental evolution and transcriptome landscapes (t-scapes) to reveal repeated evolutionary divergence within several species of diatoms in a constant environment. We show that most of the transcriptional divergence can be captured on a reduced set of axes, and that repeatable evolution can occur along a single major axis of variation defined by core ortholog expression comprising common metabolic pathways. Previous work has associated specific transcriptional changes in gene networks with environmental factors. Here, we find that these same gene networks diverge in the absence of environmental change, suggesting these pathways may be central in generating phenotypic diversity as a result of both selective and random evolutionary forces. If this is the case, these genes and the functions they encode may represent universal axes of variation. Such axes that capture suites of interacting transcriptional changes during diversification improve our understanding of both global patterns in local adaptation and microdiversity, as well as evolutionary forces shaping algal cultivation.


Subject(s)
Diatoms , Diatoms/genetics , Diatoms/metabolism , Gene Regulatory Networks , Transcriptome
2.
Mod Pathol ; 37(9): 100560, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972356

ABSTRACT

Pulmonary sclerosing pneumocytoma (PSP) is a rare, distinctive benign lung adenoma of pneumocyte origin. Despite its rarity, the tumor's unique cellular morphology has sparked ongoing debates regarding the origin of its constituent cells. This study aimed to elucidate the molecular features of PSP tumor cells and enhance our understanding of the cellular processes contributing to PSP formation and biological behavior. Tissue samples from PSP and corresponding normal lung tissues (n = 4) were collected. We employed single-cell RNA sequencing and microarray-based spatial transcriptomic analyses to identify cell types and investigate their transcriptomes, with a focus on transcription factors, enriched gene expression, and single-cell trajectory evaluations. Our analysis identified 2 types of tumor cells: mesenchymal-epithelial dual-phenotype (MEDP) cells and a distinct subpopulation of type II alveolar epithelial cells exhibiting characteristics slightly reminiscent of type I alveolar epithelial cells (AT2Cs) corresponding to histologic round stromal cells and surface cuboidal cells, respectively. MEDP cells displayed weak alveolar epithelial differentiation but strong collagen production capabilities, as indicated by the expression of both TTF-1 and vimentin. These cells played a pivotal role in forming the solid and sclerotic areas of PSP. Moreover, MEDP cells exhibited a pronounced propensity for epithelial-mesenchymal transition, suggesting a greater potential for metastasis compared with AT2Cs. The capillary endothelial cells of PSP displayed notable diversity. Overall, this study provides, for the first time, a comprehensive mapping of the single-cell transcriptome profile of PSP. Our findings delineate 2 distinct subtypes of tumor cells, MEDP cells and AT2Cs, each with its own biological characteristics and spatial distribution. A deeper understanding of these cell types promises insights into the histology and biological behaviors of this rare tumor.

3.
Adv Clin Exp Med ; 33(1): 79-90, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37341175

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is a common clinical cancer with high mortality. The lectin galactoside-binding soluble 1 (LGALS1) is an RNA-binding protein (RBP) involved in NSCLC progression. Alternative splicing (AS) is a vital function of RBPs that contributes to tumor progression. It is unknown whether LGALS1 regulates NSCLC progression through AS events. OBJECTIVES: To profile the transcriptomic landscape and LGALS1-regulated AS events in NSCLC. MATERIAL AND METHODS: The A549 cells either with silenced LGALS1 (siLGALS1 group) or without them (siCtrl group) were subjected to RNA sequencing; differentially expressed genes (DEGs) and AS events were discovered and then the AS ratio was validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: High LGALS1 expression indicates poor overall survival (OS), first progression (FP) and post-progression survival (PPS). A total of 225 DEGs were identified, including 81 downregulated and 144 upregulated in the siLGALS1 group compared to the siCtrl group. Differentially expressed genes were mainly enriched in interaction-related Gene Ontology (GO) terms and involved in cGMP-protein kinase G (PKG) and calcium signaling pathways. The RT-qPCR validation showed that the expressions of ELMO1 and KCNJ2 were upregulated, while HSPA6 was downregulated after LGALS1 silencing. The expressions of KCNJ2 and ELMO1 were upregulated to a peak at 48 h after LGALS1 knockdown, while HSPA6 expression decreased, after which their expressions returned to baseline. The overexpression of LGALS1 rescued the elevation in KCNJ2 and ELMO1 expression, and decrease in HSPA6 expression induced by siLGALS1. A total of 69,385 LGALS1-related AS events were detected, which produced 433 upregulated and 481 downregulated AS events after LGALS1 silencing. The LGALS1-related AS genes were mainly enriched in the apoptosis and ErbB signaling pathways. The LGALS1 silencing led to a decrease in the AS ratio of BCAP29 and an increase in CSNKIE and MDFIC. CONCLUSIONS: We characterized the transcriptomic landscape and profiled AS events in A549 cells following LGALS1 silencing. Our study provides abundant candidate markers and new insights into NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Galectin 1/genetics , Galectin 1/metabolism , Alternative Splicing , Gene Expression Profiling , Sequence Analysis, RNA , Membrane Proteins/genetics , Membrane Proteins/metabolism
4.
Front Immunol ; 14: 1090637, 2023.
Article in English | MEDLINE | ID: mdl-36817437

