Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters

Publication year range
1.
Nucleic Acids Res ; 52(11): 6629-6646, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38567728

ABSTRACT

Enzyme activity is determined by various different mechanisms, including posttranslational modifications and allosteric regulation. Allosteric activators are often metabolites but other molecules serve similar functions. So far, examples of long non-coding RNAs (lncRNAs) acting as allosteric activators of enzyme activity are missing. Here, we describe the function of mitolnc in cardiomyocytes, a nuclear encoded long non-coding RNA, located in mitochondria and directly interacting with the branched-chain ketoacid dehydrogenase (BCKDH) complex to increase its activity. The BCKDH complex is critical for branched-chain amino acid catabolism (BCAAs). Inactivation of mitolnc in mice reduces BCKDH complex activity, resulting in accumulation of BCAAs in the heart and cardiac hypertrophy via enhanced mTOR signaling. We found that mitolnc allosterically activates the BCKDH complex, independent of phosphorylation. Mitolnc-mediated regulation of the BCKDH complex constitutes an important additional layer to regulate the BCKDH complex in a tissue-specific manner, evading direct coupling of BCAA metabolism to ACLY-dependent lipogenesis.


Subject(s)
Amino Acids, Branched-Chain , Cardiomegaly , RNA, Long Noncoding , Animals , Allosteric Regulation , Mice , Cardiomegaly/metabolism , Cardiomegaly/genetics , Amino Acids, Branched-Chain/metabolism , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Myocytes, Cardiac/metabolism , Humans , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Signal Transduction , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , Male , Mice, Knockout
2.
J Bacteriol ; 206(7): e0003324, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38899896

ABSTRACT

Listeria monocytogenes is a foodborne bacterial pathogen that causes listeriosis. Positive regulatory factor A (PrfA) is a pleiotropic master activator of virulence genes of L. monocytogenes that becomes active upon the entry of the bacterium into the cytosol of infected cells. L. monocytogenes can survive and multiply at low temperatures; this is accomplished through the maintenance of appropriate membrane fluidity via branched-chain fatty acid (BCFA) synthesis. Branched-chain α-keto acid dehydrogenase (BKD), which is composed of four polypeptides encoded by lpd, bkdA1, bkdA2, and bkdB, is known to play a vital role in BCFA biosynthesis. Here, we constructed BKD-deficient Listeria strains by in-frame deletion of lpd, bkdA1, bkdA2, and bkdB genes. To determine the role in in vivo and in vitro, mouse model challenges, plaque assay in murine L2 fibroblast, and intracellular replication in J744A.1 macrophage were conducted. BKD-deficient strains exhibited defects in BCFA composition, virulence, and PrfA-regulon function within the host cells. Transcriptomics analysis revealed that the transcript level of the PrfA-regulon was lower in ΔbkdA1 strain than those in the wild-type. This study demonstrates that L. monocytogenes strains lacking BKD complex components were defective in PrfA-regulon function, and full activation of wild-type prfA may not occur within host cells in the absence of BKD. Further study will investigate the consequences of BKD deletion on PrfA function through altering BCFA catabolism.IMPORTANCEListeria monocytogenes is the causative agent of listeriosis, a disease with a high mortality rate. In this study, we have shown that the deletion of BKD can impact the function of PrfA and the PrfA-regulon. The production of virulence proteins within host cells is necessary for L. monocytogenes to promote its intracellular survival and is likely dependent on membrane integrity. We thus report a link between L. monocytogenes membrane integrity and the function of PrfA. This knowledge will increase our understanding of L. monocytogenes pathogenesis, which may provide insight into the development of antimicrobial agents.


Subject(s)
Bacterial Proteins , Listeria monocytogenes , Listeriosis , Listeria monocytogenes/genetics , Listeria monocytogenes/pathogenicity , Listeria monocytogenes/enzymology , Listeria monocytogenes/metabolism , Mice , Animals , Virulence , Listeriosis/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fatty Acids/biosynthesis , Fatty Acids/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Gene Expression Regulation, Bacterial , Macrophages/microbiology , Female , Cell Line
3.
J Inherit Metab Dis ; 47(1): 41-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36880392

