Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.167
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 90: 107-135, 2021 06 20.
Article in English | MEDLINE | ID: mdl-33882259

ABSTRACT

DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.


Subject(s)
DNA Damage/genetics , DNA Repair/physiology , Fanconi Anemia/genetics , Vertebrates/genetics , Acetaldehyde/metabolism , Animals , DNA/chemistry , DNA Breaks, Double-Stranded , DNA Breaks, Single-Stranded , DNA Replication , Fanconi Anemia/metabolism , Humans
2.
Nature ; 579(7800): 603-608, 2020 03.
Article in English | MEDLINE | ID: mdl-32132710

ABSTRACT

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption1. Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers1,2. Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer3,4. The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells5-7. However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


Subject(s)
Acetaldehyde/chemistry , Cross-Linking Reagents/chemistry , DNA Damage , DNA Repair , DNA Replication/physiology , DNA/chemistry , Ethanol/chemistry , Fanconi Anemia/metabolism , Animals , Cisplatin/chemistry , Cisplatin/pharmacology , DNA Damage/drug effects , DNA Replication/drug effects , DNA-Directed DNA Polymerase/metabolism , Ethanol/pharmacology , Mutagenesis/drug effects , Nucleotidyltransferases/metabolism , Point Mutation/drug effects , Point Mutation/genetics , Xenopus , Xenopus Proteins/metabolism
3.
Plant J ; 119(1): 84-99, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38578218

ABSTRACT

Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.


Subject(s)
Phenylalanine , Plant Leaves , Solanum lycopersicum , Volatile Organic Compounds , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/parasitology , Phenylalanine/metabolism , Volatile Organic Compounds/metabolism , Animals , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/parasitology , Benzaldehydes/metabolism , Benzaldehydes/pharmacology , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Acetaldehyde/pharmacology , Moths/physiology , Moths/drug effects , Plant Diseases/parasitology , Plant Diseases/immunology , Manduca/physiology
4.
Carcinogenesis ; 45(1-2): 95-106, 2024 02 12.
Article in English | MEDLINE | ID: mdl-37978873

ABSTRACT

The alcohol metabolite acetaldehyde is a potent human carcinogen linked to esophageal squamous cell carcinoma (ESCC) initiation and development. Aldehyde dehydrogenase 2 (ALDH2) is the primary enzyme that detoxifies acetaldehyde in the mitochondria. Acetaldehyde accumulation causes genotoxic stress in cells expressing the dysfunctional ALDH2E487K dominant negative mutant protein linked to ALDH2*2, the single nucleotide polymorphism highly prevalent among East Asians. Heterozygous ALDH2*2 increases the risk for the development of ESCC and other alcohol-related cancers. Despite its prevalence and link to malignant transformation, how ALDH2 dysfunction influences ESCC pathobiology is incompletely understood. Herein, we characterize how ESCC and preneoplastic cells respond to alcohol exposure using cell lines, three-dimensional organoids and xenograft models. We find that alcohol exposure and ALDH2*2 cooperate to increase putative ESCC cancer stem cells with high CD44 expression (CD44H cells) linked to tumor initiation, repopulation and therapy resistance. Concurrently, ALHD2*2 augmented alcohol-induced reactive oxygen species and DNA damage to promote apoptosis in the non-CD44H cell population. Pharmacological activation of ALDH2 by Alda-1 inhibits this phenotype, suggesting that acetaldehyde is the primary driver of these changes. Additionally, we find that Aldh2 dysfunction affects the response to cisplatin, a chemotherapeutic commonly used for the treatment of ESCC. Aldh2 dysfunction facilitated enrichment of CD44H cells following cisplatin-induced oxidative stress and cell death in murine organoids, highlighting a potential mechanism driving cisplatin resistance. Together, these data provide evidence that ALDH2 dysfunction accelerates ESCC pathogenesis through enrichment of CD44H cells in response to genotoxic stressors such as environmental carcinogens and chemotherapeutic agents.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Mice , Animals , Esophageal Squamous Cell Carcinoma/genetics , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Esophageal Neoplasms/pathology , Risk Factors , Alcohol Drinking/genetics , Cisplatin/pharmacology , Aldehyde Dehydrogenase, Mitochondrial/genetics , Ethanol/metabolism , Acetaldehyde/metabolism , Cell Transformation, Neoplastic , Neoplastic Stem Cells/pathology , Alcohol Dehydrogenase/genetics
5.
J Biol Chem ; 299(11): 105320, 2023 11.
Article in English | MEDLINE | ID: mdl-37802315

ABSTRACT

Autoantibodies to malondialdehyde (MDA) proteins constitute a subset of anti-modified protein autoantibodies in rheumatoid arthritis (RA), which is distinct from citrulline reactivity. Serum anti-MDA IgG levels are commonly elevated in RA and correlate with disease activity, CRP, IL6, and TNF-α. MDA is an oxidation-associated reactive aldehyde that together with acetaldehyde mediates formation of various immunogenic amino acid adducts including linear MDA-lysine, fluorescent malondialdehyde acetaldehyde (MAA)-lysine, and intramolecular cross-linking. We used single-cell cloning, generation of recombinant antibodies (n = 356 from 25 donors), and antigen-screening to investigate the presence of class-switched MDA/MAA+ B cells in RA synovium, bone marrow, and bronchoalveolar lavage. Anti-MDA/MAA+ B cells were found in bone marrow plasma cells of late disease and in the lung of both early disease and risk-individuals and in different B cell subsets (memory, double negative B cells). These were compared with previously identified anti-MDA/MAA from synovial memory and plasma cells. Seven out of eight clones carried somatic hypermutations and all bound MDA/MAA-lysine independently of protein backbone. However, clones with somatic hypermutations targeted MAA cross-linked structures rather than MDA- or MAA-hapten, while the germline-encoded synovial clone instead bound linear MDA-lysine in proteins and peptides. Binding patterns were maintained in germline converted clones. Affinity purification of polyclonal anti-MDA/MAA from patient serum revealed higher proportion of anti-MAA versus anti-MDA compared to healthy controls. In conclusion, IgG anti-MDA/MAA show distinct targeting of different molecular structures. Anti-MAA IgG has been shown to promote bone loss and osteoclastogenesis in vivo and may contribute to RA pathogenesis.


Subject(s)
Arthritis, Rheumatoid , B-Lymphocytes , Humans , Acetaldehyde/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Autoantibodies , Bone Marrow/metabolism , Immunoglobulin G/metabolism , Lung/metabolism , Lysine/metabolism , Malondialdehyde/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Autoimmunity
6.
Biomarkers ; 29(3): 154-160, 2024 May.
Article in English | MEDLINE | ID: mdl-38506499

ABSTRACT

CONTEXT: Exocyclic DNA adducts have been shown to be potential biomarkers of cancer risk related to oxidative stress and exposure to aldehydes in smokers. In fact, aldehydes potentially arise from tobacco combustion directly and endogenously through lipid peroxidation. OBJECTIVE: This study aims to investigate the relationship between a profile of nine aldehydes-induced DNA adducts and antioxidant activities, in order to evaluate new biomarkers of systemic exposure to aldehydes. METHODS: Using our previously published UPLC-MS/MS method, adducts levels were quantified in the blood DNA of 34 active smokers. The levels of antioxidant vitamins (A, C and E), coenzyme Q10, ß-carotene, superoxide dismutase (SOD) and autoantibodies against oxidized low-density lipoprotein were measured. RESULTS: Adducts induced by tobacco smoking-related aldehydes were quantified at levels reflecting an oxidative production from lipid peroxidation. A significant correlation between SOD and crotonaldehyde-induced adducts (p = 0.0251) was also observed. ß-Carotene was negatively correlated with the adducts of formaldehyde (p = 0.0351) and acetaldehyde (p = 0.0413). Vitamin C tended to inversely correlate with acetaldehyde-induced adducts (p = 0.0584). CONCLUSION: These results are promising, and the study is now being conducted on a larger cohort with the aim of evaluating the impact of smoking cessation programs on the evolution of adducts profile and antioxidants activities.


Subject(s)
DNA Adducts , Smokers , Humans , Biological Monitoring , Antioxidants , beta Carotene , Chromatography, Liquid , Tandem Mass Spectrometry , Aldehydes , Oxidative Stress , Biomarkers , Acetaldehyde , Superoxide Dismutase
7.
J Biochem Mol Toxicol ; 38(1): e23518, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37638564

ABSTRACT

Aldehyde dehydrogenase 2 (ALDH2) deficiency caused by   genetic variant is present in more than 560 million people of East Asian descent, which can be identified by apparent facial flushing from acetaldehyde accumulation after consuming alcohol. Recent findings indicated that ALDH2 also played a critical role in detoxification of formaldehyde (FA). Our previous studies showed that FA could enhance macrophagic inflammatory responses through the induction of HIF-1α-dependent glycolysis. In the present study, pro-inflammatory responses and glycolysis promoted by 0.5 mg/m3 FA were found in mice with Aldh2 gene knockout, which was confirmed in the primary macrophages isolated from Aldh2 gene knockout mice treated with 50 µM FA. FA at 50 and 100 µM also induced stronger dose-dependent increases of pro-inflammatory responses and glycolysis in RAW264.7 murine macrophages with knock-down of ALDH2, and the enhanced effects induced by 50 µM FA was alleviated by inhibition of HIF-1α in RAW264.7 macrophages with ALDH2 knock-down. Collectively, these results clearly demonstrated that ALDH2 deficiency reinforced pro-inflammatory responses and glycolysis in macrophages potentiated by environmentally relevant concentration of FA, which may increase the susceptibility to inflammation and immunotoxicity induced by environmental FA exposure.


Subject(s)
Acetaldehyde , Ethanol , Humans , Mice , Animals , Aldehyde Dehydrogenase, Mitochondrial/genetics , Ethanol/toxicity , Acetaldehyde/toxicity , Formaldehyde/toxicity , Mice, Knockout , Macrophages
8.
Nature ; 553(7687): 171-177, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323295

ABSTRACT

Haematopoietic stem cells renew blood. Accumulation of DNA damage in these cells promotes their decline, while misrepair of this damage initiates malignancies. Here we describe the features and mutational landscape of DNA damage caused by acetaldehyde, an endogenous and alcohol-derived metabolite. This damage results in DNA double-stranded breaks that, despite stimulating recombination repair, also cause chromosome rearrangements. We combined transplantation of single haematopoietic stem cells with whole-genome sequencing to show that this damage occurs in stem cells, leading to deletions and rearrangements that are indicative of microhomology-mediated end-joining repair. Moreover, deletion of p53 completely rescues the survival of aldehyde-stressed and mutated haematopoietic stem cells, but does not change the pattern or the intensity of genome instability within individual stem cells. These findings characterize the mutation of the stem-cell genome by an alcohol-derived and endogenous source of DNA damage. Furthermore, we identify how the choice of DNA-repair pathway and a stringent p53 response limit the transmission of aldehyde-induced mutations in stem cells.


Subject(s)
Acetaldehyde/metabolism , DNA Breaks, Double-Stranded/drug effects , Ethanol/metabolism , Ethanol/pharmacology , Genomic Instability/drug effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Mutation , Alcohol Dehydrogenase/deficiency , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Animals , Cell Survival/drug effects , DNA End-Joining Repair , Ethanol/administration & dosage , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group D2 Protein/deficiency , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Female , Gene Deletion , Genes, p53/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Ku Autoantigen/metabolism , Male , Mice , Mice, Inbred C57BL , Recombinational DNA Repair/drug effects , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Whole Genome Sequencing
9.
Mol Cell ; 63(2): 277-292, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27373334

ABSTRACT

An abnormal differentiation state is common in BRCA1-deficient mammary epithelial cells, but the underlying mechanism is unclear. Here, we report a convergence between DNA repair and normal, cultured human mammary epithelial (HME) cell differentiation. Surprisingly, depleting BRCA1 or FANCD2 (Fanconi anemia [FA] proteins) or BRG1, a mSWI/SNF subunit, caused HME cells to undergo spontaneous epithelial-to-mesenchymal transition (EMT) and aberrant differentiation. This also occurred when wild-type HMEs were exposed to chemicals that generate DNA interstrand crosslinks (repaired by FA proteins), but not in response to double-strand breaks. Suppressed expression of ΔNP63 also occurred in each of these settings, an effect that links DNA damage to the aberrant differentiation outcome. Taken together with somatic breast cancer genome data, these results point to a breakdown in a BRCA/FA-mSWI/SNF-ΔNP63-mediated DNA repair and differentiation maintenance process in mammary epithelial cells that may contribute to sporadic breast cancer development.


Subject(s)
BRCA1 Protein/metabolism , Breast Neoplasms/prevention & control , Cell Differentiation , DNA Damage , DNA Helicases/metabolism , DNA Repair , Epithelial Cells/metabolism , Fanconi Anemia Complementation Group D2 Protein/metabolism , Mammary Glands, Human/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Acetaldehyde/pharmacology , BRCA1 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cisplatin/pharmacology , DNA Helicases/genetics , Epithelial Cells/drug effects , Epithelial Cells/pathology , Fanconi Anemia Complementation Group D2 Protein/genetics , Female , Formaldehyde/pharmacology , Humans , Mammary Glands, Human/drug effects , Mammary Glands, Human/pathology , Mutation , Nuclear Proteins/genetics , Phenotype , RNA Interference , Signal Transduction , Transcription Factors/genetics , Transfection , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
10.
Alcohol Alcohol ; 59(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37950904

ABSTRACT

Ethanol metabolism plays an essential role in how the body perceives and experiences alcohol consumption, and evidence suggests that modulation of ethanol metabolism can alter the risk for alcohol use disorder (AUD). In this review, we explore how ethanol metabolism, mainly via alcohol dehydrogenase and aldehyde dehydrogenase 2 (ALDH2), contributes to drinking behaviors by integrating preclinical and clinical findings. We discuss how alcohol dehydrogenase and ALDH2 polymorphisms change the risk for AUD, and whether we can harness that knowledge to design interventions for AUD that alter ethanol metabolism. We detail the use of disulfiram, RNAi strategies, and kudzu/isoflavones to inhibit ALDH2 and increase acetaldehyde, ideally leading to decreases in drinking behavior. In addition, we cover recent preclinical evidence suggesting that strategies other than increasing acetaldehyde-mediated aversion can decrease ethanol consumption, providing other potential metabolism-centric therapeutic targets. However, modulating ethanol metabolism has inherent risks, and we point out some of the key areas in which more data are needed to mitigate these potential adverse effects. Finally, we present our opinions on the future of treating AUD by the modulation of ethanol metabolism.


Subject(s)
Alcoholism , Humans , Alcoholism/drug therapy , Alcoholism/metabolism , Ethanol/adverse effects , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase/metabolism , Alcohol Dehydrogenase , Alcohol Drinking/adverse effects , Acetaldehyde/metabolism
11.
Nucleic Acids Res ; 50(13): 7451-7464, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35776120

ABSTRACT

Acetaldehyde (AA), a by-product of ethanol metabolism, is acutely toxic due to its ability to react with various biological molecules including DNA and proteins, which can greatly impede key processes such as replication and transcription and lead to DNA damage. As such AA is classified as a group 1 carcinogen by the International Agency for Research on Cancer (IARC). Previous in vitro studies have shown that AA generates bulky adducts on DNA, with signature guanine-centered (GG→TT) mutations. However, due to its weak mutagenicity, short chemical half-life, and the absence of powerful genetic assays, there is considerable variability in reporting the mutagenic effects of AA in vivo. Here, we used an established yeast genetic reporter system and demonstrate that AA treatment is highly mutagenic to cells and leads to strand-biased mutations on guanines (G→T) at a high frequency on single stranded DNA (ssDNA). We further demonstrate that AA-derived mutations occur through lesion bypass on ssDNA by the translesion polymerase Polζ. Finally, we describe a unique mutation signature for AA, which we then identify in several whole-genome and -exome sequenced cancers, particularly those associated with alcohol consumption. Our study proposes a key mechanism underlying carcinogenesis by acetaldehyde-mutagenesis of single-stranded DNA.


Subject(s)
Acetaldehyde , DNA, Single-Stranded , Acetaldehyde/chemistry , Acetaldehyde/metabolism , Acetaldehyde/toxicity , DNA/genetics , DNA Adducts/genetics , DNA Damage , DNA Replication , DNA, Single-Stranded/genetics , Guanine/metabolism , Mutagenesis , Mutagens , Mutation
12.
Luminescence ; 39(1): e4609, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37880857

ABSTRACT

The new drug linagliptin belongs to the class of dipeptidyl peptidase-4 enzyme inhibitors. Linagliptin is used to treat type 2 diabetes and is taken orally either alone or in combination with other drugs. In this instance, a new, simple, and economical technique for analyzing linagliptin was developed by the effective use of a pyrrolidone derivative. The primary amine group of linagliptin permits its condensation with ninhydrin (0.14% w/v) to produce a fluorescent product in the presence of phenylacetaldehyde (0.02% v/v). All experimental parameters were carefully examined and adjusted in order to monitor the generation of the pyrrolidone derivative at excitation and emission wavelengths of 385 and 475 nm, respectively. The calibration graph was made by plotting the intensity of the fluorescence in relation to linagliptin concentration. A significant linearity was found for values ranging from 20 to 460 ng/mL. The process's validity has been verified by a thorough assessment of the instructions provided by the International Conference on Harmonization (ICH). The results indicate excellent uniformity with a reference method, showing that there is no substantial difference in precision and accuracy. The proposed approach was utilized for determining linagliptin in real rat plasma successfully owing to its high sensitivity. Additionally, the proposed approach was evaluated using the Eco-Scale evaluation tool and showed a high degree of eco-friendliness (86/100).


Subject(s)
Acetaldehyde/analogs & derivatives , Diabetes Mellitus, Type 2 , Linagliptin , Animals , Rats , Diabetes Mellitus, Type 2/drug therapy , Ninhydrin/chemistry , Pyrrolidinones
13.
Pestic Biochem Physiol ; 198: 105716, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225073

ABSTRACT

Land snails are the most harmful pests in agricultural fields. Eobania vermiculata is a widespread snail species that causes massive damage to all agricultural crops. Thus, the molluscicidal activity of calcium borate nanoparticles (CB-NPs) against Eobania vermiculata was evaluated and compared with metaldehyde (Gastrotox® E 5% G). The amorphous phase of CB-NPs was obtained after thermal treatment at a low temperature (500 °C) which conformed by X-ray diffraction (XRD) analysis. CB-NPs are composed of aggregated nano-sheets with an average thickness of 54 nm which enhanced their molluscicidal activity. These nano-sheets displayed meso-porous network architecture with pore diameters of 13.65 nm, and a 9.46 m2/g specific surface area. CB-NPs and metaldehyde (Gastrotox® E 5% G) exhibited molluscicidal effects on Eobania vermiculata snails with median lethal concentrations LC50 of 175.3 and 60.5 mg/l, respectively, after 72 h of exposure. The results also showed significant reductions of Eobania vermiculata snails hemocytes' mean total number, the levels of Testosterone (T) and Estrogen (E), alkaline phosphatase, acid phosphatase, albumin, and protein concentrations, succinate dehydrogenase, glucose, triglycerides and phospholipids levels, while significant increases in the phagocytic index and mortality index, both transaminases (ALT and AST) and glycogen phosphorylase concentration were observed after the exposure to LC50 of CB-NPs or metaldehyde (Gastrotox® E 5% G) compared to the control group. Therefore, CB-NPs could be used as an alternative molluscicide for controlling Eobania vermiculata, but further studies are needed to assess their effects on non-target organisms.


Subject(s)
Acetaldehyde/analogs & derivatives , Borates , Molluscacides , Snails , Animals , Calcium Compounds/metabolism , Calcium Compounds/pharmacology , Molluscacides/pharmacology , Flowers
14.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256150

ABSTRACT

Aldehyde:ferredoxin oxidoreductases (AORs) have been isolated and biochemically-characterized from a handful of anaerobic or facultative aerobic archaea and bacteria. They catalyze the ferredoxin (Fd)-dependent oxidation of aldehydes to acids. Recently, the involvement of AOR in the reduction of organic acids to alcohols with electrons derived from sugar or synthesis gas was demonstrated, with alcohol dehydrogenases (ADHs) carrying out the reduction of the aldehyde to the alcohol (AOR-ADH pathway). Here, we describe the biochemical characterization of an AOR of the thermophilic fermentative bacterium Thermoanaerobacter sp. strain X514 (AORX514). The putative aor gene (Teth514_1380) including a 6x-His-tag was introduced into the genome of the genetically-accessible, related species Thermoanaerobacter kivui. The protein was purified to apparent homogeneity, and indeed revealed AOR activity, as measured by acetaldehyde-dependent ferredoxin reduction. AORX514 was active over a wide temperature (10 to 95 °C) and pH (5.5 to 11.5) range, utilized a wide variety of aldehydes (short and branched-chained, aliphatic, aromatic) and resembles archaeal sensu stricto AORs, as the protein is active in a homodimeric form. The successful, recombinant production of AORX514 in a related, well-characterized and likewise strict anaerobe paves the road towards structure-function analyses of this enzyme and possibly similar oxygen-sensitive or W/Mo-dependent proteins in the future.


Subject(s)
Aldehydes , Ferredoxins , Ferredoxins/genetics , Thermoanaerobacter/genetics , Acetaldehyde , Alcohol Dehydrogenase , Archaea , DNA Topoisomerases, Type I
15.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930972

ABSTRACT

Copper (II), a vital fungicide in organic viticulture, also acts as a wine oxidation catalyst. However, limited data are currently available on the impact that maximum allowed copper (II) ion doses in wine grapes at harvest can have on aged wine quality. This was the focus of the present study. We investigated the copper (II) effects by producing both white and red wines from musts containing three initial metal concentrations according to the limits set for organic farming. In detail, the influence of copper (II) on fermentation evolution, chromatic characteristics, and phenolic compounds was evaluated. Interestingly, the white wine obtained with the highest permitted copper (II) dose initially exceeded the concentration of 1.0 mg/L at fermentation completion. However, after one year of storage, the copper (II) content fell below 0.2 ± 0.01 mg/L. Conversely, red wines showed copper (II) levels below 1.0 mg/L at the end of fermentation, but the initial copper (II) level in musts significantly affected total native anthocyanins, color intensity, hue, and acetaldehyde concentration. After 12-month aging, significant differences were observed in polymeric pigments, thus suggesting a potential long-term effect of copper (II) on red wine color stability.


Subject(s)
Acetaldehyde , Copper , Fermentation , Phenols , Vitis , Wine , Wine/analysis , Copper/analysis , Acetaldehyde/analysis , Phenols/analysis , Phenols/chemistry , Vitis/chemistry , Color , Anthocyanins/analysis , Anthocyanins/chemistry
16.
Environ Geochem Health ; 46(7): 248, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874631

ABSTRACT

All pests can be eliminated with the help of pesticides, which can be either natural or synthetic. Because of the excessive use of pesticides, it is harmful to both ecology and people's health. Pesticides are categorised according to several criteria: their chemical composition, method of action, effects, timing of use, source of manufacture, and formulations. Many aquatic animals, birds, and critters live in danger owing to hazardous pesticides. Metaldehyde is available in various forms and causes significant impact even when small amounts are ingested. Metaldehyde can harm wildlife, including dogs, cats, and birds. This review discusses pesticides, their types and potential environmental issues, and metaldehyde's long-term effects. In addition, it examines ways to eliminate metaldehyde from the aquatic ecosystem before concluding by anticipating how pesticides may affect society. The metal-organic framework and other biosorbents have been appropriately synthesized and subsequently represent the amazing removal of pesticides from effluent as an enhanced adsorbent, such as magnetic nano adsorbents. A revision of the risk assessment for metaldehyde residuals in aqueous sources is also attempted.


Subject(s)
Acetaldehyde , Pesticides , Water Pollutants, Chemical , Acetaldehyde/analogs & derivatives , Animals , Risk Assessment , Humans , Adsorption , Metal-Organic Frameworks/chemistry
17.
J Environ Sci (China) ; 139: 377-388, 2024 May.
Article in English | MEDLINE | ID: mdl-38105063

ABSTRACT

Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter, for which the reason have not been clearly elucidated. Here we measured carbonyl compounds and other trace gasses together with PM2.5 over urban Jinan in North China Plain during the winter. Markedly higher carbonyl concentrations (average: 14.63 ± 4.21 ppbv) were found during wintertime haze pollution, about one to three-times relative to those on non-haze days, with slight difference in chemical composition except formaldehyde (HCHO). HCHO (3.68 ppbv), acetone (3.17 ppbv), and acetaldehyde (CH3CHO) (2.83 ppbv) were the three most abundant species, accounting for ∼75% of the total carbonylson both haze and non-haze days. Results from observational-based model (OBM) with atmospheric oxidation capacity (AOC) indicated that AOC significantly increased with the increasing carbonyls during the winter haze events. Carbonyl photolysis have supplied key oxidants such as RO2 and HO2, and thereby enhancing the formation of fine particles and secondary organic aerosols, elucidating the observed haze-carbonyls inter-correlation. Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources. 1-butene was further confirmed to be the major precursor for HCHO. This study confirms the great contribution of carbonyls to AOC, and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.


Subject(s)
Air Pollutants , Air Pollutants/analysis , China , Particulate Matter/analysis , Seasons , Acetaldehyde/analysis , Environmental Monitoring , Aerosols/analysis
18.
J Am Chem Soc ; 145(2): 953-959, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36584283

ABSTRACT

DNA interstrand cross-links (ICLs) prevent DNA replication and transcription and can lead to potentially lethal events, such as cancer or bone marrow failure. ICLs are typically repaired by proteins within the Fanconi Anemia (FA) pathway, although the details of the pathway are not fully established. Methods to generate DNA containing ICLs are key to furthering the understanding of DNA cross-link repair. A major route to ICL formation in vivo involves reaction of DNA with acetaldehyde, derived from ethanol metabolism. This reaction forms a three-carbon bridged ICL involving the amino groups of adjacent guanines in opposite strands of a duplex resulting in amino and imino functionalities. A stable reduced form of the ICL has applications in understanding the recognition and repair of these types of adducts. Previous routes to creating DNA duplexes containing these adducts have involved lengthy post-DNA synthesis chemistry followed by reduction of the imine. Here, an efficient and high-yielding approach to the reduced ICL using a novel N2-((R)-4-trifluoroacetamidobutan-2-yl)-2'-deoxyguanosine phosphoramidite is described. Following standard automated DNA synthesis and deprotection, the ICL is formed overnight in over 90% yield upon incubation at room temperature with a complementary oligodeoxyribonucleotide containing 2-fluoro-2'-deoxyinosine. The cross-linked duplex displayed a melting transition 25 °C higher than control sequences. Importantly, we show using the Xenopus egg extract system that an ICL synthesized by this method is repaired by the FA pathway. The simplicity and efficiency of this methodology for preparing reduced acetaldehyde ICLs will facilitate access to these DNA architectures for future studies on cross-link repair.


Subject(s)
Acetaldehyde , DNA , Cross-Linking Reagents , DNA/metabolism , DNA Replication , DNA Repair , DNA Damage
19.
Mol Biol Evol ; 39(10)2022 10 07.
Article in English | MEDLINE | ID: mdl-36026493

ABSTRACT

The alcohol dehydrogenase (ADH) family of genes encodes enzymes that catalyze the metabolism of ethanol into acetaldehyde. Nucleotide variation in ADH genes can affect the catalytic properties of these enzymes and is associated with a variety of traits, including alcoholism and cancer. Some ADH variants, including the ADH1B*48His (rs1229984) mutation in the ADH1B gene, reduce the risk of alcoholism and are under positive selection in multiple human populations. The advent of Neolithic agriculture and associated increase in fermented foods and beverages is hypothesized to have been a selective force acting on such variants. However, this hypothesis has not been tested in populations outside of Asia. Here, we use genome-wide selection scans to show that the ADH gene region is enriched for variants showing strong signals of positive selection in multiple Afroasiatic-speaking, agriculturalist populations from Ethiopia, and that this signal is unique among sub-Saharan Africans. We also observe strong selection signals at putatively functional variants in nearby lipid metabolism genes, which may influence evolutionary dynamics at the ADH region. Finally, we show that haplotypes carrying these selected variants were introduced into Northeast Africa from a West-Eurasian source within the last ∼2,000 years and experienced positive selection following admixture. These selection signals are not evident in nearby, genetically similar populations that practice hunting/gathering or pastoralist subsistence lifestyles, supporting the hypothesis that the emergence of agriculture shapes patterns of selection at ADH genes. Together, these results enhance our understanding of how adaptations to diverse environments and diets have influenced the African genomic landscape.


Subject(s)
Alcohol Dehydrogenase , Alcoholism , Acetaldehyde , Agriculture , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Alcoholism/genetics , Ethanol/metabolism , Ethiopia , Humans , Nucleotides , Selection, Genetic
20.
Am J Physiol Gastrointest Liver Physiol ; 324(6): G442-G451, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37070746

ABSTRACT

Alcohol-associated liver disease (ALD) is caused by excessive abuse of alcohol. One of the most representative causes of ALD is the action of acetaldehyde. Acetaldehyde is a toxic material produced when alcohol is metabolized through some enzymes, and it causes endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and tissue injury. In this study, we assessed the relationship between Progesterone receptor membrane component 1 (PGRMC1) and ALD because PGRMC1 is expressed in the ER and mitochondria in the liver. Using the chronic and binge alcohol feeding models, we assessed acetaldehyde level, liver damage, alcohol-degrading enzymes, and ER stress. Compared with wild-type (WT) mice ethanol-fed Pgrmc1 knockout (KO) mice had higher levels of alanine aminotransferase (ALT) and alcohol-degrading enzymes, and Pgrmc1 KO mice had high serum acetaldehyde and ER stress levels compared with WT mice with control and ethanol feeding. Loss of Pgrmc1 increased acetaldehyde production through increased expression of alcohol dehydrogenase and catalase, which led to increased ER stress and suggested that cell death was promoted. In conclusion, it has been proposed that the loss of PGRMC1 could promote ALD and cause liver damage in alcohol-abusing humans.NEW & NOTEWORTHY Loss of Pgrmc1 increased acetaldehyde production, and excess acetaldehyde consequently increased ER stress, which activates apoptosis. Since low expression of PGRMC1 is vulnerable to alcoholic liver damage, the loss of PGRMC1 expression may increase susceptibility to ALD.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Liver Diseases, Alcoholic , Humans , Mice , Animals , Ethanol/toxicity , Ethanol/metabolism , Acetaldehyde/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Oxidative Stress , Mice, Knockout , Membrane Proteins/genetics , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL