Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 553
Filter
Add more filters

Publication year range
1.
Cell ; 186(3): 528-542.e14, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36681079

ABSTRACT

Whole-genome duplication (WGD) is a frequent event in cancer evolution and an important driver of aneuploidy. The role of the p53 tumor suppressor in WGD has been enigmatic: p53 can block the proliferation of tetraploid cells, acting as a barrier to WGD, but can also promote mitotic bypass, a key step in WGD via endoreduplication. In wild-type (WT) p53 tumors, WGD is frequently associated with activation of the E2F pathway, especially amplification of CCNE1, encoding cyclin E1. Here, we show that elevated cyclin E1 expression causes replicative stress, which activates ATR- and Chk1-dependent G2 phase arrest. p53, via its downstream target p21, together with Wee1, then inhibits mitotic cyclin-dependent kinase activity sufficiently to activate APC/CCdh1 and promote mitotic bypass. Cyclin E expression suppresses p53-dependent senescence after mitotic bypass, allowing cells to complete endoreduplication. Our results indicate that p53 can contribute to cancer evolution through the promotion of WGD.


Subject(s)
Cyclin E , Gene Duplication , Neoplasms , Tumor Suppressor Protein p53 , Humans , Cell Line, Tumor , Cyclin E/genetics , Cyclin E/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Mitosis , Neoplasms/genetics , Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism
2.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35926507

ABSTRACT

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Subject(s)
Centromere , Cyperaceae , Animals , Centromere/genetics , Cyperaceae/genetics , Evolution, Molecular , Karyotype , Plants/genetics
3.
Cell ; 177(7): 1842-1857.e21, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31155235

ABSTRACT

Mutational processes giving rise to lung adenocarcinomas (LADCs) in non-smokers remain elusive. We analyzed 138 LADC whole genomes, including 83 cases with minimal contribution of smoking-associated mutational signature. Genomic rearrangements were not correlated with smoking-associated mutations and frequently served as driver events of smoking-signature-low LADCs. Complex genomic rearrangements, including chromothripsis and chromoplexy, generated 74% of known fusion oncogenes, including EML4-ALK, CD74-ROS1, and KIF5B-RET. Unlike other collateral rearrangements, these fusion-oncogene-associated rearrangements were frequently copy-number-balanced, representing a genomic signature of early oncogenesis. Analysis of mutation timing revealed that fusions and point mutations of canonical oncogenes were often acquired in the early decades of life. During a long latency, cancer-related genes were disrupted or amplified by complex rearrangements. The genomic landscape was different between subgroups-EGFR-mutant LADCs had frequent whole-genome duplications with p53 mutations, whereas fusion-oncogene-driven LADCs had frequent SETD2 mutations. Our study highlights LADC oncogenesis driven by endogenous mutational processes.


Subject(s)
Adenocarcinoma of Lung , Gene Rearrangement , Lung Neoplasms , Mutation , Oncogene Proteins, Fusion , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
4.
Plant Cell ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121058

ABSTRACT

Following whole-genome duplication (WGD), duplicate gene pairs (homoeologs) can evolve varying degrees of expression divergence. However, the determinants influencing these relative expression level differences (RFPKM) between homoeologs remain elusive. Here, we analyzed the RFPKM between homoeologs in three angiosperms, Nymphaea colorata, Nelumbo nucifera, and Acorus tatarinowii, all having undergone a single WGD since the origin of angiosperms. Our results show significant positive correlations in RFPKM of homoeologs among tissues within the same species, and among orthologs across these three species, indicating convergent expression balance/bias between homoeologous gene copies following independent WGDs. We linked RFPKM between homoeologs to gene attributes associated with dosage balance constraints, such as protein-protein interactions, lethal-phenotype scores in Arabidopsis (Arabidopsis thaliana) orthologs, domain numbers, and expression breadth. Notably, homoeologs with lower RFPKM often had more interactions and higher lethal-phenotype scores, indicating selective pressures favoring balanced expression. Also, homoeologs with lower RFPKM were more likely to be retained after WGDs in angiosperms. Within Nelumbo, greater RFPKM between homoeologs correlated with increased cis- and trans-regulatory differentiation between species, highlighting the ongoing escalation of gene expression divergence. We further found that expression degeneration in one copy of homoeologs is inclined towards nonfunctionalization. Our research highlights the importance of balanced expression, shaped by dosage balance constraints, in the evolutionary retention of homoeologs in plants.

5.
Proc Natl Acad Sci U S A ; 121(21): e2400018121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748576

ABSTRACT

Hybridization blurs species boundaries and leads to intertwined lineages resulting in reticulate evolution. Polyploidy, the outcome of whole genome duplication (WGD), has more recently been implicated in promoting and facilitating hybridization between polyploid species, potentially leading to adaptive introgression. However, because polyploid lineages are usually ephemeral states in the evolutionary history of life it is unclear whether WGD-potentiated hybridization has any appreciable effect on their diploid counterparts. Here, we develop a model of cytotype dynamics within mixed-ploidy populations to demonstrate that polyploidy can in fact serve as a bridge for gene flow between diploid lineages, where introgression is fully or partially hampered by the species barrier. Polyploid bridges emerge in the presence of triploid organisms, which despite critically low levels of fitness, can still allow the transfer of alleles between diploid states of independently evolving mixed-ploidy species. Notably, while marked genetic divergence prevents polyploid-mediated interspecific gene flow, we show that increased recombination rates can offset these evolutionary constraints, allowing a more efficient sorting of alleles at higher-ploidy levels before introgression into diploid gene pools. Additionally, we derive an analytical approximation for the rate of gene flow at the tetraploid level necessary to supersede introgression between diploids with nonzero introgression rates, which is especially relevant for plant species complexes, where interspecific gene flow is ubiquitous. Altogether, our results illustrate the potential impact of polyploid bridges on the (re)distribution of genetic material across ecological communities during evolution, representing a potential force behind reticulation.


Subject(s)
Gene Flow , Hybridization, Genetic , Models, Genetic , Polyploidy , Evolution, Molecular , Diploidy , Alleles
6.
Proc Natl Acad Sci U S A ; 121(4): e2312607121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38236735

ABSTRACT

Homosporous lycophytes (Lycopodiaceae) are a deeply diverged lineage in the plant tree of life, having split from heterosporous lycophytes (Selaginella and Isoetes) ~400 Mya. Compared to the heterosporous lineage, Lycopodiaceae has markedly larger genome sizes and remains the last major plant clade for which no chromosome-level assembly has been available. Here, we present chromosomal genome assemblies for two homosporous lycophyte species, the allotetraploid Huperzia asiatica and the diploid Diphasiastrum complanatum. Remarkably, despite that the two species diverged ~350 Mya, around 30% of the genes are still in syntenic blocks. Furthermore, both genomes had undergone independent whole genome duplications, and the resulting intragenomic syntenies have likewise been preserved relatively well. Such slow genome evolution over deep time is in stark contrast to heterosporous lycophytes and is correlated with a decelerated rate of nucleotide substitution. Together, the genomes of H. asiatica and D. complanatum not only fill a crucial gap in the plant genomic landscape but also highlight a potentially meaningful genomic contrast between homosporous and heterosporous species.


Subject(s)
Genome, Plant , Genomics , Genome, Plant/genetics , Genome Size , Phylogeny , Evolution, Molecular
7.
Proc Natl Acad Sci U S A ; 120(41): e2307289120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37788315

ABSTRACT

The importance of whole-genome duplication (WGD) for evolution is controversial. Whereas some view WGD mainly as detrimental and an evolutionary dead end, there is growing evidence that polyploidization can help overcome environmental change, stressful conditions, or periods of extinction. However, despite much research, the mechanistic underpinnings of why and how polyploids might be able to outcompete or outlive nonpolyploids at times of environmental upheaval remain elusive, especially for autopolyploids, in which heterosis effects are limited. On the longer term, WGD might increase both mutational and environmental robustness due to redundancy and increased genetic variation, but on the short-or even immediate-term, selective advantages of WGDs are harder to explain. Here, by duplicating artificially generated Gene Regulatory Networks (GRNs), we show that duplicated GRNs-and thus duplicated genomes-show higher signal output variation than nonduplicated GRNs. This increased variation leads to niche expansion and can provide polyploid populations with substantial advantages to survive environmental turmoil. In contrast, under stable environments, GRNs might be maladaptive to changes, a phenomenon that is exacerbated in duplicated GRNs. We believe that these results provide insights into how genome duplication and (auto)polyploidy might help organisms to adapt quickly to novel conditions and to survive ecological uproar or even cataclysmic events.


Subject(s)
Gene Duplication , Gene Regulatory Networks , Humans , Genome , Polyploidy , Evolution, Molecular , Genome, Plant/genetics
8.
Dev Biol ; 509: 85-96, 2024 May.
Article in English | MEDLINE | ID: mdl-38387487

ABSTRACT

Genome duplications and ploidy transitions have occurred in nearly every major taxon of eukaryotes, but they are far more common in plants than in animals. Due to the conservation of the nuclear:cytoplasmic volume ratio increased DNA content results in larger cells. In plants, polyploid organisms are larger than diploids as cell number remains relatively constant. Conversely, vertebrate body size does not correlate with cell size and ploidy as vertebrates compensate for increased cell size to maintain tissue architecture and body size. This has historically been explained by a simple reduction in cell number that matches the increase in cell size maintaining body size as ploidy increases, but here we show that the compensatory mechanisms that maintain body size in triploid zebrafish are tissue-specific: A) erythrocytes respond in the classical pattern with a reduced number of larger erythrocytes in circulation, B) muscle, a tissue comprised of polynucleated muscle fibers, compensates by reducing the number of larger nuclei such that myofiber and myotome size in unaffected by ploidy, and C) vascular tissue compensates by thickening blood vessel walls, possibly at the expense of luminal diameter. Understanding the physiological implications of ploidy on tissue function requires a detailed description of the specific mechanisms of morphological compensation occurring in each tissue to understand how ploidy changes affect development and physiology.


Subject(s)
Polyploidy , Zebrafish , Animals , Zebrafish/genetics , Ploidies , Cell Size , Body Size
9.
Plant J ; 118(1): 73-89, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38112590

ABSTRACT

Actinidia ('Mihoutao' in Chinese) includes species with complex ploidy, among which diploid Actinidia chinensis and hexaploid Actinidia deliciosa are economically and nutritionally important fruit crops. Actinidia deliciosa has been proposed to be an autohexaploid (2n = 174) with diploid A. chinensis (2n = 58) as the putative parent. A CCS-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for hexaploid A. deliciosa yielded a 3.91-Gb assembly of 174 pseudochromosomes comprising 29 homologous groups with 6 members each, which contain 39 854 genes with an average of 4.57 alleles per gene. Here we provide evidence that much of the hexaploid genome matches diploid A. chinensis; 95.5% of homologous gene pairs exhibited >90% similarity. However, intragenome and intergenome comparisons of synteny indicate chromosomal changes. Our data, therefore, indicate that if A. deliciosa is an autoploid, chromosomal rearrangement occurred following autohexaploidy. A highly diversified pattern of gene expression and a history of rapid population expansion after polyploidisation likely facilitated the adaptation and niche differentiation of A. deliciosa in nature. The allele-defined hexaploid genome of A. deliciosa provides new genomic resources to accelerate crop improvement and to understand polyploid genome evolution.


Subject(s)
Actinidia , Actinidia/genetics , Chromosome Mapping , Genome, Plant/genetics , Ploidies , Chromosomes , Fruit/genetics
10.
Plant J ; 117(2): 464-482, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37872890

ABSTRACT

Rhodiola L. is a genus that has undergone rapid radiation in the mid-Miocene and may represent a typic case of adaptive radiation. Many species of Rhodiola have also been widely used as an important adaptogen in traditional medicines for centuries. However, a lack of high-quality chromosome-level genomes hinders in-depth study of its evolution and biosynthetic pathway of secondary metabolites. Here, we assembled two chromosome-level genomes for two Rhodiola species with different chromosome number and sexual system. The assembled genome size of R. chrysanthemifolia (2n = 14; hermaphrodite) and R. kirilowii (2n = 22; dioecious) were of 402.67 and 653.62 Mb, respectively, with approximately 57.60% and 69.22% of transposable elements (TEs). The size difference between the two genomes was mostly due to proliferation of long terminal repeat-retrotransposons (LTR-RTs) in the R. kirilowii genome. Comparative genomic analysis revealed possible gene families responsible for high-altitude adaptation of Rhodiola, including a homolog of plant cysteine oxidase 2 gene of Arabidopsis thaliana (AtPCO2), which is part of the core molecular reaction to hypoxia and contributes to the stability of Group VII ethylene response factors (ERF-VII). We found extensive chromosome fusion/fission events and structural variations between the two genomes, which might have facilitated the initial rapid radiation of Rhodiola. We also identified candidate genes in the biosynthetic pathway of salidroside. Overall, our results provide important insights into genome evolution in plant rapid radiations, and possible roles of chromosome fusion/fission and structure variation played in rapid speciation.


Subject(s)
Glucosides , Phenols , Rhodiola , Rhodiola/genetics , Rhodiola/metabolism , Biosynthetic Pathways , Genome Size , Chromosomes , Evolution, Molecular
11.
Plant J ; 118(4): 1102-1118, 2024 May.
Article in English | MEDLINE | ID: mdl-38323852

ABSTRACT

Restoring cytonuclear stoichiometry is necessary after whole-genome duplication (WGD) and interspecific/intergeneric hybridization in plants. We investigated this phenomenon in auto- and allopolyploids of the Festuca-Lolium complex providing insights into the mechanisms governing cytonuclear interactions in early polyploid and hybrid generations. Our study examined the main processes potentially involved in restoring the cytonuclear balance after WGD comparing diploids and new and well-established autopolyploids. We uncovered that both the number of chloroplasts and the number of chloroplast genome copies were significantly higher in the newly established autopolyploids and grew further in more established autopolyploids. The increase in the copy number of the chloroplast genome exceeded the rise in the number of chloroplasts and fully compensated for the doubling of the nuclear genome. In addition, changes in nuclear and organelle gene expression were insignificant. Allopolyploid Festuca × Lolium hybrids displayed potential structural conflicts in parental protein variants within the cytonuclear complexes. While biased maternal allele expression has been observed in numerous hybrids, our results suggest that its role in cytonuclear stabilization in the Festuca × Lolium hybrids is limited. This study provides insights into the restoration of the cytonuclear stoichiometry, yet it emphasizes the need for future research to explore post-transcriptional regulation and its impact on cytonuclear gene expression stoichiometry. Our findings may enhance the understanding of polyploid plant evolution, with broader implications for the study of cytonuclear interactions in diverse biological contexts.


Subject(s)
Cell Nucleus , Festuca , Lolium , Polyploidy , Festuca/genetics , Lolium/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Genome, Plant/genetics , Genome, Chloroplast , Chloroplasts/genetics , Chloroplasts/metabolism , Hybridization, Genetic , Gene Expression Regulation, Plant
12.
Mol Biol Evol ; 41(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39101470

ABSTRACT

Selaginellaceae, originated in the Carboniferous and survived the Permian-Triassic mass extinction, is the largest family of lycophyte, which is sister to other tracheophytes. It stands out from tracheophytes by exhibiting extraordinary habitat diversity and lacking polyploidization. The organelle genome-based phylogenies confirmed the monophyly of Selaginella, with six or seven subgenera grouped into two superclades, but the phylogenetic positions of the enigmatic Selaginella sanguinolenta clade remained problematic. Here, we conducted a phylogenomic study on Selaginellaceae utilizing large-scale nuclear gene data from RNA-seq to elucidate the phylogeny and explore the causes of the phylogenetic incongruence of the S. sanguinolenta clade. Our phylogenetic analyses resolved three different positions of the S. sanguinolenta clade, which were supported by the sorted three nuclear gene sets, respectively. The results from the gene flow test, species network inference, and plastome-based phylogeny congruently suggested a probable hybrid origin of the S. sanguinolenta clade involving each common ancestor of the two superclades in Selaginellaceae. The hybrid hypothesis is corroborated by the evidence from rhizophore morphology and spore micromorphology. The chromosome observation and Ks distributions further suggested hybridization accompanied by polyploidization. Divergence time estimation based on independent datasets from nuclear gene sets and plastid genome data congruently inferred that allopolyploidization occurred in the Early Triassic. To our best knowledge, the allopolyploidization in the Mesozoic reported here represents the earliest record of tracheophytes. Our study revealed a unique triad of phylogenetic positions for a hybrid-originated group with comprehensive evidence and proposed a hypothesis for retaining both parental alleles through gene conversion.


Subject(s)
Phylogeny , Polyploidy , Selaginellaceae , Selaginellaceae/genetics , Transcriptome , Gene Flow
13.
Mol Biol Evol ; 41(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39073781

ABSTRACT

The molecular underpinnings and consequences of cycles of whole-genome duplication (WGD) and subsequent gene loss through subgenome fractionation remain largely elusive. Endogenous drivers, such as transposable elements (TEs), have been postulated to shape genome-wide dominance and biased fractionation, leading to a conserved least-fractionated (LF) subgenome and a degenerated most-fractionated (MF) subgenome. In contrast, the role of exogenous factors, such as those induced by environmental stresses, has been overlooked. In this study, a chromosome-scale assembly of the alpine buckler mustard (Biscutella laevigata; Brassicaceae) that underwent a WGD event about 11 million years ago is coupled with transcriptional responses to heat, cold, drought, and herbivory to assess how gene expression is associated with differential gene retention across the MF and LF subgenomes. Counteracting the impact of TEs in reducing the expression and retention of nearby genes across the MF subgenome, dosage balance is highlighted as a main endogenous promoter of the retention of duplicated gene products under purifying selection. Consistent with the "turn a hobby into a job" model, about one-third of environment-responsive duplicates exhibit novel expression patterns, with one copy typically remaining conditionally expressed, whereas the other copy has evolved constitutive expression, highlighting exogenous factors as a major driver of gene retention. Showing uneven patterns of fractionation, with regions remaining unbiased, but with others showing high bias and significant enrichment in environment-responsive genes, this mesopolyploid genome presents evolutionary signatures consistent with an interplay of endogenous and exogenous factors having driven gene content following WGD-fractionation cycles.


Subject(s)
Genome, Plant , Gene Duplication , Evolution, Molecular , DNA Transposable Elements , Stress, Physiological , Brassicaceae/genetics , Gene Expression Regulation, Plant
14.
Trends Genet ; 38(1): 59-72, 2022 01.
Article in English | MEDLINE | ID: mdl-34294428

ABSTRACT

Gene duplication is a prevalent phenomenon across the tree of life. The processes that lead to the retention of duplicated genes are not well understood. Functional genomics approaches in model organisms, such as yeast, provide useful tools to test the mechanisms underlying retention with functional redundancy and divergence of duplicated genes, including fates associated with neofunctionalization, subfunctionalization, back-up compensation, and dosage amplification. Duplicated genes may also be retained as a consequence of structural and functional entanglement. Advances in human gene editing have enabled the interrogation of duplicated genes in the human genome, providing new tools to evaluate the relative contributions of each of these factors to duplicate gene retention and the evolution of genome structure.


Subject(s)
Evolution, Molecular , Genes, Duplicate , Gene Duplication , Genes, Duplicate/genetics , Humans , Saccharomyces cerevisiae/genetics
15.
J Pathol ; 264(1): 42-54, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38956451

ABSTRACT

Ovarian high-grade serous carcinoma (HGSC) originates in the fallopian tube, with secretory cells carrying a TP53 mutation, known as p53 signatures, identified as potential precursors. p53 signatures evolve into serous tubal intraepithelial carcinoma (STIC) lesions, which in turn progress into invasive HGSC, which readily spreads to the ovary and disseminates around the peritoneal cavity. We recently investigated the genomic landscape of early- and late-stage HGSC and found higher ploidy in late-stage (median 3.1) than early-stage (median 2.0) samples. Here, to explore whether the high ploidy and possible whole-genome duplication (WGD) observed in late-stage disease were determined early in the evolution of HGSC, we analysed archival formalin-fixed paraffin-embedded (FFPE) samples from five HGSC patients. p53 signatures and STIC lesions were laser-capture microdissected and sequenced using shallow whole-genome sequencing (sWGS), while invasive ovarian/fallopian tube and metastatic carcinoma samples underwent macrodissection and were profiled using both sWGS and targeted next-generation sequencing. Results showed highly similar patterns of global copy number change between STIC lesions and invasive carcinoma samples within each patient. Ploidy changes were evident in STIC lesions, but not p53 signatures, and there was a strong correlation between ploidy in STIC lesions and invasive ovarian/fallopian tube and metastatic samples in each patient. The reconstruction of sample phylogeny for each patient from relative copy number indicated that high ploidy, when present, occurred early in the evolution of HGSC, which was further validated by copy number signatures in ovarian and metastatic tumours. These findings suggest that aberrant ploidy, suggestive of WGD, arises early in HGSC and is detected in STIC lesions, implying that the trajectory of HGSC may be determined at the earliest stages of tumour development. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Cystadenocarcinoma, Serous , Fallopian Tube Neoplasms , Ovarian Neoplasms , Tumor Suppressor Protein p53 , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Fallopian Tube Neoplasms/genetics , Fallopian Tube Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Neoplasm Grading , DNA Copy Number Variations , Mutation , Genomics/methods , Whole Genome Sequencing , Ploidies , Middle Aged , Biomarkers, Tumor/genetics , Disease Progression
16.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042803

ABSTRACT

Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future.


Subject(s)
Base Sequence/genetics , Genomics/trends , Viridiplantae/genetics , Biodiversity , Biological Evolution , DNA Transposable Elements/genetics , Ecology , Ecosystem , Embryophyta/genetics , Evolution, Molecular , Genome , Genome, Plant/genetics , Genomics/methods , Information Dissemination/methods , Information Storage and Retrieval/methods , Phylogeny , Plants/genetics
17.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34934012

ABSTRACT

Millions of species are currently being sequenced, and their genomes are being compared. Many of them have more complex genomes than model systems and raise novel challenges for genome alignment. Widely used local alignment strategies often produce limited or incongruous results when applied to genomes with dispersed repeats, long indels, and highly diverse sequences. Moreover, alignment using many-to-many or reciprocal best hit approaches conflicts with well-studied patterns between species with different rounds of whole-genome duplication. Here, we introduce Anchored Wavefront alignment (AnchorWave), which performs whole-genome duplication-informed collinear anchor identification between genomes and performs base pair-resolved global alignment for collinear blocks using a two-piece affine gap cost strategy. This strategy enables AnchorWave to precisely identify multikilobase indels generated by transposable element (TE) presence/absence variants (PAVs). When aligning two maize genomes, AnchorWave successfully recalled 87% of previously reported TE PAVs. By contrast, other genome alignment tools showed low power for TE PAV recall. AnchorWave precisely aligns up to three times more of the genome as position matches or indels than the closest competitive approach when comparing diverse genomes. Moreover, AnchorWave recalls transcription factor-binding sites at a rate of 1.05- to 74.85-fold higher than other tools with significantly lower false-positive alignments. AnchorWave complements available genome alignment tools by showing obvious improvement when applied to genomes with dispersed repeats, active TEs, high sequence diversity, and whole-genome duplication variation.


Subject(s)
Genome, Plant , Polymorphism, Genetic , Sequence Alignment , Software , Zea mays/genetics
18.
Dev Dyn ; 253(8): 722-749, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38270285

ABSTRACT

BACKGROUND: The two-pore domain potassium (K2P) channels are a major type of potassium channels that maintain the cell membrane potential by conducting passive potassium leak currents independent of voltage change. They play prominent roles in multiple physiological processes, including neuromodulation, perception of pain, breathing and mood control, and response to volatile anesthetics. Mutations in K2P channels have been linked to many human diseases, such as neuronal and cardiovascular disorders and cancers. Significant progress has been made to understand their protein structures, physiological functions, and pharmacological modifiers. However, their expression and function during embryonic development remain largely unknown. RESULTS: We employed the zebrafish model and identified 23 k2p genes using BLAST search and gene cloning. We first analyzed vertebrate K2P channel evolution by phylogenetic and syntenic analyses. Our data revealed that the six subtypes of the K2P genes have already evolved in invertebrates long before the emergence of vertebrates. Moreover, the vertebrate K2P gene number increased, most likely due to two whole-genome duplications. Furthermore, we examined zebrafish k2p gene expression during early embryogenesis by in situ hybridization. Each subgroup's genes showed similar but distinct gene expression domains with some exceptions. Most of them were expressed in neural tissues consistent with their known function of neural excitability regulation. However, a few k2p genes were expressed temporarily in specific tissues or organs, suggesting that these K2P channels may be needed for embryonic development. CONCLUSIONS: Our phylogenetic and developmental analyses of K2P channels shed light on their evolutionary history and potential roles during embryogenesis related to their physiological functions and human channelopathies.


Subject(s)
Evolution, Molecular , Phylogeny , Potassium Channels, Tandem Pore Domain , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Gene Expression Regulation, Developmental , Embryo, Nonmammalian/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Embryonic Development/genetics
19.
Plant J ; 116(6): 1804-1824, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37706612

ABSTRACT

Whole-genome duplication (WGD) leads to the duplication of both coding and non-coding sequences within an organism's genome, providing an abundant supply of genetic material that can drive evolution, ultimately contributing to plant adaptation and speciation. Although non-coding sequences contain numerous regulatory elements, they have been understudied compared to coding sequences. In order to address this gap, we explored the evolutionary patterns of regulatory sequences, coding sequences and transcriptomes using conserved non-coding elements (CNEs) as regulatory element proxies following the recent WGD event in opium poppy (Papaver somniferum). Our results showed similar evolutionary patterns in subgenomes of regulatory and coding sequences. Specifically, the biased or unbiased retention of coding sequences reflected the same pattern as retention levels in regulatory sequences. Further, the divergence of gene expression patterns mediated by regulatory element variations occurred at a more rapid pace than that of gene coding sequences. However, gene losses were purportedly dependent on relaxed selection pressure in coding sequences. Specifically, the rapid evolution of tissue-specific benzylisoquinoline alkaloid production in P. somniferum was associated with regulatory element changes. The origin of a novel stem-specific ACR, which utilized ancestral cis-elements as templates, is likely to be linked to the evolutionary trajectory behind the transition of the PSMT1-CYP719A21 cluster from high levels of expression solely in P. rhoeas root tissue to its elevated expression in P. somniferum stem tissue. Our findings demonstrate that rapid regulatory element evolution can contribute to the emergence of new phenotypes and provide valuable insights into the high evolvability of regulatory elements.


Subject(s)
Papaver , Papaver/genetics , Papaver/metabolism , Gene Duplication , Genome , Evolution, Molecular
20.
Plant J ; 116(2): 446-466, 2023 10.
Article in English | MEDLINE | ID: mdl-37428465

ABSTRACT

Although the South African Cape flora is one of the most remarkable biodiversity hotspots, its high diversity has not been associated with polyploidy. Here, we report the chromosome-scale genome assembly of an ephemeral cruciferous species Heliophila variabilis (~334 Mb, n = 11) adapted to South African semiarid biomes. Two pairs of differently fractionated subgenomes suggest an allo-octoploid origin of the genome at least 12 million years ago. The ancestral octoploid Heliophila genome (2n = 8x = ~60) has probably originated through hybridization between two allotetraploids (2n = 4x = ~30) formed by distant, intertribal, hybridization. Rediploidization of the ancestral genome was marked by extensive reorganization of parental subgenomes, genome downsizing, and speciation events in the genus Heliophila. We found evidence for loss-of-function changes in genes associated with leaf development and early flowering, and over-retention and sub/neofunctionalization of genes involved in pathogen response and chemical defense. The genomic resources of H. variabilis will help elucidate the role of polyploidization and genome diploidization in plant adaptation to hot arid environments and origin of the Cape flora. The sequenced H. variabilis represents the first chromosome-scale genome assembly of a meso-octoploid representative of the mustard family.


Subject(s)
Brassicaceae , Genome, Plant , Genome, Plant/genetics , Brassicaceae/genetics , Polyploidy , Plants/genetics , Biodiversity
SELECTION OF CITATIONS
SEARCH DETAIL