ABSTRACT

Maple syrup urine disease (MSUD) is rare autosomal recessive metabolic disorder caused by the dysfunction of the mitochondrial branched-chain 2-ketoacid dehydrogenase (BCKD) enzyme complex leading to massive accumulation of branched-chain amino acids and 2-keto acids. MSUD management, based on a life-long strict protein restriction with nontoxic amino acids oral supplementation represents an unmet need as it is associated with a poor quality of life, and does not fully protect from acute life-threatening decompensations or long-term neuropsychiatric complications. Orthotopic liver transplantation is a beneficial therapeutic option, which shows that restoration of only a fraction of whole-body BCKD enzyme activity is therapeutic. MSUD is thus an ideal target for gene therapy. We and others have tested AAV gene therapy in mice for two of the three genes involved in MSUD, BCKDHA and DBT. In this study, we developed a similar approach for the third MSUD gene, BCKDHB. We performed the first characterization of a Bckdhb-/- mouse model, which recapitulates the severe human phenotype of MSUD with early-neonatal symptoms leading to death during the first week of life with massive accumulation of MSUD biomarkers. Based on our previous experience in Bckdha-/- mice, we designed a transgene carrying the human BCKDHB gene under the control of a ubiquitous EF1α promoter, encapsidated in an AAV8 capsid. Injection in neonatal Bckdhb-/- mice at 1014 vg/kg achieved long-term rescue of the severe MSUD phenotype of Bckdhb-/- mice. These data further validate the efficacy of gene therapy for MSUD opening perspectives towards clinical translation.


Subject(s)
Maple Syrup Urine Disease , Animals , Humans , Mice , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/chemistry , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/therapy , Maple Syrup Urine Disease/diagnosis , Phenotype , Quality of Life
4.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062842

ABSTRACT

Muscle wasting can be caused by nutrition deficiency and inefficient metabolism of amino acids, including Branched Chain Amino Acids (BCAAs). Branched Chain Amino Acids are a major contributor to the metabolic needs of healthy muscle and account for over a tenth of lean muscle mass. Branched chain alpha-ketoacid dehydrogenase (BCKD) is the rate limiting enzyme of BCAA metabolism. Inhibition of BCKD is achieved through a reversible phosphorylation event by Branched Chain a-ketoacid dehydrogenase kinase (BCKDK). Our study set out to determine the importance of BCKDK in the maintenance of skeletal muscle. We used the Gene Expression Omnibus Database to understand the role of BCKDK in skeletal muscle pathogenesis, including aging, muscular disease, and interrupted muscle metabolism. We found BCKDK expression levels were consistently decreased in pathologic conditions. These results were most consistent when exploring muscular disease followed by aging. Based on our findings, we hypothesize that decreased BCKDK expression alters BCAA catabolism and impacts loss of normal muscle integrity and function. Further research could offer valuable insights into potential therapeutic strategies for addressing muscle-related disorders.


Subject(s)
Amino Acids, Branched-Chain , Muscle, Skeletal , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Humans , Amino Acids, Branched-Chain/metabolism , Animals , Aging/metabolism , Aging/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Muscular Diseases/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Protein Kinases
5.
Am J Med Genet A ; 191(5): 1360-1365, 2023 05.
Article in English | MEDLINE | ID: mdl-36706222

ABSTRACT

Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by the insufficient catabolism of branched-chain amino acids. BCKDHA, BCKDHB, DBT, and DLD encode the subunits of the branched-chain α-ketoacid dehydrogenase complex, which is responsible for the catabolism of these amino acids. Biallelic pathogenic variants in BCKDHA, BCKDHB, or DBT are characteristic of MSUD. In addition, a patient with a PPM1K defect was previously reported. PPM1K dephosphorylates and activates the enzyme complex. We report a patient with MSUD with mild findings and elevated BCAA levels carrying a novel homozygous start-loss variant in PPM1K. Our study offers further evidence that PPM1K variants cause mild MSUD.


Subject(s)
Maple Syrup Urine Disease , Protein Phosphatase 2C , Humans , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/chemistry , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Homozygote , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Mutation , Protein Phosphatase 2C/genetics
6.
Am J Med Genet A ; 188(9): 2738-2749, 2022 09.
Article in English | MEDLINE | ID: mdl-35799415

ABSTRACT

Maple syrup urine disease (MSUD) is an intoxication-type inherited metabolic disorder in which hyperleucinemia leads to brain swelling and death without treatment. MSUD is caused by branched-chain alpha-ketoacid dehydrogenase deficiency due to biallelic loss of the protein products from the genes BCKDHA, BCKDHB, or DBT, while a distinct but related condition is caused by loss of DLD. In this case series, eleven individuals with MSUD caused by two pathogenic variants in DBT are presented. All eleven individuals have a deletion of exon 2 (delEx2, NM_001918.3:c.48_171del); six individuals are homozygous and five individuals are compound heterozygous with a novel missense variant (NM_001918.5:c.916 T > C [p.Ser306Pro]) confirmed to be in trans. Western Blot indicates decreased amount of protein product in delEx2;c.916 T > C liver cells and absence of protein product in delEx2 homozygous hepatocytes. Ultrahigh performance liquid chromatography-tandem mass spectrometry demonstrates an accumulation of branched-chain amino acids and alpha-ketoacids in explanted hepatocytes. Individuals with these variants have a neonatal-onset, non-thiamine-responsive, classical form of MSUD. Strikingly, the entire cohort is derived from families who immigrated to the Washington, DC, metro area from Honduras or El Salvador suggesting the possibility of a founder effect.


Subject(s)
Maple Syrup Urine Disease , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Central America , Genomics , Humans , Infant, Newborn , Maple Syrup Urine Disease/genetics , Mutation
7.
Int J Mol Sci ; 23(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35216372

ABSTRACT

Branched-chain amino acids (BCAA) are essential amino acids playing crucial roles in protein synthesis and brain neurotransmission. Branched-chain ketoacid dehydrogenase (BCKDH), the flux-generating step of BCAA catabolism, is tightly regulated by reversible phosphorylation of its E1α-subunit. BCKDK is the kinase responsible for the phosphorylation-mediated inactivation of BCKDH. In three siblings with severe developmental delays, microcephaly, autism spectrum disorder and epileptic encephalopathy, we identified a new homozygous in-frame deletion (c.999_1001delCAC; p.Thr334del) of BCKDK. Plasma and cerebrospinal fluid concentrations of BCAA were markedly reduced. Hyperactivity of BCKDH and over-consumption of BCAA were demonstrated by functional tests in cells transfected with the mutant BCKDK. Treatment with pharmacological doses of BCAA allowed the restoring of BCAA concentrations and greatly improved seizure control. Behavioral and developmental skills of the patients improved to a lesser extent. Importantly, a retrospective review of the newborn screening results allowed the identification of a strong decrease in BCAA concentrations on dried blood spots, suggesting that BCKDK is a new treatable metabolic disorder probably amenable to newborn screening programs.


Subject(s)
Amino Acids, Branched-Chain/genetics , Brain Diseases/genetics , Brain/pathology , Epilepsy, Generalized/genetics , Loss of Function Mutation/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Amino Acid Sequence , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Brain Diseases/pathology , Cell Line , Female , HEK293 Cells , Humans , Male , Phosphorylation/genetics , Retrospective Studies
8.
J Biol Chem ; 295(46): 15597-15621, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32878988

ABSTRACT

Branched-chain α-keto acids (BCKAs) are catabolites of branched-chain amino acids (BCAAs). Intracellular BCKAs are cleared by branched-chain ketoacid dehydrogenase (BCKDH), which is sensitive to inhibitory phosphorylation by BCKD kinase (BCKDK). Accumulation of BCKAs is an indicator of defective BCAA catabolism and has been correlated with glucose intolerance and cardiac dysfunction. However, it is unclear whether BCKAs directly alter insulin signaling and function in the skeletal and cardiac muscle cell. Furthermore, the role of excess fatty acids (FAs) in perturbing BCAA catabolism and BCKA availability merits investigation. By using immunoblotting and ultra-performance liquid chromatography MS/MS to analyze the hearts of fasted mice, we observed decreased BCAA-catabolizing enzyme expression and increased circulating BCKAs, but not BCAAs. In mice subjected to diet-induced obesity (DIO), we observed similar increases in circulating BCKAs with concomitant changes in BCAA-catabolizing enzyme expression only in the skeletal muscle. Effects of DIO were recapitulated by simulating lipotoxicity in skeletal muscle cells treated with saturated FA, palmitate. Exposure of muscle cells to high concentrations of BCKAs resulted in inhibition of insulin-induced AKT phosphorylation, decreased glucose uptake, and mitochondrial oxygen consumption. Altering intracellular clearance of BCKAs by genetic modulation of BCKDK and BCKDHA expression showed similar effects on AKT phosphorylation. BCKAs increased protein translation and mTORC1 activation. Pretreating cells with mTORC1 inhibitor rapamycin restored BCKA's effect on insulin-induced AKT phosphorylation. This study provides evidence for FA-mediated regulation of BCAA-catabolizing enzymes and BCKA content and highlights the biological role of BCKAs in regulating muscle insulin signaling and function.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/antagonists & inhibitors , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/blood , Animals , Cell Line , Diet, High-Fat , Down-Regulation/drug effects , Insulin/pharmacology , Keto Acids/blood , Keto Acids/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/cytology , Myocardium/metabolism , Palmitates/pharmacology , Protein Phosphatase 2/antagonists & inhibitors , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction/drug effects
9.
Am J Med Genet C Semin Med Genet ; 187(3): 373-380, 2021 09.
Article in English | MEDLINE | ID: mdl-34288399

ABSTRACT

Maple urine syrup disease (MSUD) is an autosomal recessive disorder characterized by deficient activity of the branched-chain alpha ketoacid dehydrogenase (BCKAD) enzymatic complex due to biallelic variants in the alpha (BCKDHA) or beta (BCKDHB) subunits or the acyltransferase component (DBT). Treatment consists in leucine (LEU), isoleucine (ILE), and valine (VAL) (branched-chain amino acids) dietary restriction and strict metabolic control. to determine the characteristics of the Chilean cohort with MSUD currently in follow-up at Instituto de Nutrición y Tecnología de los Alimentos, during the 1990-2017 period Retrospective analytical study in 45 MSUD cases. Measured: biochemical parameters (LEU, ILE, and VAL), anthropometric evaluation, and neurocognitive development. In 18 cases undergoing genetic study were analyzed according to the gene and protein location, number of affected alleles, and type of posttranslational modification affected. Then, 45 patients with MSUD diagnosis were identified during the period: 37 were alive at the time of the study. Average diagnosis age was 71 ± 231 days. Average serum diagnosis LEU concentrations: 1.463 ± 854.1 µmol/L, VAL 550 ± 598 µmol/L and ILE 454 ± 458 µmol/L. BCKDHB variants explain 89% cases, while BCKDHA and DBT variants explain 5.5% of cases each. Variants p.Thr338Ile in BCKDHA, p.Pro240Thr and p.Ser342Asn in BCKDHB have not been previously reported in literature. Average serum follow-up LEU concentrations were 252.7 ± 16.9 µmol/L in the <5 years group and 299 ± 123.2 µmol/L in ≥5 years. Most cases presented some degree of developmental delay. Early diagnosis and treatment is essential to improve the long-term prognosis. Frequent blood LEU measurements are required to optimize metabolic control and to establish relationships between different aspects analyzed.


Subject(s)
Maple Syrup Urine Disease , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Alleles , Chile , Humans , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/therapy , Retrospective Studies
10.
Microb Cell Fact ; 20(1): 111, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34082758

ABSTRACT

BACKGROUND: Pamamycins are macrodiolides of polyketide origin which form a family of differently large homologues with molecular weights between 579 and 663. They offer promising biological activity against pathogenic fungi and gram-positive bacteria. Admittedly, production titers are very low, and pamamycins are typically formed as crude mixture of mainly smaller derivatives, leaving larger derivatives rather unexplored so far. Therefore, strategies that enable a more efficient production of pamamycins and provide increased fractions of the rare large derivatives are highly desired. Here we took a systems biology approach, integrating transcription profiling by RNA sequencing and intracellular metabolite analysis, to enhance pamamycin production in the heterologous host S. albus J1074/R2. RESULTS: Supplemented with L-valine, the recombinant producer S. albus J1074/R2 achieved a threefold increased pamamycin titer of 3.5 mg L-1 and elevated fractions of larger derivatives: Pam 649 was strongly increased, and Pam 663 was newly formed. These beneficial effects were driven by increased availability of intracellular CoA thioesters, the building blocks for the polyketide, resulting from L-valine catabolism. Unfavorably, L-valine impaired growth of the strain, repressed genes of mannitol uptake and glycolysis, and suppressed pamamycin formation, despite the biosynthetic gene cluster was transcriptionally activated, restricting production to the post L-valine phase. A deletion mutant of the transcriptional regulator bkdR, controlling a branched-chain amino acid dehydrogenase complex, revealed decoupled pamamycin biosynthesis. The regulator mutant accumulated the polyketide independent of the nutrient status. Supplemented with L-valine, the novel strain enabled the biosynthesis of pamamycin mixtures with up to 55% of the heavy derivatives Pam 635, Pam 649, and Pam 663: almost 20-fold more than the wild type. CONCLUSIONS: Our findings open the door to provide rare heavy pamamycins at markedly increased efficiency and facilitate studies to assess their specific biological activities and explore this important polyketide further.


Subject(s)
Macrolides/metabolism , Polyketides/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Transcription Factors/genetics , Valine/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Bacterial Proteins/genetics , Biosynthetic Pathways , Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial , Genes, Bacterial , Industrial Microbiology , Metabolome , Multigene Family , Mutation
11.
Nutr Metab Cardiovasc Dis ; 31(11): 3210-3218, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34511290

ABSTRACT

BACKGROUND AND AIM: Circulating amino acids are modified by sex, body mass index (BMI) and insulin resistance (IR). However, whether the presence of genetic variants in branched-chain amino acid (BCAA) catabolic enzymes modifies circulating amino acids is still unknown. Thus, we determined the frequency of two genetic variants, one in the branched-chain aminotransferase 2 (BCAT2) gene (rs11548193), and one in the branched-chain ketoacid dehydrogenase (BCKDH) gene (rs45500792), and elucidated their impact on circulating amino acid levels together with clinical, anthropometric and biochemical parameters. METHODS AND RESULTS: We performed a cross-sectional comparative study in which we recruited 1612 young adults (749 women and 863 men) aged 19.7 ± 2.1 years and with a BMI of 24.9 ± 4.7 kg/m2. Participants underwent clinical evaluation and provided blood samples for DNA extraction and biochemical analysis. The single nucleotide polymorphisms (SNPs) were determined by allelic discrimination using real-time polymerase chain reaction (PCR). The frequencies of the less common alleles were 15.2 % for BCAT2 and 9.83 % for BCKDH. The subjects with either the BCAT2 or BCKDH SNPs displayed no differences in the evaluated parameters compared with subjects homozygotes for the most common allele at each SNP. However, subjects with both SNPs had higher body weight, BMI, blood pressure, glucose, and circulating levels of aspartate, isoleucine, methionine, and proline than the subjects homozygotes for the most common allele (P < 0.05, One-way ANOVA). CONCLUSION: Our findings suggest that the joint presence of both the BCAT2 rs11548193 and BCKDH rs45500792 SNPs induces metabolic alterations that are not observed in subjects without either SNP.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Amino Acids/blood , Minor Histocompatibility Antigens/genetics , Polymorphism, Single Nucleotide , Pregnancy Proteins/genetics , Transaminases/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Adolescent , Age Factors , Biomarkers/blood , Blood Glucose/analysis , Blood Pressure , Body Mass Index , Cross-Sectional Studies , Female , Gene Frequency , Genetic Association Studies , Homozygote , Humans , Male , Mexico , Minor Histocompatibility Antigens/metabolism , Phenotype , Pregnancy Proteins/metabolism , Transaminases/metabolism , Young Adult
12.
Mol Genet Metab ; 129(3): 193-206, 2020 03.
Article in English | MEDLINE | ID: mdl-31980395

ABSTRACT

Over the past three decades, we studied 184 individuals with 174 different molecular variants of branched-chain α-ketoacid dehydrogenase activity, and here delineate essential clinical and biochemical aspects of the maple syrup urine disease (MSUD) phenotype. We collected data about treatment, survival, hospitalization, metabolic control, and liver transplantation from patients with classic (i.e., severe; n = 176), intermediate (n = 6) and intermittent (n = 2) forms of MSUD. A total of 13,589 amino acid profiles were used to analyze leucine tolerance, amino acid homeostasis, estimated cerebral amino acid uptake, quantitative responses to anabolic therapy, and metabolic control after liver transplantation. Standard instruments were used to measure neuropsychiatric outcomes. Despite advances in clinical care, classic MSUD remains a morbid and potentially fatal disorder. Stringent dietary therapy maintains metabolic variables within acceptable limits but is challenging to implement, fails to restore appropriate concentration relationships among circulating amino acids, and does not fully prevent cognitive and psychiatric disabilities. Liver transplantation eliminates the need for a prescription diet and safeguards patients from life-threatening metabolic crises, but is associated with predictable morbidities and does not reverse pre-existing neurological sequelae. There is a critical unmet need for safe and effective disease-modifying therapies for MSUD which can be implemented early in life. The biochemistry and physiology of MSUD and its response to liver transplantation afford key insights into the design of new therapies based on gene replacement or editing.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Amino Acids, Branched-Chain/metabolism , Biomarkers/blood , Leucine/blood , Liver Transplantation , Maple Syrup Urine Disease/diet therapy , Maple Syrup Urine Disease/therapy , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Adolescent , Adult , Child , Child, Preschool , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cohort Studies , Diet , Female , Homozygote , Humans , Infant , Leucine/metabolism , Male , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/metabolism , Mental Disorders/metabolism , Mental Disorders/physiopathology , Middle Aged , Phenotype
13.
Plant Physiol ; 179(4): 1502-1514, 2019 04.
Article in English | MEDLINE | ID: mdl-30728273

ABSTRACT

Nitrogen (N) starvation-induced triacylglycerol (TAG) synthesis, and its complex relationship with starch metabolism in algal cells, has been intensively studied; however, few studies have examined the interaction between amino acid metabolism and TAG biosynthesis. Here, via a forward genetic screen for TAG homeostasis, we isolated a Chlamydomonas (Chlamydomonas reinhardtii) mutant (bkdE1α) that is deficient in the E1α subunit of the branched-chain ketoacid dehydrogenase (BCKDH) complex. Metabolomics analysis revealed a defect in the catabolism of branched-chain amino acids in bkdE1α Furthermore, this mutant accumulated 30% less TAG than the parental strain during N starvation and was compromised in TAG remobilization upon N resupply. Intriguingly, the rate of mitochondrial respiration was 20% to 35% lower in bkdE1α compared with the parental strains. Three additional knockout mutants of the other components of the BCKDH complex exhibited phenotypes similar to that of bkdE1α Transcriptional responses of BCKDH to different N status were consistent with its role in TAG homeostasis. Collectively, these results indicate that branched-chain amino acid catabolism contributes to TAG metabolism by providing carbon precursors and ATP, thus highlighting the complex interplay between distinct subcellular metabolisms for oil storage in green microalgae.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/physiology , Algal Proteins/physiology , Chlamydomonas reinhardtii/metabolism , Triglycerides/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Algal Proteins/genetics , Chlamydomonas reinhardtii/genetics , Chromosome Mapping , Gene Knockout Techniques , Homeostasis , Metabolomics , Mitochondria/metabolism , Nitrogen/metabolism , Sequence Analysis, RNA
14.
Mol Cell Biochem ; 468(1-2): 169-183, 2020 May.
Article in English | MEDLINE | ID: mdl-32222880

ABSTRACT

Population data have consistently demonstrated a correlation between circulating branched-chain amino acids (BCAA) and insulin resistance. Most recently valine catabolite, 3-hydroxyisobutyrate, has emerged as a potential cause of BCAA-mediated insulin resistance; however, it is unclear if valine independently promotes insulin resistance. It is also unclear if excess valine influences the ability of cells to degrade BCAA. Therefore, this study investigated the effect of valine on muscle insulin signaling and related metabolism in vitro. C2C12 myotubes were treated with varying concentrations (0.5 mM-2 mM) of valine for up to 48 h. qRT-PCR and western blot were used to measure metabolic gene and protein expression, respectively. Insulin sensitivity (indicated by pAkt:Akt), metabolic gene and protein expression, and cell metabolism were also measured following valine treatment both with and without varying levels of insulin resistance. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Valine did not alter regulators of mitochondrial biogenesis or glycolysis; however, valine reduced branched-chain alpha-keto acid dehydrogenase a (Bckdha) mRNA (but not protein) expression which was exacerbated by insulin resistance. Valine treatment had no effect on pAkt:Akt following either acute or 48-h treatment, regardless of insulin stimulation or varying levels of insulin resistance. In conclusion, despite consistent population data demonstrating a relationship between circulating BCAA (and related metabolites) and insulin resistance, valine does not appear to independently alter insulin sensitivity or worsen insulin resistance in the myotube model of skeletal muscle.


Subject(s)
Amino Acids, Branched-Chain/drug effects , Insulin Resistance , Insulin/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Valine/pharmacology , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Cell Line , Cell Survival/drug effects , Glycolysis/drug effects , Insulin/pharmacology , Mice , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
15.
J Dairy Sci ; 103(3): 2847-2863, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31928756

ABSTRACT

Branched-chain amino acids (BCAA) are major components of milk protein and important precursors for nonessential AA. Thus, the BCAA transport and break-down play a key role in the metabolic adaptation to the high nutrient demands in lactation. However, in monogastrics, increased BCAA levels have been linked with obesity and certain metabolic disorders such as impaired insulin sensitivity. Our objective was to study the effect of over-conditioning at calving on plasma BCAA levels as well as the tissue abundance of the most relevant BCAA transporters and degrading enzymes in dairy cows during late pregnancy and early lactation. Thirty-eight Holstein cows were allocated 15 wk antepartum to either a normal- (NBCS) or over-conditioned (HBCS) group, receiving 6.8 or 7.2 MJ of NEL/kg of DM, respectively, during late lactation to reach the targeted differences in body condition score (BCS) and back fat thickness (BFT; NBCS: BCS <3.5, BFT <1.2 cm; HBCS: BCS >3.75, BFT >1.4 cm) until dry-off. During the dry period and next lactation, cows were fed the same diets, whereby differences in BCS and BFT were maintained: prepartum means were 3.16 ± 0.06 and 1.03 ± 0.07 cm (NBCS) vs. 3.77 ± 0.08 and 1.89 ± 0.11 cm (HBCS), postpartum means were 2.89 ± 0.06 and 0.81 ± 0.05 cm (NBCS) vs. 3.30 ± 0.06 and 1.38 ± 0.08 cm (HBCS). Blood and biopsies from liver, semitendinosus muscle, and subcutaneous adipose tissue (scAT) were sampled at d 49 antepartum, 3, 21, and 84 postpartum. Free BCAA were analyzed and the mRNA abundance of solute carrier family 1 member 5 (SLC1A5), SLC7A5, and SLC38A2 as well as branched-chain aminotransferase 2 (BCAT2), branched-chain α-keto acid dehydrogenase E1α (BCKDHA), and branched-chain α-keto acid dehydrogenase E1ß (BCKDHB) as well as the protein abundance of BCKDHA were assessed. Concentrations of all BCAA changed with time, most markedly in HBCS cows, with a nadir around calving. Apart from Ile, neither individual nor total BCAA differed between groups. The HBCS group had greater BCKDHA mRNA as well as higher prepartum BCKDHA protein abundance in scAT than NBCS cows, pointing to a greater oxidative capacity for the irreversible degradation of BCAA transamination products in scAT of over-conditioned cows. Prepartum hepatic BCKDHA protein abundance was lower in HBCS than in NBCS cows. In both groups, SLC1A5, SLC7A5, and BCAT2 mRNA were most abundant in scAT, whereas SLC38A2 was higher in scAT and muscle compared with liver, and BCKDHA and BCKDHB mRNA were greatest in liver and muscle, respectively. Our results indicate that scAT may be a major site of BCAA uptake and initial catabolism, with the former, however, being independent of BCS and time relative to calving in dairy cows.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Cattle/physiology , Milk/chemistry , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Amino Acids, Branched-Chain/blood , Animals , Cattle/genetics , Diet/veterinary , Female , Lactation , Liver/metabolism , Muscle, Skeletal/enzymology , Postpartum Period , Pregnancy , RNA, Messenger/genetics , Subcutaneous Fat/enzymology
16.
J Dairy Sci ; 102(4): 3556-3568, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30712942

ABSTRACT

Branched-chain α-keto acid dehydrogenase (BCKDH) complex catalyzes the irreversible oxidative decarboxylation of branched-chain α-keto acids. This reaction is considered as the rate-limiting step in the overall branched-chain amino acid (BCAA) catabolic pathway in mammals. For characterizing the potential enzymatic involvement of liver, skeletal muscle, adipose tissue (AT), and mammary gland (MG) in BCAA metabolism during early lactation, tissue and blood samples were examined on d 1, 42, and 105 after parturition from 25 primiparous Holstein cows. Serum BCAA profiles were analyzed and the mRNA and protein abundance as well as the activity in the different tissues were assessed for the BCAA catabolic enzymes, partly for the branched-chain aminotransferase and completely for BCKDH. Total BCAA concentration in serum was lowest on d 1 after parturition and increased thereafter to a steady level for the duration of the experiment. Pronounced differences between the tissues were observed at all molecular levels. The mRNA abundance of the mitochondrial isoform of branched-chain aminotransferase (BCATm) was greatest in AT as compared with the other tissues studied, indicating that AT might be an important contributor in the initiation of BCAA catabolism in dairy cows. From the different subunits of the BCKDH E1 component, only the mRNA for the ß polypeptide (BCKDHB), not for the α polypeptide (BCKDHA), was elevated in liver. The BCKDHA mRNA abundance was similar across all tissues except muscle, which tended to lower values. Highest BCKDHA protein abundance was observed in both liver and MG, whereas BCKDHB protein was detectable in these tissues but could not be quantified. Adipose tissue and muscle only displayed abundance of the α subunit, with muscle having the lowest BCKDHA protein of all tissues. We found similarities in protein abundance for both BCKDH E1 subunits in liver and MG; however, the corresponding overall BCKDH enzyme activity was 7-fold greater in liver compared with MG, allowing for hepatic oxidation of BCAA transamination products. Reduced BCKDH activity in MG associated with no measurable activity in AT and muscle may favor sparing of BCAA for the synthesis of the different milk components, including nonessential AA. Deviating from previously published data on BCAA net fluxes and isotopic tracer studies in ruminants, our observed results might in part be due to complex counter-regulatory mechanisms during early lactation.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Cattle/metabolism , Lactation/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Animals , Cattle/genetics , Female , Liver/metabolism , Milk , Muscle, Skeletal/metabolism , RNA, Messenger
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(7): 737-741, 2019 Jul 10.
Article in Zh | MEDLINE | ID: mdl-31302925

ABSTRACT

Maple syrup disease (MSUD) is a rare autosomal recessive disorder caused primarily by mutations of branched-chain keto acid dehydrogenase complex (BCKDC). BCKDC includes at least four pathogenic genes of BCKDHA, BCKDHB, DLD and DBT. The clinical manifestations of MSUD are complex, and the main symptoms at the early stage include difficulty in feeding, drowsiness, change in muscle tone and special urine flavor of maple syrup. As the disease progresses, convulsion, hypoglycemia, coma and systemic failure may occur. MSUD is easily missed or misdiagnosed during the neonatal period. This paper provides a review for recent progress made in research on MSUD including etiology, physiopathology, clinical manifestation, auxiliary examination and treatment, with a particular emphasis on genetic testing and treatment.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/therapy , Humans , Mutation
18.
Biochem Biophys Res Commun ; 495(2): 1769-1774, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29229387

ABSTRACT

Intramuscular fat is used to determine meat quality in animals; however, factors affecting branched chain amino acid (BCAA) catabolism, which fuels adipogenesis and lipogenesis, remain unclear. To better understand the post-transcriptional influence on BCAA catabolism during adipogenesis, we investigated the role of miR-124-3p. Stromal vascular fraction (SVF) cells were isolated from skeletal muscle of sheep, and induced to differentiate. We determined the roles of miR-124-3p and its predicted target, branched chain keto acid dehydrogenase E1, alpha polypeptide (BCKDHA), in adipogenic differentiation and lipogenesis of SVFs after overexpressing or inhibiting miR-124-3p or BCKDHA, respectively. miR-124-3p altered the luciferase activity of constructs containing 3'-UTR of BCKDHA and the formation of lipid droplets, along with the adipogenic markers and BCAA consumption. Besides, the adipogenic performance and BCAA consumption in BCKDHA-overexpressing or knocked-down SVFs and the expression of adipogenic marker genes were altered. We demonstrate that miR-124-3p is an important factor for adipogenesis and provide insights into the formation of intramuscular fat in animals.


Subject(s)
Adipogenesis/genetics , Amino Acids, Branched-Chain/metabolism , MicroRNAs/genetics , Sheep/growth & development , Sheep/genetics , 3' Untranslated Regions , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Adipogenesis/physiology , Animals , Cell Differentiation/genetics , MicroRNAs/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Sheep/metabolism
19.
Plant Physiol ; 174(1): 370-386, 2017 May.
Article in English | MEDLINE | ID: mdl-28275149

ABSTRACT

O-Acyl sugars (O-AS) are abundant trichome-specific metabolites that function as indirect defenses against herbivores of the wild tobacco Nicotiana attenuata; whether they also function as generalized direct defenses against herbivores and pathogens remains unknown. We characterized natural variation in O-AS among 26 accessions and examined their influence on two native fungal pathogens, Fusarium brachygibbosum U4 and Alternaria sp. U10, and the specialist herbivore Manduca sexta At least 15 different O-AS structures belonging to three classes were found in N. attenuata leaves. A 3-fold quantitative variation in total leaf O-AS was found among the natural accessions. Experiments with natural accessions and crosses between high- and low-O-AS accessions revealed that total O-AS levels were associated with resistance against herbivores and pathogens. Removing O-AS from the leaf surface increased M. sexta growth rate and plant fungal susceptibility. O-AS supplementation in artificial diets and germination medium reduced M. sexta growth and fungal spore germination, respectively. Finally, silencing the expression of a putative branched-chain α-ketoacid dehydrogenase E1 ß-subunit-encoding gene (NaBCKDE1B) in the trichomes reduced total leaf O-AS by 20% to 30% and increased susceptibility to Fusarium pathogens. We conclude that O-AS function as direct defenses to protect plants from attack by both native pathogenic fungi and a specialist herbivore and infer that their diversification is likely shaped by the functional interactions among these biotic stresses.


Subject(s)
Disease Resistance , Nicotiana/chemistry , Plant Leaves/chemistry , Sugars/chemistry , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Acylation , Alternaria/physiology , Animals , Fusarium/physiology , Gene Silencing , Herbivory/physiology , Manduca/physiology , Molecular Structure , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Leaves/microbiology , Plant Leaves/parasitology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , Nicotiana/microbiology , Nicotiana/parasitology , Trichomes/genetics , Trichomes/microbiology , Trichomes/parasitology
20.
Nat Chem Biol ; 12(1): 15-21, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26571352

ABSTRACT

Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation.


Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Amino Acids, Branched-Chain/metabolism , Lipogenesis , Obesity/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , 3T3-L1 Cells/drug effects , Acetyl Coenzyme A/metabolism , Adipocytes/drug effects , Adipogenesis/physiology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Base Sequence , Cell Differentiation/drug effects , Cell Differentiation/physiology , Humans , Mice , Molecular Sequence Data , Obesity/surgery , Tricarboxylic Acids/metabolism , Vitamin B 12/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL