Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Chemistry ; 26(41): 8935-8950, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32227639

ABSTRACT

The reactions of the fluoride-ion donor, XeF6 , with the fluoride-ion acceptors, M'OF4 (M'=Cr, Mo, W), yield [XeF5 ]+ and [Xe2 F11 ]+ salts of [M'OF5 ]- and [M2 O2 F9 ]- (M=Mo, W). Xenon hexafluoride and MOF4 react in anhydrous hydrogen fluoride (aHF) to give equilibrium mixtures of [Xe2 F11 ]+ , [XeF5 ]+ , [(HF)n F]- , [MOF5 ]- , and [M2 O2 F9 ]- from which the title salts were crystallized. The [XeF5 ][CrOF5 ] and [Xe2 F11 ][CrOF5 ] salts could not be formed from mixtures of CrOF4 and XeF6 in aHF at low temperature (LT) owing to the low fluoride-ion affinity of CrOF4 , but yielded [XeF5 ][HF2 ]⋅CrOF4 instead. In contrast, MoOF4 and WOF4 are sufficiently Lewis acidic to abstract F- ion from [(HF)n F]- in aHF to give the [MOF5 ]- and [M2 O2 F9 ]- salts of [XeF5 ]+ and [Xe2 F11 ]+ . To circumvent [(HF)n F]- formation, [Xe2 F11 ][CrOF5 ] was synthesized at LT in CF2 ClCF2 Cl solvent. The salts were characterized by LT Raman spectroscopy and LT single-crystal X-ray diffraction, which provided the first X-ray crystal structure of the [CrOF5 ]- anion and high-precision geometric parameters for [MOF5 ]- and [M2 O2 F9 ]- . Hydrolysis of [Xe2 F11 ][WOF5 ] by water contaminant in HF solvent yielded [XeF5 ][WOF5 ]⋅XeOF4 . Quantum-chemical calculations were carried out for M'OF4 , [M'OF5 ]- , [M'2 O2 F9 ]- , {[Xe2 F11 ][CrOF5 ]}2 , [Xe2 F11 ][MOF5 ], and {[XeF5 ][M2 O2 F9 ]}2 to obtain their gas-phase geometries and vibrational frequencies to aid in their vibrational mode assignments and to assess chemical bonding.

2.
Chemistry ; 25(69): 15815-15829, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31437313

ABSTRACT

Molten mixtures of XeF6 and CrVI OF4 react by means of F2 elimination to form [XeF5 ][Xe2 F11 ][CrV OF5 ]⋅2 CrVI OF4 , [XeF5 ]2 [CrIV F6 ]⋅2 CrVI OF4 , [Xe2 F11 ]2 [CrIV F6 ], and [XeF5 ]2 [CrV 2 O2 F8 ], whereas their reactions in anhydrous hydrogen fluoride (aHF) and CFCl3 /aHF yield [XeF5 ]2 [CrV 2 O2 F8 ]⋅2 HF and [XeF5 ]2 [CrV 2 O2 F8 ]⋅2 XeOF4 . Other than [Xe2 F11 ][MVI OF5 ] and [XeF5 ][MVI 2 O2 F9 ] (M=Mo or W), these salts are the only Group 6 oxyfluoro-anions known to stabilize noble-gas cations. Their reaction pathways involve redox transformations that give [XeF5 ]+ and/or [Xe2 F11 ]+ salts of the known [CrV OF5 ]2- and [CrIV F6 ]2- anions, and the novel [CrV 2 O2 F8 ]2- anion. A low-temperature Raman spectroscopic study of an equimolar mixture of solid XeF6 and CrOF4 revealed that [Xe2 F11 ][CrVI OF5 ] is formed as a reaction intermediate. The salts were structurally characterized by LT single-crystal X-ray diffraction and LT Raman spectroscopy, and provide the first structural characterizations of the [CrV OF5 ]2- and [CrV 2 O2 F8 ]2- anions, where [CrV 2 O2 F8 ]2- represents a new structural motif among the known oxyfluoro-anions of Group 6. The X-ray structures show that [XeF5 ]+ and [Xe2 F11 ]+ form ion pairs with their respective anions by means of Xe- - -F-Cr bridges. Quantum-chemical calculations were carried out to obtain the energy-minimized, gas-phase geometries and the vibrational frequencies of the anions and their ion pairs and to aid in the assignments of their Raman spectra.

3.
Chemistry ; 22(14): 4833-42, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26918266

ABSTRACT

The recently reported syntheses and X-ray crystal structures of the highly endothermic compounds F6XeNCCH3 and F6Xe(NCCH3)2 ⋅CH3CN provide the first, albeit weakly covalent, Xe(VI)-N bonds. The XeF6 unit of F6 XeNCCH3 possesses distorted octahedral (C3v ) symmetry similar to gas-phase XeF6 , whereas the XeF6 unit of F6 Xe(NCCH3)2 ⋅CH3CN possesses C2v symmetry. Herein, the natural bond orbital (NBO), atoms in molecules (AIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses show that the Xe valence electron lone pairs (VELPs) of both compounds are stereochemically active. The Xe VELPS are diffuse and ineffectively screen their Xe cores so that the Xe VELP positions correspond to the most electrophilic regions of the MEPS, which enables the opposing N VELP of CH3CN to coordinate to this region. These bonds are predominantly electrostatic in nature and are interpreted as σ-hole interactions.

SELECTION OF CITATIONS
SEARCH DETAIL