ABSTRACT

Intervertebral disk degeneration (IDD) is a chronic inflammatory disease with intricate connections between immune infiltration and oxidative stress (OS). Complex cell niches exist in degenerative intervertebral disk (IVD) and interact with each other and regulate the disk homeostasis together. However, few studies have used longitudinal approach to describe the immune response of IDD progression. Here, we conducted conjoint analysis of bulk-RNA sequencing and single-cell sequencing, together with a series of techniques like weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, and differential analysis, to systematically decipher the difference in OS-related functions of different cell populations within degenerative IVD tissues, and further depicted the longitudinal alterations of immune cells, especially monocytes/macrophages in the progression of IDD. The OS-related genes CYP1A1, MMP1, CCND1, and NQO1 are highly expressed and might be diagnostic biomarkers for the progression of IDD. Further landscape of IVD microenvironment showed distinct changes in cell proportions and characteristics at late degeneration compared to early degeneration of IDD. Monocytes/macrophages were classified into five distinct subpopulations with different roles. The trajectory lineage analysis revealed transcriptome alterations from effector monocytes/macrophages and regulatory macrophages to other subtypes during the evolution process and identified monocytes/macrophage subpopulations that had rapidly experienced the activation of inflammatory or anti-inflammatory responses. This study further proposed that personalized therapeutic strategies are needed to be formulated based on specific monocyte/macrophage subtypes and degenerative stages of IDD.


Subject(s)
Intervertebral Disc Degeneration , Humans , Monocytes , Transcriptome , Base Sequence , Macrophages
5.
J Biomol Struct Dyn ; : 1-24, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37902557

ABSTRACT

Intervertebral disc degeneration (IDD) is a progressive and chronic disease, the mechanisms have been studied extensively as a whole, while the cellular heterogeneity of cells in nucleus pulposus (NP) tissues remained controversial for a long time. This study conducted integrated analysis through single-cell sequencing analysis, weighted gene co-expression network analysis (WGCNA), and differential expression analysis, to systematically decipher the longitudinal alterations of distinct NP subtypes, and also analyzed the most essential genes in the development of IDD. Then, this study further conducted structural biology method to discover the potential lead compounds through a suite of advanced approaches like high-throughput screening (HTVS), pharmaceutical characteristics assessment, CDOCKER module as well as molecular dynamics simulation, etc., aiming to ameliorate the progression of IDD. Totally 5 NP subpopulations were identified with distinct biological functions based on their unique gene expression patterns. The predominant dynamics changes mainly involved RegNPs and EffNPs, the RegNPs were mainly aggregated in normal NP tissues and drastically decreased in degenerative NP, while EffNPs, as pathogenic subtype, exhibited opposite phenomenon. Importantly, this study further reported the essential roles of Menaquinone in alleviating degenerative NP cells for the first time, which could provide solid evidence for the application of nutritional therapy in the treatment of IDD. This study combined scRNA-seq, bulk-RNA seq and HTVS techniques to systematically decipher the longitudinal changes of NP subtypes during IDD. EffNPs were considered to be 'chief culprit' in IDD progression, while the novel natural drug Menaquinone could reverse this phenomenon.Communicated by Ramaswamy H. Sarma.

6.
Front Plant Sci ; 13: 983460, 2022.
Article in English | MEDLINE | ID: mdl-36110360

ABSTRACT

Plants must reprogram gene expression to adapt constantly changing environmental temperatures. With the increased occurrence of extremely low temperatures, the negative effects on plants, especially on growth and development, from cold stress are becoming more and more serious. In this research, strand-specific RNA sequencing (ssRNA-seq) was used to explore the dynamic changes in the transcriptome landscape of Arabidopsis thaliana exposed to cold temperatures (4°C) at different times. In total, 7,623 differentially expressed genes (DEGs) exhibited dynamic temporal changes during the cold treatments. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were enriched in cold response, secondary metabolic processes, photosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction pathways. Meanwhile, long non-coding RNAs (lncRNAs) were identified after the assembly of the transcripts, from which 247 differentially expressed lncRNAs (DElncRNAs) and their potential target genes were predicted. 3,621 differentially alternatively spliced (DAS) genes related to RNA splicing and spliceosome were identified, indicating enhanced transcriptome complexity due to the alternative splicing (AS) in the cold. In addition, 739 cold-regulated transcription factors (TFs) belonging to 52 gene families were identified as well. This research analyzed the dynamic changes of the transcriptome landscape in response to cold stress, which reveals more complete transcriptional patterns during short- and long-term cold treatment and provides new insights into functional studies of that how plants are affected by cold stress.

7.
Article in English | MEDLINE | ID: mdl-31244775

ABSTRACT

Adverse prenatal conditions are known to impose significant trade-offs impinging on health and disease balance during adult life. Among several deleterious factors associated with complicated pregnancy, alteration of the gestational photoperiod remains largely unknown. Previously, we reported that prenatal manipulation of the photoperiod has adverse effects on the mother, fetus, and adult offspring; including cardiac hypertrophy. Here, we investigated whether chronic photoperiod shifting (CPS) during gestation may program adult renal function and blood pressure regulation. To this end, pregnant rats were subjected to CPS throughout pregnancy to evaluate the renal effects on the fetus and adult offspring. In the kidney at 18 days of gestation, both clock and clock-controlled gene expression did not display a daily pattern, although there were recurrent weaves of transcriptional activity along the 24 h in the control group. Using DNA microarray, significant differential expression was found for 1,703 transcripts in CPS relative to control fetal kidney (835 up-regulated and 868 down-regulated). Functional genomics assessment revealed alteration of diverse gene networks in the CPS fetal kidney, including regulation of transcription, aldosterone-regulated Na+ reabsorption and connective tissue differentiation. In adult offspring at 90 days of age, circulating proinflammatory cytokines IL-1ß and IL-6 were increased under CPS conditions. In these individuals, CPS did not modify kidney clock gene expression but had effects on different genes with specific functions in the nephron. Next, we evaluated several renal markers and the response of blood pressure to 4%NaCl in the diet for 4 weeks (i.e., at 150 days of age). CPS animals displayed elevated systolic blood pressure in basal conditions that remained elevated in response to 4%NaCl, relative to control conditions. At this age, CPS modified the expression of Nhe3, Ncc, Atp1a1, Nr3c1 (glucocorticoid receptor), and Nr3c2 (mineralocorticoid receptor); while Nkcc, Col3A1, and Opn were modified in the CPS 4%+NaCl group. Furthermore, CPS decreased protein expression of Kallikrein and COX-2, both involved in sodium handling. In conclusion, gestational chronodisruption programs kidney dysfunction at different levels, conceivably underlying the prehypertensive phenotype observed in the adult CPS offspring.

8.
Plant Methods ; 15: 114, 2019.
Article in English | MEDLINE | ID: mdl-31624491

ABSTRACT

BACKGROUND: Thorough understanding of complex model systems requires the characterisation of processes in different cell types of an organism. This can be achieved with high-throughput spatial transcriptomics at a large scale. However, for plant model systems this is still challenging as suitable transcriptomics methods are sparsely available. Here we present GaST-seq (Grid-assisted, Spatial Transcriptome sequencing), an easy to adopt, micro-scale spatial-transcriptomics workflow that allows to study expression profiles across small areas of plant tissue at a fraction of the cost of existing sequencing-based methods. RESULTS: We compare the GaST-seq method with widely used library preparation methods (Illumina TruSeq). In spatial experiments we show that the GaST-seq method is sensitive enough to identify expression differences across a plant organ. We further assess the spatial transcriptome response of Arabidopsis thaliana leaves exposed to the bacterial molecule flagellin-22, and show that with eukaryotic (Albugo laibachii) infection both host and pathogen spatial transcriptomes are obtained. CONCLUSION: We show that our method can be used to identify known, rapidly flagellin-22 elicited genes, plant immune response pathways to bacterial attack and spatial expression patterns of genes associated with these pathways.

9.
Sci China Life Sci ; 60(4): 363-369, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28251461

ABSTRACT

The diverse morphologies among vertebrate species stems from the evolution of a basic body plan that is constituted by a spatially organized ensemble of tissue lineage progenitors. At gastrulation, this body plan is established through a coordinated morphogenetic process and the delineation of tissue lineages that are driven by the activity of the genome. To explore the molecular mechanisms, in a comprehensive context, it is imperative to glean an understanding of the region- and population-specific genetic activity underpinning this fundamental developmental process. In this review, we outline the recent progresses and the future directions in studies of genome activity for the regulation of mouse embryogenesis at gastrulation.


Subject(s)
Embryonic Development/genetics , Gastrulation , Genome , Animals , Body Patterning , Gene Expression Regulation, Developmental , Mice
SELECTION OF CITATIONS
SEARCH DETAIL