Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34233163

ABSTRACT

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Subject(s)
Microphthalmia-Associated Transcription Factor/metabolism , NADP Transhydrogenases/metabolism , Skin Pigmentation/radiation effects , Ultraviolet Rays , Animals , Cell Line , Cohort Studies , Cyclic AMP/metabolism , DNA Damage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Genetic Predisposition to Disease , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Melanosomes/drug effects , Melanosomes/metabolism , Melanosomes/radiation effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , NADP Transhydrogenases/antagonists & inhibitors , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Polymorphism, Single Nucleotide/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Proteolysis/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Skin Pigmentation/drug effects , Skin Pigmentation/genetics , Ubiquitin/metabolism , Zebrafish
2.
J Biol Chem ; 298(9): 102304, 2022 09.
Article in English | MEDLINE | ID: mdl-35933012

ABSTRACT

Soluble pyridine nucleotide transhydrogenases (STHs) are flavoenzymes involved in the redox homeostasis of the essential cofactors NAD(H) and NADP(H). They catalyze the reversible transfer of reducing equivalents between the two nicotinamide cofactors. The soluble transhydrogenase from Escherichia coli (SthA) has found wide use in both in vivo and in vitro applications to steer reducing equivalents toward NADPH-requiring reactions. However, mechanistic insight into SthA function is still lacking. In this work, we present a biochemical characterization of SthA, focusing for the first time on the reactivity of the flavoenzyme with molecular oxygen. We report on oxidase activity of SthA that takes place both during transhydrogenation and in the absence of an oxidized nicotinamide cofactor as an electron acceptor. We find that this reaction produces the reactive oxygen species hydrogen peroxide and superoxide anion. Furthermore, we explore the evolutionary significance of the well-conserved CXXXXT motif that distinguishes STHs from the related family of flavoprotein disulfide reductases in which a CXXXXC motif is conserved. Our mutational analysis revealed the cysteine and threonine combination in SthA leads to better coupling efficiency of transhydrogenation and reduced reactive oxygen species release compared to enzyme variants with mutated motifs. These results expand our mechanistic understanding of SthA by highlighting reactivity with molecular oxygen and the importance of the evolutionarily conserved sequence motif.


Subject(s)
Conserved Sequence , Escherichia coli Proteins , NADP Transhydrogenase, B-Specific , Amino Acid Motifs , Amino Acid Sequence , Cysteine/chemistry , Cysteine/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Flavoproteins/chemistry , Hydrogen Peroxide/chemistry , NAD/metabolism , NADP/metabolism , NADP Transhydrogenase, B-Specific/chemistry , NADP Transhydrogenase, B-Specific/genetics , Niacinamide , Oxygen/chemistry , Superoxides/chemistry , Threonine/chemistry , Threonine/genetics
3.
Toxicol Appl Pharmacol ; 480: 116734, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37924851

ABSTRACT

Human skin is daily exposed to oxidative stresses in the environment such as physical stimulation, chemical pollutants and pathogenic microorganisms, which are likely to cause skin diseases. As important post-translational modifications, protein ubiquitination and deubiquitination play crucial roles in maintaining cellular homeostasis by the proteolytic removal of oxidized proteins. We have previously reported that the expression of ubiquitin-specific protease 47 (USP47), a kind of deubiquitinating enzymes (DUBs), was significantly elevated in response to oxidative stress. However, the role of USP47 in cutaneous oxidative injury remains unclear. Usp47 wild-type (Usp47+/+) mice and Usp47 knockout (Usp47-/-) mice were used to establish two animal models of oxidative skin damage: (1) radiation- and (2) imiquimod (IMQ)-induced skin injury. Loss of Usp47 consistently aggravated mouse skin damage in vivo. Subsequently, we screened 63 upregulated and 170 downregulated proteins between the skin tissues of wild-type and Usp47-/- mice after 35 Gy electron beam radiation using proteomic analysis. Among the dysregulated proteins, nicotinamide nucleotide transhydrogenase (NNT), which has been reported as a significant regulator of oxidative stress and redox homeostasis, was further investigated in detail. Results showed that NNT was regulated by USP47 through direct ubiquitination mediated degradation and involved in the pathogenesis of cutaneous oxidative injury. Knockdown of NNT expression dramatically limited the energy production ability, with elevated mitochondrial reactive oxygen species (ROS) accumulation and increased mitochondrial membrane potential in irradiated HaCaT cells. Taken together, our present findings illustrate the critical role of USP47 in oxidative skin damage by modulating NNT degradation and mitochondrial homeostasis.


