ABSTRACT
Amide bond formation is one of the most important reactions in both chemistry and biology1-4, but there is currently no chemical method of achieving α-peptide ligation in water that tolerates all of the 20 proteinogenic amino acids at the peptide ligation site. The universal genetic code establishes that the biological role of peptides predates life's last universal common ancestor and that peptides played an essential part in the origins of life5-9. The essential role of sulfur in the citric acid cycle, non-ribosomal peptide synthesis and polyketide biosynthesis point towards thioester-dependent peptide ligations preceding RNA-dependent protein synthesis during the evolution of life5,9-13. However, a robust mechanism for aminoacyl thioester formation has not been demonstrated13. Here we report a chemoselective, high-yielding α-aminonitrile ligation that exploits only prebiotically plausible molecules-hydrogen sulfide, thioacetate12,14 and ferricyanide12,14-17 or cyanoacetylene8,14-to yield α-peptides in water. The ligation is extremely selective for α-aminonitrile coupling and tolerates all of the 20 proteinogenic amino acid residues. Two essential features enable peptide ligation in water: the reactivity and pKaH of α-aminonitriles makes them compatible with ligation at neutral pH and N-acylation stabilizes the peptide product and activates the peptide precursor to (biomimetic) N-to-C peptide ligation. Our model unites prebiotic aminonitrile synthesis and biological α-peptides, suggesting that short N-acyl peptide nitriles were plausible substrates during early evolution.
Subject(s)
Evolution, Chemical , Nitriles/chemistry , Nitriles/chemical synthesis , Origin of Life , Peptides/chemistry , Peptides/chemical synthesis , Water/chemistry , Acetylene/analogs & derivatives , Acetylene/chemistry , Dipeptides/chemical synthesis , Dipeptides/chemistry , Ferricyanides/chemistry , Hydrogen Sulfide/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Sulfhydryl Compounds/chemistry , Sulfides/chemistryABSTRACT
Microbial aerobic cometabolism is a possible treatment approach for large, dilute trichloroethene (TCE) plumes at groundwater contaminated sites. Rapid microbial growth and bioclogging pose a persistent problem in bioremediation schemes. Bioclogging reduces soil porosity and permeability, which negatively affects substrate distribution and contaminant treatment efficacy while also increasing the operation and maintenance costs of bioremediation. In this study, we evaluated the ability of acetylene, an oxygenase enzyme-specific inhibitor, to decrease biomass production while maintaining aerobic TCE cometabolism capacity upon removal of acetylene. We first exposed propane-metabolizing cultures (pure and mixed) to 5% acetylene (v v-1) for 1, 2, 4, and 8 d and we then verified TCE aerobic cometabolic activity. Exposure to acetylene overall decreased biomass production and TCE degradation rates while retaining the TCE degradation capacity. In the mixed culture, exposure to acetylene for 1-8 d showed minimal effects on the composition and relative abundance of TCE cometabolizing bacterial taxa. TCE aerobic cometabolism and incubation conditions exerted more notable effects on microbial ecology than did acetylene. Acetylene appears to be a viable approach to control biomass production that may lessen the likelihood of bioclogging during TCE cometabolism. The findings from this study may lead to advancements in aerobic cometabolism remediation technologies for dilute plumes.
Subject(s)
Groundwater , Trichloroethylene , Trichloroethylene/metabolism , Acetylene/metabolism , Biodegradation, Environmental , Bacteria/metabolism , BiomassABSTRACT
Acetylene and methylacetylene are impurities commonly found in the raw materials used for the production of polymers such as polypropylene and polyethylene. Experimental evidence indicates that both acetylene and methylacetylene can decrease the productivity of the Ziegler-Natta catalyst and alter the properties of the resulting polymer. However, there is still a lack of understanding regarding the mechanisms through which these substances affect this process. Therefore, elucidating these mechanisms is crucial to develop effective solutions to this problem. In this study, the inhibition mechanisms of the Ziegler-Natta catalyst by acetylene and methylacetylene are presented and compared with the incorporation of the first propylene monomer (chain initiation) to elucidate experimental effects. The Density Functional Theory (DFT) method was used, along with the B3LYP-D3 functional and the 6-311++G(d,p) basis set. The recorded adsorption energies were -11.10, -13.99, and -0.31 kcal mol-1, while the activation energies were 1.53, 2.83, and 28.36 kcal mol-1 for acetylene, methylacetylene, and propylene, respectively. The determined rate constants were 4.68 × 1011, 5.29 × 1011, and 2.3 × 10-8 M-1 s-1 for acetylene, methylacetylene, and propylene, respectively. Based on these values, it is concluded that inhibition reactions are more feasible than propylene insertion only if an ethylene molecule has not been previously adsorbed, as such an event reinforces propylene adsorption.
Subject(s)
Acetylene , Alkenes , Polymerization , Alkenes/chemistry , Catalysis , Acetylene/chemistry , Acetylene/analogs & derivatives , Alkynes/chemistry , Alkynes/pharmacology , Thermodynamics , Density Functional TheoryABSTRACT
Calcium carbide residue (CCR), a by-product of the acetylene industry, is generated at a rate of 136 million tonnes per year, posing significant environmental risks. This review examines the potential utilisation of CCR in soil stabilisation, focusing on its stabilisation mechanism, performance in improving mechanical properties, environmental safety, and sustainability. The aim is to identify future research directions for CCR-based stabilisation to promote its broader application, and to provide references for managing similar Ca-rich wastes. CCR-based materials demonstrate promising benefits in enhancing various soil properties, such as uniaxial strength, swelling properties, triaxial shear behaviour, compressibility, and dynamic responses, while also reducing the mobility of contaminants. Compared to conventional stabilisers, CCR-based materials exhibit comparable performance in soil improvement, environmental impact and safety, and economic feasibility. However, further research is required to delve deeper into stabilisation mechanisms, mechanical properties, and stability of contaminants for the soil treated with CCR-based materials under diverse conditions.
Subject(s)
Acetylene/analogs & derivatives , Industrial Waste , Soil , Soil/chemistry , CalciumABSTRACT
Carbide slag (CS) is a kind of solid waste generated by the hydrolysis of calcium carbide for acetylene production. Its major component is Ca(OH)2, which shows great potential in CO2 mineralization to produce CaCO3. However, the types of impurities in CS and their mechanisms for inducing the morphological evolution of CaCO3 are still unclear. In this work, the influence of impurities in CS on the morphology evolution of CaCO3 was investigated. The following impurities were identified in the CS: Al2O3, MgO, Fe2O3, SiO2 and CaCO3. Ca(OH)2 was used to study the influence of impurities (Al2O3 and Fe2O3) on the evolution of CaCO3 morphology during CS carbonation. Calcite (CaCO3) was the carbonation product produced during CS carbonation under varying conditions. The morphology of calcite was changed from cubic to rod-shaped, with increasing solid-liquid ratios. Moreover, rod-shaped calcite was converted into irregular particles with increasing CO2 flow rate and stirring speed. Rod-shaped calcite (CaCO3) was formed by CS carbonation at a solid-liquid ratio of 10:100 under a stirring speed of 600 rpm and a CO2 flow rate of 200 ml/min; and spherical calcite was generated during Ca(OH)2 carbonation under the same conditions. Al2O3 impurities had negligible effects on spherical CaCO3 during Ca(OH)2 carbonation. In contrast, rod-shaped CaCO3 was generated by adding 0.13 wt% Fe2O3 particles, similar to the content of Fe2O3 in CS. Rod-shaped calcite was converted into particulate calcite with increasing Fe2O3 content. The surface wettability and surface negative charge of Fe2O3 appeared to be responsible for the formation of rod-shaped CaCO3. This study enhances our understanding and utilization of CS and CO2 reduction and the fabrication of high-value rod-shaped CaCO3.
Subject(s)
Calcium Carbonate , Calcium Carbonate/chemistry , Solid Waste , Carbon Dioxide , Carbon Compounds, Inorganic/chemistry , Acetylene/analogs & derivativesABSTRACT
Waste calcium carbide slags (CS), which are widely applied to desulfurisation, are not typically used in denitration. Herein, to well achieve waste control by waste, a facile and high-efficiency denitration strategy is developed using KOH to modify the calcium carbide slags (KCS). Various KCS samples were investigated using a series of physical and chemical characterisations. The performance test results showed that the KOH concentration and reaction temperature are the main factors affecting the denitration efficiency of KCS, and CS modified with 1.5 mol/L KOH (KCS-1.5) can achieve 100% denitration efficiency at 300°C. Such excellent removal efficiency is due to the catalytic oxidation of the oxygen-containing functional groups derived from the KCS. Further studies showed that KOH treatment significantly increased the concentration of oxygen vacancies, nitro compounds, and basic sites of CS. This study provides a novel strategy for the resource utilisation of waste CS in the future.
Subject(s)
Acetylene , Oxygen , Temperature , Oxidation-Reduction , Oxygen/chemistryABSTRACT
Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)-poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL-1-10 ng mL-1 and a low detection limit of 28.5 fg mL-1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection.
Subject(s)
Acetylene , Biosensing Techniques , Alkynes , Polymers/chemistry , Biosensing Techniques/methods , SemiconductorsABSTRACT
Ortho-benzyne and 1,2-azaborinine are related by the formal exchange of the CC triple bond by the isoelectronic BN unit. The (2 + 2) and (2 + 4) cycloaddition reactions of 1,2-azaborinine with the different organic π systems (ethene, ethyne, 1,3-butadiene, 1,3-cyclopentadiene, furan, benzene) were examined computationally using density functional, second-order perturbation, and coupled-cluster methods. All reactions of 1,2-azaborinine with the studied substrates are highly exothermic and involve the formation of Lewis acid-base complexes of 1,2-azaborinine and respective π systems. The interaction between the π bond of the substrates and the empty p orbital of the boron atom in these complexes is remarkably strong, resulting in two-step mechanisms for the (2 + 2) and (2 + 4) cycloaddition reactions. Cycloaddition reactions have lower barriers than CH insertion reactions, and (2 + 4) reactions are favored over (2 + 2) cycloadditions.
Subject(s)
Acetylene , Benzene Derivatives , Benzene Derivatives/chemistry , Acetylene/chemistry , BoronABSTRACT
Two-dimensional metal-organic framework (MOF) crystalline materials possess promising potential in the electrochemical sensing process owing to their tunable structures, high specific surface area, and abundant metal active sites; however, developing MOF-based nonenzymatic glucose (Glu) sensors which combine electrochemical activity and environmental stability remains a challenge. Herein, utilizing the tripodic nitrogen-bridged 1,3,5-tris(1-imidazolyl) benzene (TIB) linker, Co2+ and Ni2+, two 2D isomorphic crystalline materials, including Co/Ni-MOF {[Co (TIB)]·2BF4} (CTGU-31) and {[Ni(TIB)]·2NO3} (CTGU-32), with a binodal (3, 6)-connected kgd topological net were firstly synthesized and fabricated with conducting acetylene black (AB). When modified on a glassy carbon electrode, the optimized AB/CTGU-32 (1:1) electrocatalyst demonstrated a higher sensitivity of 2.198 µA µM-1 cm-2, a wider linear range from 10 to 4000 µM, and a lower detection limit (LOD) value (0.09 µM, S/N = 3) compared to previously MOF-based Glu sensors. Moreover, AB/CTGU-32 (1:1) exhibited desirable stability for at least 2000 s during the electrochemical process. The work indicates that MOF-based electrocatalysts are a promising candidate for monitoring Glu and demonstrate their potential for preliminary screening for diabetes.
Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Carbon/chemistry , Nickel/chemistry , Electrodes , Acetylene , Glucose/chemistryABSTRACT
Chloroethenes (CEs) as common organic pollutants in soil could be attenuated via abiotic and biotic dechlorination. Nonetheless, information on the key catalyzing matter and their reciprocal interactions remains scarce. In this study, FeS was identified as a major catalyzing matter in soil for the abiotic dechlorination of CEs, and acetylene could be employed as an indicator of the FeS-mediated abiotic CE-dechlorination. Organohalide-respiring bacteria (OHRB)-mediated dechlorination enhanced abiotic CEs-to-acetylene potential by providing dichloroethenes (DCEs) and trichloroethene (TCE) since chlorination extent determined CEs-to-acetylene potential with an order of trans-DCE > cis-DCE > TCE > tetrachloroethene/PCE. In contrast, FeS was shown to inhibit OHRB-mediated dechlorination, inhibition of which could be alleviated by the addition of soil humic substances. Moreover, sulfate-reducing bacteria and fermenting microorganisms affected FeS-mediated abiotic dechlorination by re-generation of FeS and providing short chain fatty acids, respectively. A new scenario was proposed to elucidate major abiotic and biotic processes and their reciprocal interactions in determining the fate of CEs in soil. Our results may guide the sustainable management of CE-contaminated sites by providing insights into interactions of the abiotic and biotic dechlorination in soil.
Subject(s)
Environmental Pollutants , Trichloroethylene , Vinyl Chloride , Soil , Humic Substances , Acetylene , HalogenationABSTRACT
In the boreal forests, feather mosses such as Hylocomium splendens and Pleurozium schreberi are colonized by cyanobacteria, which provide large amounts of nitrogen to forest ecosystems through nitrogen fixation. Although these feather mosses are also ubiquitous in subalpine forests of East Asia, little is known regarding their associated cyanobacteria and their ability to fix nitrogen. In this study, we investigated (1) whether cyanobacteria co-exist and fix nitrogen in the two species of feather mosses that cover the ground surface in a subalpine forest of Mt. Fuji, (2) whether cyanobacteria belonging to a common cluster with boreal forests are found in feather mosses in Mt. Fuji, and (3) whether moss-associated nitrogen fixation rates differed among moss growing substrates, canopy openness, and moss nitrogen concentrations in the same forest area. Our results showed that cyanobacteria colonized feather mosses in the subalpine forests of Mt. Fuji and acetylene reduction rates as an index of nitrogen fixation tended to be higher in H. splendens than in P. schreberi. Based on analysis of the nifH gene, 43 bacterial operational taxonomic units (OTUs) were identified, 28 of which represented cyanobacteria. Among the five clusters of cyanobacteria classified based on their nifH gene and identified in northern Europe, four (Nostoc cluster I, Nostoc cluster II, Stigonema cluster, and nifH2 cluster) were also found at Mt. Fuji. The acetylene reduction rate differed depending on the moss growing substrate and the total nitrogen concentration of moss shoots, and a strong negative correlation was observed with the total nitrogen concentration.
Subject(s)
Bryophyta , Bryopsida , Cyanobacteria , Nitrogen Fixation , Ecosystem , Forests , Bryopsida/microbiology , Cyanobacteria/genetics , Nitrogen/analysis , AcetyleneABSTRACT
Bacteriochlorophylls, nature's near-infrared absorbers, play an essential role in energy transfer in photosynthetic antennas and reaction centers. To probe energy-transfer processes akin to those in photosynthetic systems, nine synthetic bacteriochlorin-bacteriochlorin dyads have been prepared wherein the constituent pigments are joined at the meso-positions by a phenylethyne linker. The phenylethyne linker is an unsymmetric auxochrome, which differentially shifts the excited-state energies of the phenyl- or ethynyl-attached bacteriochlorin constituents in the dyad. Molecular designs utilized known effects of macrocycle substituents to engineer bacteriochlorins with S0 â S1 (Qy) transitions spanning 725-788 nm. The design-predicted donor-acceptor excited-state energy gaps in the dyads agree well with those obtained from time dependent density functional theory calculations and with the measured range of 197-1089 cm-1. Similar trends with donor-acceptor excited-state energy gaps are found for (1) the measured ultrafast energy-transfer rates of (0.3-1.7 ps)-1, (2) the spectral overlap integral (J) in Förster energy-transfer theory, and (3) donor-acceptor electronic mixing manifested in the natural transition orbitals for the S0 â S1 transition. Subtle outcomes include the near orthogonal orientation of the π-planes of the bacteriochlorin macrocycles, and the substituent-induced shift in transition-dipole moment from the typical coincidence with the NH-NH axis; the two features together afforded the Förster orientation term κ2 ranging from 0.55-1.53 across the nine dyads, a value supportive of efficient excited-state energy transfer. The molecular design and collective insights on the dyads are valuable for studies relevant to artificial photosynthesis and other processes requiring ultrafast energy transfer.
Subject(s)
Acetylene , Photosynthesis , Energy TransferABSTRACT
A combination strategy of 13C NMR and bioinformatics was established to expedite the discovery of acetylenic meroterpenoids from the ascidian-derived fungus Amphichorda felina SYSU-MS7908. This approach led to the identification of 13 acetylenic meroterpenoids (1-13) and four biogenic analogs (14-17), including five new ones named felinoids A-E (1-4 and 15). Their structures and absolute configurations were elucidated using extensive spectroscopy, ECD quantum chemical calculations, and single-crystal X-ray diffraction analysis. Compound 1 possessed a rare cyclic carbonate in natural acetylenic meroterpenoids. The plausible shikimate-terpenoid biosynthetic pathways of 1-4 were also postulated. Five of these isolates exhibited anti-inflammatory activity by inhibiting NO production in LPS-induced RAW264.7 cells (IC50 = 11.6-19.5 µM). Moreover, oxirapentyn E diacetate showed a dose-dependent inhibition of pro-inflammatory cytokines IL-6 and TNF-α. Structural modification of oxirapentyn B yielded 29 new derivatives, among which seven showed improved activity (IC50 < 3 µM) and higher selectivity index (SI > 22). The structure-activity relationship study indicated that 7, 8-epoxy, and 6-acylation were crucial for the activity. These findings may provide a powerful tool to accelerate the discovery of new fungal acetylenic meroterpenoids for future anti-inflammatory drug development.
Subject(s)
Acetylene , Urochordata , Animals , Molecular Structure , Alkynes , Terpenes/chemistry , Anti-Inflammatory Agents/chemistry , Magnetic Resonance Spectroscopy , FungiABSTRACT
We present a novel method for the simulation of the vibration-induced autoionization dynamics in molecular anions in the framework of the quantum-classical surface hopping approach. Classical trajectories starting from quantum initial conditions are propagated on a quantum-mechanical potential energy surface while allowing for autoionization through transitions into discretized continuum states. These transitions are induced by the couplings between the electronic states of the bound anionic system and the electron-detached system composed of the neutral molecule and the free electron. A discretization scheme for the detached system is introduced, and a set of formulas is derived that enable the approximate calculation of couplings between the bound and free-electron states. We demonstrate our method on the example of the anion of vinylidene, a high-energy isomer of acetylene, for which detailed experimental data are available. Our results provide information on the time scale of the autoionization process and give insight into the energetic and angular distribution of the ejected electrons, as well as the associated changes in the molecular geometry. We identify the formation of structures with reduced C-C bond lengths and T-like conformations through bending of the CH2 group with respect to the C-C axis and point out the role of autoionization as a driving process for the isomerization to acetylene.
Subject(s)
Quantum Theory , Vibration , Computer Simulation , Anions , AcetyleneABSTRACT
Calcium carbide residue (CCR) is a waste obtained from the production of acetylene gas by the hydration reaction of calcium carbide. This residue is generated in large quantities annually and requires appropriate disposal. The main composition of the residue is calcium hydroxide (Ca(OH)2). Ca(OH)2 can react with CO2 gas and form CaCO3 particles. This process is well known but not very attractive since Ca(OH)2 is obtained from limestone using an energy-intensive thermal conversion process. This paper examined the synthesis of CaCO3 from CCR solutions by capturing CO2 with the aid of triethanolamine (TEA) solutions at doses of 0, 5, 10 and 20% w/w. The precipitated CaCO3 was characterized, and the application of CaCO3 as a filler in epoxy resin was tested. The results showed that the precipitated CaCO3 was mainly calcite, with a 76.6% yield. Cubic calcite was primarily obtained in TEA solutions, whereas small and agglomerated spherical vaterite and cubic calcite particles were formed in non-TEA solutions. The CaCO3-filled epoxy composites showed higher compressive strength than the neat resin. However, the transparency of specimen plates was reduced. These results can serve as guidelines for the application of CCR slurry filtrate obtained from the sedimentation ponds of acetylene plants and help to reduce the amount of wastewater that needs to be treated. CO2 gas from industrial flue gas combined with TEA solution could be applied to precipitate CaCO3 for carbon-neutral manufacturing.
Subject(s)
Calcium Carbonate , Carbon Dioxide , Calcium Carbonate/chemistry , Carbon Dioxide/chemistry , Epoxy Resins , AcetyleneABSTRACT
In this study, we report the synthesis of unsubstituted 1,2-benzothiazines through a redox-neutral Rh(III)-catalyzed C-H activation and [4+2]-annulation of S-aryl sulfoximines with vinylene carbonate. Notably, the introduction of an N-protected amino acid ligand significantly enhances the reaction rate. The key aspect of this redox-neutral process is the utilization of vinylene carbonate as an oxidizing acetylene surrogate and an efficient vinylene transfer agent. This vinylene carbonate enables the cyclization with the sulfoximine motifs, successfully forming a diverse array of 1,2-benzothiazine derivatives in moderate to good yields. Importantly, this study highlights the potential of Rh(III)-catalyzed C-H activation and [4+2]-annulation reactions for the synthesis of optically pure 1,2-benzothiazines with high enantiomeric purity.
Subject(s)
Acetylene , Amino Acids , CyclizationABSTRACT
OBJECTIVE: To comprehensively evaluate the effectiveness of improvement of protective facilities in a vinyl chloride monomer(VCM) on promotion toward health status of occupational exposed group and safety production at poly-vinyl chloride(PVC) by comparing the liver function indicators and inspection result before and after the improvement, and to analyze the possible influential factors. METHODS: The information collection concerning facilities improvement in 2013 and 2016, identification toward critical controlling points, data or detection result from occupational on-site survey and physical examination were originated in July 2020, and 227 VCM exposed workers and 179 others without chemical reagents exposure history from production factory with calcium carbide process in Tianjin City were selected as objects. The effectiveness toward improvement of protective facilities in critical controlling points that occupational exposed workers usually involve in were evaluated through comparison toward VCM concentration result, thiodiglycolic acid(TDGA) content in urine, indicators on liver function and biochemistry and liver ultrasound. At the mean time, both binary Logistic regression analysis was used to screen the possible factors that contributed to abnormal symptoms and single dependent variable general linear regression model was used to find out the mutual interaction among influential factors. RESULTS: Prior to improvement on protective facilities, the C_(TWA)of VCM exposed by all 8 positions in G had exceeded 1 to 2 folds of occupational exposure limit(OEL=10 mg/m~3) and the position of synthetic operator and field sampling man were ones exposed to 1, 2-DCE with the range from 50% to 1 OEL, others hazard factors were found to meet relative OELs. Next, the content of TDGA in urine of exposed group was found to correlate strongly to the average concentration of VCM(r=0.79, P<0.05), and result of TDGA content, alanine aminotransferase(ALT), γ-glutamyl transpeptidase(GGT) and abnormal rate toward liver ultrasound test in exposed group were much higher than ones in control group with significant differences(P<0.05 or P<0.001). By contrast, after the improvement, the exposure level toward all identified hazard factors were declined to meet OEL levels with significant differences in TDGA content, and result of ALT, GGT and abnormal rates toward symptoms in liver ultrasound test such as liver calcification with thickened liver echo, peripheral fibrosis of the liver, multiple hepatic cysts were markedly lower than ones before improvement and still were higher than ones in control group(P<0.05 or P<0.001). Further, parameters of gender, length of employment, weekly contact time, VCM exposed level, TDGA content were all important contributing factors to abnormal symptoms in liver ultrasound test before and after improvement on protective facilities(P<0.05 or P<0.001), in which a significant interaction effect between gender and length of employment(F=4.028, P=0.044), weekly contact time and TDGA content(F=2.183, P=0.046) in urine were found in contribution analysis to abnormal symptoms in liver ultrasound test(P<0.05). CONCLUSION: The improvement measure carried out in VCM facilities by this PVC production factories with calcium carbide process effectively reduced the ambient concentration of hazard factors mainly led by VCM, but workers might still be at risk of liver injury even under VCM exposure at relative lower level, which may referred to factors of long weekly contact time, long length of employment and high fat diet.
Subject(s)
Occupational Exposure , Vinyl Chloride , Male , Humans , Liver , AcetyleneABSTRACT
Rational design of covalent organic frameworks (COFs) to broaden their diversity is highly desirable but challenging due to the limited, expensive, and complex building blocks, especially compared with other easily available porous materials. In this work, we fabricated two novel bioinspired COFs, namely, NUS-71 and NUS-72, using reticular chemistry with ellagic acid and triboronic acid-based building blocks. Both COFs with AB stacking mode exhibit high acetylene (C2H2) adsorption capacity and excellent separation performance for C2H2/CO2 mixtures, which is significant but rarely explored using COFs. The impressive affinities for C2H2 appear to be related to the sandwich structure formed by C2H2 and the host framework via multiple host-guest interactions. This work not only represents a new avenue for the construction of low-cost COFs but also expands the variety of the COF family using natural biochemicals as building blocks for broad application.
Subject(s)
Metal-Organic Frameworks , Acetylene , Adsorption , Carbon Dioxide/chemistry , Metal-Organic Frameworks/chemistry , PorosityABSTRACT
The mechanism of nitrogenase, the enzyme responsible for biological nitrogen fixation, has been of great interest for understanding the catalytic strategy utilized to reduce dinitrogen to ammonia under ambient temperatures and pressures. The reduction mechanism of nitrogenase is generally envisioned as involving multiple cycles of electron and proton transfers, with the known substrates requiring at least two cycles. Solvent kinetic isotope effect experiments, in which changes of reaction rates or product distribution are measured upon enrichment of solvent with heavy atom isotopes, have been valuable for deciphering the mechanism of complex enzymatic reactions involving proton or hydrogen transfer. We report the distribution of ethylene, dihydrogen, and methane isotopologue products measured from nitrogenase-catalyzed reductions of acetylene, protons, and cyanide, respectively, performed in varying levels of deuterium enrichment of the solvent. As has been noted previously, the total rate of product formation by nitrogenase is largely insensitive to the presence of D2O in the solvent. Nevertheless, the incorporation of H/D into products can be measured for these substrates that reflect solvent isotope effects on hydrogen atom transfers that are faster than the overall rate-determining step for nitrogenase. From these data, a minimal isotope effect is observed for acetylene reduction (1.4 ± 0.05), while the isotope effects for hydrogen and methane evolution are significantly higher at 4.2 ± 0.1 and 4.4 ± 0.1, respectively. These results indicate that there are pronounced differences in the sensitivity to isotopic substitution of the hydrogen atom transfer steps associated with the reduction of these substrates by nitrogenase.
Subject(s)
Azotobacter vinelandii , Nitrogenase , Nitrogenase/metabolism , Molybdoferredoxin/metabolism , Deuterium/metabolism , Protons , Solvents , Oxidation-Reduction , Acetylene , Hydrogen/metabolism , Methane/metabolismABSTRACT
Acetylene (C2H2) is a molecule rarely found in nature, with very few known natural sources, but acetylenotrophic microorganisms can use acetylene as their primary carbon and energy source. As of 2018 there were 15 known strains of aerobic and anaerobic acetylenotrophs; however, we hypothesize there may yet be unrecognized diversity of acetylenotrophs in nature. This study expands the known diversity of acetylenotrophs by isolating the aerobic acetylenotroph, Bradyrhizobium sp. strain I71, from trichloroethylene (TCE)-contaminated soils. Strain I71 is a member of the class Alphaproteobacteria and exhibits acetylenotrophic and diazotrophic activities, the only two enzymatic reactions known to transform acetylene. This unique capability in the isolated strain may increase the genus' economic impact beyond agriculture as acetylenotrophy is closely linked to bioremediation of chlorinated contaminants. Computational analyses indicate that the Bradyrhizobium sp. strain I71 genome contains 522 unique genes compared to close relatives. Moreover, applying a novel hidden Markov model of known acetylene hydratase (AH) enzymes identified a putative AH enzyme. Protein annotation with I-TASSER software predicted the AH from the microbe Syntrophotalea acetylenica as the closest structural and functional analog. Furthermore, the putative AH was flanked by horizontal gene transfer (HGT) elements, like that of AH in anaerobic acetylenotrophs, suggesting an unknown source of acetylene or acetylenic substrate in the environment that is selecting for the presence of AH. IMPORTANCE The isolation of Bradyrhizobium strain I71 expands the distribution of acetylene-consuming microbes to include a group of economically important microorganisms. Members of Bradyrhizobium are well studied for their abilities to improve plant health and increase crop yields by providing bioavailable nitrogen. Additionally, acetylene-consuming microbes have been shown to work in tandem with other microbes to degrade soil contaminants. Based on genome, cultivation, and protein prediction analysis, the ability to consume acetylene is likely not widespread within the genus Bradyrhizobium. These findings suggest that the suite of phenotypic capabilities of strain I71 may be unique and make it a good candidate for further study in several research avenues.