Subject(s)
NADP Transhydrogenases , Animals , Humans , Mice , Mitochondria/metabolism , NADP Transhydrogenases/metabolism , Oxidative Stress/physiology , Proteomics , Ubiquitin-Specific Proteases/metabolism
4.
Am J Med Genet A ; 188(1): 89-98, 2022 01.
Article in English | MEDLINE | ID: mdl-34545694

ABSTRACT

Thyroid dysgenesis (TD) accounts for 80% cases of congenital hypothyroidism, which is the most common neonatal disorder. Until now, the gene mutations have been reported associated with TD can only account for 5% cases, suggesting the genetic heterogeneity of the pathology. Nicotinamide nucleotide transhydrogenase (NNT) plays a crucial role in regulating redox homeostasis, patients carrying NNT mutations have been described with a clinical phenotype of hypothyroidism. As TD risk is increased in the context of several syndromes and redox homeostasis is vital for thyroid development and function, NNT might be a candidate gene involved in syndromic TD. Therefore, we performed target sequencing (TS) in 289 TD patients for causative mutations in NNT and conducted functional analysis of the gene mutations. TS and Sanger sequence were used to screen the novel mutations. For functional analysis, we performed western blot, measurement of NADPH/NADPtotal and H2 O2 generation, cell proliferation, and wounding healing assay. As a result, three presumably pathogenic mutations (c.811G > A, p.Ala271Ser; c.2078G > A, p.Arg693His; and c.2581G > A, p.Val861Met) in NNT had been identified. Our results showed the damaging effect of NNT mutations on stability and catalytic activity of proteins and redox balance of cells. In conclusion, our findings provided novel insights into the role of the NNT isotype in thyroid physiopathology and broaden the spectrum of pathogenic genes associated with TD. However, the pathogenic mechanism of NNT in TD is still need to be investigated in further study.


Subject(s)
Congenital Hypothyroidism , NADP Transhydrogenases , Thyroid Dysgenesis , China , Congenital Hypothyroidism/genetics , Humans , Mitochondrial Proteins , Mutation , NADP Transhydrogenase, AB-Specific , NADP Transhydrogenases/genetics , NADP Transhydrogenases/metabolism , Thyroid Dysgenesis/genetics
5.
EMBO Rep ; 21(3): e47832, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31951090

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form (NADP) are vital for cell function in all organisms and form cofactors to a host of enzymes in catabolic and anabolic processes. NAD(P) transhydrogenases (NTHs) catalyse hydride ion transfer between NAD(H) and NADP(H). Membrane-bound NTH isoforms reside in the cytoplasmic membrane of bacteria, and the inner membrane of mitochondria in metazoans, where they generate NADPH. Here, we show that malaria parasites encode a single membrane-bound NTH that localises to the crystalloid, an organelle required for sporozoite transmission from mosquitos to vertebrates. We demonstrate that NTH has an essential structural role in crystalloid biogenesis, whilst its enzymatic activity is required for sporozoite development. This pinpoints an essential function in sporogony to the activity of a single crystalloid protein. Its additional presence in the apicoplast of sporozoites identifies NTH as a likely supplier of NADPH for this organelle during liver infection. Our findings reveal that Plasmodium species have co-opted NTH to a variety of non-mitochondrial organelles to provide a critical source of NADPH reducing power.


Subject(s)
Malaria/transmission , NADP Transhydrogenases , Animals , Mitochondria/genetics , NAD , NADP , NADP Transhydrogenases/genetics
6.
Molecules ; 27(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35956878

ABSTRACT

Nicotinamide nucleotide transhydrogenase (NNT) is involved in decreasing melanogenesis through tyrosinase degradation induced by cellular redox changes. Nicotinamide is a component of coenzymes, such as NAD+, NADH, NADP+, and NADPH, and its levels are modulated by NNT. Vitamin C and polydeoxyribonucleotide (PDRN) are also known to decrease skin pigmentation. We evaluated whether a mixture of nicotinamide, vitamin C, and PDRN (NVP-mix) decreased melanogenesis by modulating mitochondrial oxidative stress and NNT expression in UV-B-irradiated animals and in an in vitro model of melanocytes treated with conditioned media (CM) from UV-B-irradiated keratinocytes. The expression of NNT, GSH/GSSG, and NADPH/NADP+ in UV-B-irradiated animal skin was significantly decreased by UV-B radiation but increased by NVP-mix treatment. The expression of NNT, GSH/GSSG, and NADPH/NADP+ ratios decreased in melanocytes after CM treatment, although they increased after NVP-mix administration. In NNT-silenced melanocytes, the GSH/GSSG and NADPH/NADP+ ratios were further decreased by CM compared with normal melanocytes. NVP-mix decreased melanogenesis signals, such as MC1R, MITF, TYRP1, and TYRP2, and decreased melanosome transfer-related signals, such as RAB32 and RAB27A, in UV-B-irradiated animal skin. NVP-mix also decreased MC1R, MITF, TYRP1, TYRP2, RAB32, and RAB27A in melanocytes treated with CM from UV-irradiated keratinocytes. The expression of MC1R and MITF in melanocytes after CM treatment was unchanged by NNT silencing. However, the expression of TYRP1, TYRP2, RAB32, and RAB27A increased in NNT-silenced melanocytes after CM treatment. NVP-mix also decreased tyrosinase activity and melanin content in UV-B-irradiated animal skin and CM-treated melanocytes. In conclusion, NVP-mix decreased mitochondrial oxidative stress by increasing NNT expression and decreased melanogenesis by decreasing MC1R/MITF, tyrosinase, TYRP1, and TYRP2.


Subject(s)
NADP Transhydrogenases , Animals , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Glutathione Disulfide/metabolism , Melanins , Melanocytes/metabolism , Monophenol Monooxygenase/metabolism , NADP/metabolism , NADP Transhydrogenases/metabolism , Niacinamide/metabolism , Niacinamide/pharmacology , Polydeoxyribonucleotides/metabolism , Vitamins/metabolism
7.
J Biol Chem ; 295(48): 16207-16216, 2020 11 27.
Article in English | MEDLINE | ID: mdl-32747443

ABSTRACT

Compensatory changes in energy expenditure occur in response to positive and negative energy balance, but the underlying mechanism remains unclear. Under low energy demand, the mitochondrial electron transport system is particularly sensitive to added energy supply (i.e. reductive stress), which exponentially increases the rate of H2O2 (JH2O2) production. H2O2 is reduced to H2O by electrons supplied by NADPH. NADP+ is reduced back to NADPH by activation of mitochondrial membrane potential-dependent nicotinamide nucleotide transhydrogenase (NNT). The coupling of reductive stress-induced JH2O2 production to NNT-linked redox buffering circuits provides a potential means of integrating energy balance with energy expenditure. To test this hypothesis, energy supply was manipulated by varying flux rate through ß-oxidation in muscle mitochondria minus/plus pharmacological or genetic inhibition of redox buffering circuits. Here we show during both non-ADP- and low-ADP-stimulated respiration that accelerating flux through ß-oxidation generates a corresponding increase in mitochondrial JH2O2 production, that the majority (∼70-80%) of H2O2 produced is reduced to H2O by electrons drawn from redox buffering circuits supplied by NADPH, and that the rate of electron flux through redox buffering circuits is directly linked to changes in oxygen consumption mediated by NNT. These findings provide evidence that redox reactions within ß-oxidation and the electron transport system serve as a barometer of substrate flux relative to demand, continuously adjusting JH2O2 production and, in turn, the rate at which energy is expended via NNT-mediated proton conductance. This variable flux through redox circuits provides a potential compensatory mechanism for fine-tuning energy expenditure to energy balance in real time.


Subject(s)
Energy Metabolism , Mitochondria, Muscle/enzymology , NADP Transhydrogenase, AB-Specific/metabolism , Oxygen Consumption , Adenosine Diphosphate/metabolism , Animals , Hydrogen Peroxide/metabolism , Male , Mice , Mitochondrial Proteins/metabolism , Oxidation-Reduction
8.
Metab Eng ; 67: 293-307, 2021 09.
Article in English | MEDLINE | ID: mdl-34314893

ABSTRACT

Seaweeds emerge as promising third-generation renewable for sustainable bioproduction. In the present work, we valorized brown seaweed to produce l-lysine, the world's leading feed amino acid, using Corynebacterium glutamicum, which was streamlined by systems metabolic engineering. The mutant C. glutamicum SEA-1 served as a starting point for development because it produced small amounts of l-lysine from mannitol, a major seaweed sugar, because of the deletion of its arabitol repressor AtlR and its engineered l-lysine pathway. Starting from SEA-1, we systematically optimized the microbe to redirect excess NADH, formed on the sugar alcohol, towards NADPH, required for l-lysine synthesis. The mannitol dehydrogenase variant MtlD D75A, inspired by 3D protein homology modelling, partly generated NADPH during the oxidation of mannitol to fructose, leading to a 70% increased l-lysine yield in strain SEA-2C. Several rounds of strain engineering further increased NADPH supply and l-lysine production. The best strain, SEA-7, overexpressed the membrane-bound transhydrogenase pntAB together with codon-optimized gapN, encoding NADPH-dependent glyceraldehyde 3-phosphate dehydrogenase, and mak, encoding fructokinase. In a fed-batch process, SEA-7 produced 76 g L-1l-lysine from mannitol at a yield of 0.26 mol mol-1 and a maximum productivity of 2.1 g L-1 h-1. Finally, SEA-7 was integrated into seaweed valorization cascades. Aqua-cultured Laminaria digitata, a major seaweed for commercial alginate, was extracted and hydrolyzed enzymatically, followed by recovery and clean-up of pure alginate gum. The residual sugar-based mixture was converted to l-lysine at a yield of 0.27 C-mol C-mol-1 using SEA-7. Second, stems of the wild-harvested seaweed Durvillaea antarctica, obtained as waste during commercial processing of the blades for human consumption, were extracted using acid treatment. Fermentation of the hydrolysate using SEA-7 provided l-lysine at a yield of 0.40 C-mol C-mol-1. Our findings enable improvement of the efficiency of seaweed biorefineries using tailor-made C. glutamicum strains.


Subject(s)
Corynebacterium glutamicum , Seaweed , Corynebacterium glutamicum/genetics , Humans , Lysine/genetics , Metabolic Engineering , NADP
9.
Appl Environ Microbiol ; 87(11)2021 05 11.
Article in English | MEDLINE | ID: mdl-33741613

ABSTRACT

Gene expression in the obligately aerobic acetic acid bacterium Gluconobacter oxydans responds to oxygen limitation, but the regulators involved are unknown. In this study, we analyzed a transcriptional regulator named GoxR (GOX0974), which is the only member of the fumarate-nitrate reduction regulator (FNR) family in this species. Evidence that GoxR contains an iron-sulfur cluster was obtained, suggesting that GoxR functions as an oxygen sensor similar to FNR. The direct target genes of GoxR were determined by combining several approaches, including a transcriptome comparison of a ΔgoxR mutant with the wild-type strain and detection of in vivo GoxR binding sites by chromatin affinity purification and sequencing (ChAP-Seq). Prominent targets were the cioAB genes encoding a cytochrome bd oxidase with low O2 affinity, which were repressed by GoxR, and the pnt operon, which was activated by GoxR. The pnt operon encodes a transhydrogenase (pntA1A2B), an NADH-dependent oxidoreductase (GOX0313), and another oxidoreductase (GOX0314). Evidence was obtained for GoxR being active despite a high dissolved oxygen concentration in the medium. We suggest a model in which the very high respiration rates of G. oxydans due to periplasmic oxidations cause an oxygen-limited cytoplasm and insufficient reoxidation of NAD(P)H in the respiratory chain, leading to inhibited cytoplasmic carbohydrate degradation. GoxR-triggered induction of the pnt operon enhances fast interconversion of NADPH and NADH by the transhydrogenase and NADH reoxidation by the GOX0313 oxidoreductase via reduction of acetaldehyde formed by pyruvate decarboxylase to ethanol. In fact, small amounts of ethanol were formed by G. oxydans under oxygen-restricted conditions in a GoxR-dependent manner.IMPORTANCEGluconobacter oxydans serves as a cell factory for oxidative biotransformations based on membrane-bound dehydrogenases and as a model organism for elucidating the metabolism of acetic acid bacteria. Surprisingly, to our knowledge none of the more than 100 transcriptional regulators encoded in the genome of G. oxydans has been studied experimentally until now. In this work, we analyzed the function of a regulator named GoxR, which belongs to the FNR family. Members of this family serve as oxygen sensors by means of an oxygen-sensitive [4Fe-4S] cluster and typically regulate genes important for growth under anoxic conditions by anaerobic respiration or fermentation. Because G. oxydans has an obligatory aerobic respiratory mode of energy metabolism, it was tempting to elucidate the target genes regulated by GoxR. Our results show that GoxR affects the expression of genes that support the interconversion of NADPH and NADH and the NADH reoxidation by reduction of acetaldehyde to ethanol.


Subject(s)
Acetic Acid/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Gluconobacter oxydans/genetics , Transcription Factors/genetics , Aerobiosis , Bacterial Proteins/metabolism , Gluconobacter oxydans/metabolism , Oxidation-Reduction , Transcription Factors/metabolism
10.
Neurochem Res ; 46(8): 1913-1932, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33939061

ABSTRACT

People with migraine are prone to a brain energy deficit between attacks, through increased energy demand (hyperexcitable brain) or decreased supply (mitochondrial impairment). However, it is uncertain how this precipitates an acute attack. Here, the central role of oxidative stress is adduced. Specifically, neurons' antioxidant defenses rest ultimately on internally generated NADPH (reduced nicotinamide adenine dinucleotide phosphate), whose levels are tightly coupled to energy production. Mitochondrial NADPH is produced primarily by enzymes involved in energy generation, including isocitrate dehydrogenase of the Krebs (tricarboxylic acid) cycle; and an enzyme, nicotinamide nucleotide transhydrogenase (NNT), that depends on the Krebs cycle and oxidative phosphorylation to function, and that works in reverse, consuming antioxidants, when energy generation fails. In migraine aura, cortical spreading depression (CSD) causes an initial severe drop in level of NADH (reduced nicotinamide adenine dinucleotide), causing NNT to impair antioxidant defense. This is followed by functional hypoxia and a rebound in NADH, in which the electron transport chain overproduces oxidants. In migraine without aura, a similar biphasic fluctuation in NADH very likely generates oxidants in cortical regions farthest from capillaries and penetrating arterioles. Thus, the perturbations in brain energy demand and/or production seen in migraine are likely sufficient to cause oxidative stress, triggering an attack through oxidant-sensing nociceptive ion channels. Implications are discussed for the development of new classes of migraine preventives, for the current use of C57BL/6J mice (which lack NNT) in preclinical studies of migraine, for how a microembolism initiates CSD, and for how CSD can trigger a migraine.


Subject(s)
Brain/metabolism , Energy Metabolism/physiology , Migraine with Aura/physiopathology , Migraine without Aura/physiopathology , Oxidative Stress/physiology , Age Factors , Animals , Cortical Spreading Depression/physiology , Humans , Mitochondria/metabolism , NAD/metabolism , NADP/metabolism
11.
Endocr J ; 68(5): 583-597, 2021 May 28.
Article in English | MEDLINE | ID: mdl-33612561

ABSTRACT

The increasing incidence of papillary thyroid cancer (PTC) has attracted many researchers to investigate the mechanism underlying PTC progression. This study explored the growth and apoptosis of PTC cells based on an lncRNA regulatory mechanism. The expression of nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1) in PTC cell lines and PTC tissues was analyzed by qRT-PCR. The mutual binding site between NNT-AS1 and miR-199a-5p was predicted by starBase and confirmed by dual-luciferase reporter assay. The correlation between NNT-AS1 and miR-199a-5p was shown by Pearson correlation test. The viability, clone formation, migration, invasion and apoptosis of TPC-1 and IHH-4 cells were examined by CCK-8, colony formation, wound-healing, transwell, and flow cytometry assays, respectively. The expressions of Bax, cleaved Caspase-3, Bcl-2, E-Cadherin, N-Cadherin and SNAIL in TPC-1 and IHH-4 cells were determined by Western blot or qRT-PCR. NNT-AS1 expression was upregulated in PTC cells and tissues. In TPC-1 cells, silencing NNT-AS1 inhibited viability, clone formation, migration, and invasion as well as the expressions of N-Cadherin, SNAIL and Bcl-2, but promoted the expressions of E-Cadherin, Bax, and cleaved caspase-3. The effects of NNT-AS1 overexpression on IHH-4 cells were opposite to those of silencing NNT-AS1. In PTC tissues, miR-199a-5p was low-expressed and targeted by NNT-AS1, and it was negatively correlated with NNT-AS1. MiR-199a-5p inhibitor promoted TPC-1 cell progression, but miR-199a-5p mimic inhibited IHH-4 cell progression. NNT-AS1 and miR-199a-5p exerted opposite effects on PTC cells. Silencing NNT-AS1 inhibited PTC cell proliferation, migration and invasion, but promoted apoptosis via upregulation of miR-199a-5p.


Subject(s)
Apoptosis/genetics , Cell Movement/genetics , Cell Proliferation/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/genetics , Adult , Aged , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , MicroRNAs/metabolism , Middle Aged , NADP Transhydrogenases/genetics , NADP Transhydrogenases/metabolism , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , RNA, Long Noncoding/metabolism , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology
12.
Proc Natl Acad Sci U S A ; 115(1): 222-227, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29255023

ABSTRACT

Unraveling the mechanisms of microbial adaptive evolution following genetic or environmental challenges is of fundamental interest in biological science and engineering. When the challenge is the loss of a metabolic enzyme, adaptive responses can also shed significant insight into metabolic robustness, regulation, and areas of kinetic limitation. In this study, whole-genome sequencing and high-resolution 13C-metabolic flux analysis were performed on 10 adaptively evolved pgi knockouts of Escherichia coliPgi catalyzes the first reaction in glycolysis, and its loss results in major physiological and carbon catabolism pathway changes, including an 80% reduction in growth rate. Following adaptive laboratory evolution (ALE), the knockouts increase their growth rate by up to 3.6-fold. Through combined genomic-fluxomic analysis, we characterized the mutations and resulting metabolic fluxes that enabled this fitness recovery. Large increases in pyridine cofactor transhydrogenase flux, correcting imbalanced production of NADPH and NADH, were enabled by direct mutations to the transhydrogenase genes sthA and pntAB The phosphotransferase system component crr was also found to be frequently mutated, which corresponded to elevated flux from pyruvate to phosphoenolpyruvate. The overall energy metabolism was found to be strikingly robust, and what have been previously described as latently activated Entner-Doudoroff and glyoxylate shunt pathways are shown here to represent no real increases in absolute flux relative to the wild type. These results indicate that the dominant mechanism of adaptation was to relieve the rate-limiting steps in cofactor metabolism and substrate uptake and to modulate global transcriptional regulation from stress response to catabolism.


Subject(s)
Adaptation, Physiological , Directed Molecular Evolution , Energy Metabolism , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Gene Knockdown Techniques , Glucose-6-Phosphate Isomerase/genetics , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , NADP Transhydrogenase, B-Specific/genetics , NADP Transhydrogenase, B-Specific/metabolism , NADP Transhydrogenases/genetics , NADP Transhydrogenases/metabolism
13.
Int J Mol Sci ; 22(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33478087

ABSTRACT

The redox states of NAD and NADP are linked to each other in the mitochondria thanks to the enzyme nicotinamide nucleotide transhydrogenase (NNT) which, by utilizing the mitochondrial membrane potential (mΔΨ), catalyzes the transfer of redox potential between these two coenzymes, reducing one at the expense of the oxidation of the other. In order to define NNT reaction direction in CF cells, NNT activity under different redox states of cell has been investigated. Using spectrophotometric and western blotting techniques, the presence, abundance and activity level of NNT were determined. In parallel, the levels of NADPH and NADH as well as of mitochondrial and cellular ROS were also quantified. CF cells showed a 70% increase in protein expression compared to the Wt sample; however, regarding NNT activity, it was surprisingly lower in CF cells than healthy cells (about 30%). The cellular redox state, together with the low mΔΨ, pushes to drive NNT reverse reaction, at the expense of its antioxidant potential, thus consuming NADPH to support NADH production. At the same time, the reduced NNT activity prevents the NADH, produced by the reaction, from causing an explosion of ROS by the damaged respiratory chain, in accordance with the reduced level of mitochondrial ROS in NNT-loss cells. This new information on cellular bioenergetics represents an important building block for further understanding the molecular mechanisms responsible for cellular dysfunction in cystic fibrosis.


Subject(s)
Cystic Fibrosis/metabolism , NADP Transhydrogenases/metabolism , Catalysis , Cells, Cultured , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Energy Metabolism/genetics , Humans , Membrane Potential, Mitochondrial/physiology , Metabolic Networks and Pathways/genetics , Mitochondria/metabolism , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism
14.
Basic Res Cardiol ; 115(5): 53, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32748289

ABSTRACT

In heart failure, a functional block of complex I of the respiratory chain provokes superoxide generation, which is transformed to H2O2 by dismutation. The Krebs cycle produces NADH, which delivers electrons to complex I, and NADPH for H2O2 elimination via isocitrate dehydrogenase and nicotinamide nucleotide transhydrogenase (NNT). At high NADH levels, α-ketoglutarate dehydrogenase (α-KGDH) is a major source of superoxide in skeletal muscle mitochondria with low NNT activity. Here, we analyzed how α-KGDH and NNT control H2O2 emission in cardiac mitochondria. In cardiac mitochondria from NNT-competent BL/6N mice, H2O2 emission is equally low with pyruvate/malate (P/M) or α-ketoglutarate (α-KG) as substrates. Complex I inhibition with rotenone increases H2O2 emission from P/M, but not α-KG respiring mitochondria, which is potentiated by depleting H2O2-eliminating capacity. Conversely, in NNT-deficient BL/6J mitochondria, H2O2 emission is higher with α-KG than with P/M as substrate, and further potentiated by complex I blockade. Prior depletion of H2O2-eliminating capacity increases H2O2 emission from P/M, but not α-KG respiring mitochondria. In cardiac myocytes, downregulation of α-KGDH activity impaired dynamic mitochondrial redox adaptation during workload transitions, without increasing H2O2 emission. In conclusion, NADH from α-KGDH selectively shuttles to NNT for NADPH formation rather than to complex I of the respiratory chain for ATP production. Therefore, α-KGDH plays a key role for H2O2 elimination, but is not a relevant source of superoxide in heart. In heart failure, α-KGDH/NNT-dependent NADPH formation ameliorates oxidative stress imposed by complex I blockade. Downregulation of α-KGDH may, therefore, predispose to oxidative stress in heart failure.


Subject(s)
Ketoglutarate Dehydrogenase Complex/metabolism , Mitochondria, Heart/metabolism , NADP Transhydrogenases/metabolism , NAD/metabolism , Animals , Cell Respiration , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Single-Cell Analysis
15.
Biochem J ; 476(24): 3769-3789, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31803904

ABSTRACT

The atherosclerosis prone LDL receptor knockout mice (Ldlr-/-, C57BL/6J background) carry a deletion of the NADP(H)-transhydrogenase gene (Nnt) encoding the mitochondrial enzyme that catalyzes NADPH synthesis. Here we hypothesize that both increased NADPH consumption (due to increased steroidogenesis) and decreased NADPH generation (due to Nnt deficiency) in Ldlr-/- mice contribute to establish a macrophage oxidative stress and increase atherosclerosis development. Thus, we compared peritoneal macrophages and liver mitochondria from three C57BL/6J mice lines: Ldlr and Nnt double mutant, single Nnt mutant and wild-type. We found increased oxidants production in both mitochondria and macrophages according to a gradient: double mutant > single mutant > wild-type. We also observed a parallel up-regulation of mitochondrial biogenesis (PGC1a, TFAM and respiratory complexes levels) and inflammatory (iNOS, IL6 and IL1b) markers in single and double mutant macrophages. When exposed to modified LDL, the single and double mutant cells exhibited significant increases in lipid accumulation leading to foam cell formation, the hallmark of atherosclerosis. Nnt deficiency cells showed up-regulation of CD36 and down-regulation of ABCA1 transporters what may explain lipid accumulation in macrophages. Finally, Nnt wild-type bone marrow transplantation into LDLr-/- mice resulted in reduced diet-induced atherosclerosis. Therefore, Nnt plays a critical role in the maintenance of macrophage redox, inflammatory and cholesterol homeostasis, which is relevant for delaying the atherogenesis process.


Subject(s)
Atherosclerosis/metabolism , Macrophages, Peritoneal/metabolism , NADP/metabolism , Oxidative Stress , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Biomarkers , CD36 Antigens/metabolism , Diet, High-Fat , Gene Expression Regulation , Genotype , Glutathione/metabolism , Inflammation , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Mutation , NADP Transhydrogenases , Receptors, LDL/genetics , Superoxides/metabolism
16.
J Cell Biochem ; 120(4): 5704-5712, 2019 04.
Article in English | MEDLINE | ID: mdl-30324628

ABSTRACT

Increasing studies showed that long noncoding RNAs (lncRNAs) had crucial regulatory roles in various tumors, including gastric cancer (GC). Recent studies demonstrated that lncRNA nicotinamide nucleotide transhydrogenase-antisense RNA1 (NNT-AS1) played an important role in several tumors. However, the role and expression of NNT-AS1 in GC progression remain unknown. In our study, we indicated that NNT-AS1 expression was upregulated in GC samples compared with the nontumor tissues. We also showed that NNT-AS1 expression was upregulated in the GC cell lines. Ectopic expression of NNT-AS1 promoted GC cell line HGC-27 cell proliferation, cell cycle progression, and invasion. In addition, we showed that NNT-AS1 acted as a sponge competing endogenous RNA for microRNA-363 (miR-363), which was downregulated in the GC samples and cell lines. miR-363 expression was negatively related with NNT-AS1 expression in GC samples. Upregulated expression of miR-363 suppressed GC cell growth, cycle, and invasion. Furthermore, we reported that elevated expression of NNT-AS1 promoted GC cell proliferation, cycle, and invasion partly by suppressing miR-363 expression. These results indicated that lncRNA NNT-AS1 acted as an oncogene in the development of GC partly by inhibiting miR-363 expression.


Subject(s)
Biomarkers, Tumor/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , NADP Transhydrogenase, AB-Specific/antagonists & inhibitors , RNA, Long Noncoding/genetics , Stomach Neoplasms/pathology , Apoptosis , Cell Cycle , Humans , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , NADP Transhydrogenase, AB-Specific/genetics , Neoplasm Invasiveness , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Tumor Cells, Cultured
17.
FEMS Yeast Res ; 19(3)2019 05 01.
Article in English | MEDLINE | ID: mdl-30942847

ABSTRACT

Redox cofactors play an important role in biosynthetic and catabolic reactions and the transfer of energy for the cell. Therefore, studying the relationship between cofactor perturbation and metabolism is a useful approach to improve the yield of target products. To study RNA accumulation and metabolism when intracellular cofactor balance was impaired, the water-forming NADH oxidase (NoxE) from Lactococcus lactis and membrane-bound transhydrogenase (PntAB) from Escherichia coli were expressed in Candidatropicalis no. 121, respectively. Expression of noxE significantly decreased the intracellular NADH/NAD+ ratio, but the NADPH/NADP+ ratio did not differ significantly. PntAB increased the intracellular NADH pool, while the NADPH/NADP+ ratio decreased. The perturbation of the cofactors caused a large redistribution of metabolic fluxes. The biomass and RNA content decreased by 11.0% and 10.6% in pAUR-noxE strain, respectively, while the RNA content increased by 5.5% and the biomass showed no signification difference in pAUR-pntAB strain. Expression of noxE and pntAB led to decreases and increases in the ATP concentration and yield of RNA, respectively, which also indicated that ATP plays an important role in the RNA biosynthesis.


Subject(s)
Candida tropicalis/genetics , Genetic Engineering/methods , RNA, Fungal/analysis , Biomass , Escherichia coli/genetics , Glucose/metabolism , Lactococcus lactis/genetics , Multienzyme Complexes/genetics , NADH, NADPH Oxidoreductases/genetics , NADP Transhydrogenases/genetics , Oxidation-Reduction
18.
J Ind Microbiol Biotechnol ; 46(1): 45-54, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30446890

ABSTRACT

Corynebacterium glutamicum SNK 118 was metabolically engineered with improved L-arginine titer. Considering the crucial role of NADPH level in L-arginine production, pntAB (membrane-bound transhydrogenase) and ppnK (NAD+ kinase) were co-expressed to increase the intracellular NADPH pool. Expression of pntAB exhibited significant effects on NADPH supply and L-arginine synthesis. Furthermore, argR and farR, encoding arginine repressor ArgR and transcriptional regulator FarR, respectively, were removed from the genome of C. glutamicum. The competitive branch pathway gene ldh was also deleted. Eventually, an engineered C. glutamicum JML07 was obtained for L-arginine production. Fed-batch fermentation in 5-L bioreactor employing strain JML07 allowed production of 67.01 g L-1L-arginine with productivity of 0.89 g L-1 h-1 and yield of 0.35 g g-1 glucose. This study provides a productive L-arginine fermentation strain and an effective cofactor manipulating strategy for promoting the biosynthesis of NADPH-dependent metabolites.


Subject(s)
Arginine/biosynthesis , Corynebacterium glutamicum/genetics , Metabolic Engineering , NADP/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Batch Cell Culture Techniques , Bioreactors , Corynebacterium glutamicum/metabolism , Fermentation , Gene Expression Regulation, Bacterial , Glucose/metabolism , Industrial Microbiology , NADP/metabolism , NADP Transhydrogenases/genetics , NADP Transhydrogenases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
19.
J Neurochem ; 147(5): 663-677, 2018 12.
Article in English | MEDLINE | ID: mdl-30281804

ABSTRACT

Among mitochondrial NADP-reducing enzymes, nicotinamide nucleotide transhydrogenase (NNT) establishes an elevated matrix NADPH/NADP+ by catalyzing the reduction of NADP+ at the expense of NADH oxidation coupled to inward proton translocation across the inner mitochondrial membrane. Here, we characterize NNT activity and mitochondrial redox balance in the brain using a congenic mouse model carrying the mutated Nnt gene from the C57BL/6J strain. The absence of NNT activity resulted in lower total NADPH sources activity in the brain mitochondria of young mice, an effect that was partially compensated in aged mice. Nonsynaptic mitochondria showed higher NNT activity than synaptic mitochondria. In the absence of NNT, an increased release of H2 O2 from mitochondria was observed when the metabolism of respiratory substrates occurred with restricted flux through relevant mitochondrial NADPH sources or when respiratory complex I was inhibited. In accordance, mitochondria from Nnt-/- brains were unable to sustain NADP in its reduced state when energized in the absence of carbon substrates, an effect aggravated after H2 O2 bolus metabolism. These data indicate that the lack of NNT in brain mitochondria impairs peroxide detoxification, but peroxide detoxification can be partially counterbalanced by concurrent NADPH sources depending on substrate availability. Notably, only brain mitochondria from Nnt-/- mice chronically fed a high-fat diet exhibited lower activity of the redox-sensitive aconitase, suggesting that brain mitochondrial redox balance requires NNT under the metabolic stress of a high-fat diet. Overall, the role of NNT in the brain mitochondria redox balance especially comes into play under mitochondrial respiratory defects or high-fat diet.


Subject(s)
Brain Chemistry/physiology , Diet, High-Fat , Energy Metabolism/physiology , Mitochondria/metabolism , NADP Transhydrogenase, AB-Specific/metabolism , Aging , Animals , Brain Chemistry/drug effects , Electron Transport Complex I , Energy Metabolism/drug effects , Hydrogen Peroxide/metabolism , Membrane Potential, Mitochondrial , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , NADP/metabolism , NADP Transhydrogenase, AB-Specific/genetics , Oxidation-Reduction , Oxygen Consumption/genetics , Oxygen Consumption/physiology , Synaptosomes/metabolism
20.
J Vasc Res ; 55(2): 98-110, 2018.
Article in English | MEDLINE | ID: mdl-29455203

ABSTRACT

BACKGROUND: Mitochondrial reactive oxygen species (ROS) contribute to inflammation and vascular remodeling during atherosclerotic plaque formation. C57BL/6N (6N) and C57BL/6J (6J) mice display distinct mitochondrial redox balance due to the absence of nicotinamide nucleotide transhydrogenase (NNT) in 6J mice. We hypothesize that differential NNT expression between these animals alters plaque development. METHODS: 6N and 6J mice were treated with AAV8-PCSK9 (adeno-associated virus serotype 8/proprotein convertase subtilisin/kexin type 9) virus leading to hypercholesterolemia, increased low-density lipoprotein, and atherosclerosis in mice fed a high-fat diet (HFD). Mice were co-treated with the mitochondria-targeted superoxide dismutase mimetic MitoTEMPO to assess the contribution of mitochondrial ROS to atherosclerosis. RESULTS: Baseline and HFD-induced vascular superoxide is increased in 6J compared to 6N mice. MitoTEMPO diminished superoxide in both groups demonstrating differential production of mitochondrial ROS among these strains. PCSK9 treatment and HFD led to similar increases in plasma lipids in both 6N and 6J mice. However, 6J animals displayed significantly higher levels of plaque formation. MitoTEMPO reduced plasma lipids but did not affect plaque formation in 6N mice. In contrast, MitoTEMPO surprisingly increased plaque formation in 6J mice. CONCLUSION: These data indicate that loss of NNT increases vascular ROS production and exacerbates atherosclerotic plaque development.


Subject(s)
Aorta/enzymology , Aortic Diseases/enzymology , Atherosclerosis/enzymology , NADP Transhydrogenase, AB-Specific/deficiency , Animals , Antioxidants/pharmacology , Aorta/drug effects , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/pathology , Cholesterol/blood , Disease Models, Animal , Genetic Predisposition to Disease , Hypercholesterolemia/enzymology , Hypercholesterolemia/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , NADP Transhydrogenase, AB-Specific/genetics , Organophosphorus Compounds/pharmacology , Phenotype , Piperidines/pharmacology , Plaque, Atherosclerotic , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Superoxides/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL