Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 300(6): 107329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679328

ABSTRACT

The biphasic assembly of Gram-positive pili begins with the covalent polymerization of distinct pilins catalyzed by a pilus-specific sortase, followed by the cell wall anchoring of the resulting polymers mediated by the housekeeping sortase. In Actinomyces oris, the pilus-specific sortase SrtC2 not only polymerizes FimA pilins to assemble type 2 fimbriae with CafA at the tip, but it can also act as the anchoring sortase, linking both FimA polymers and SrtC1-catalyzed FimP polymers (type 1 fimbriae) to peptidoglycan when the housekeeping sortase SrtA is inactive. To date, the structure-function determinants governing the unique substrate specificity and dual enzymatic activity of SrtC2 have not been illuminated. Here, we present the crystal structure of SrtC2 solved to 2.10-Å resolution. SrtC2 harbors a canonical sortase fold and a lid typical for class C sortases and additional features specific to SrtC2. Structural, biochemical, and mutational analyses of SrtC2 reveal that the extended lid of SrtC2 modulates its dual activity. Specifically, we demonstrate that the polymerizing activity of SrtC2 is still maintained by alanine-substitution, partial deletion, and replacement of the SrtC2 lid with the SrtC1 lid. Strikingly, pilus incorporation of CafA is significantly reduced by these mutations, leading to compromised polymicrobial interactions mediated by CafA. In a srtA mutant, the partial deletion of the SrtC2 lid reduces surface anchoring of FimP polymers, and the lid-swapping mutation enhances this process, while both mutations diminish surface anchoring of FimA pili. Evidently, the extended lid of SrtC2 enables the enzyme the cell wall-anchoring activity in a substrate-selective fashion.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Fimbriae Proteins , Fimbriae, Bacterial , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/chemistry , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Fimbriae Proteins/metabolism , Fimbriae Proteins/chemistry , Fimbriae Proteins/genetics , Crystallography, X-Ray , Actinomyces/metabolism , Actinomyces/enzymology , Substrate Specificity , Models, Molecular
2.
BMC Oral Health ; 18(1): 89, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29776416

ABSTRACT

BACKGROUND: Urease is an enzyme produced by plaque bacteria hydrolysing urea from saliva and gingival exudate into ammonia in order to regulate the pH in the dental biofilm. The aim of this study was to assess the urease activity among oral bacterial species by using the rapid urease test (RUT) in a micro-plate format and to examine whether this test could be used for measuring the urease activity in site-specific supragingival dental plaque samples ex vivo. METHODS: The RUT test is based on 2% urea in peptone broth solution and with phenol red at pH 6.0. Oral bacterial species were tested for their urease activity using 100 µl of RUT test solution in the well of a micro-plate to which a 1 µl amount of cells collected after growth on blood agar plates or in broth, were added. The color change was determined after 15, 30 min, and 1 and 2 h. The reaction was graded in a 4-graded scale (none, weak, medium, strong). Ex vivo evaluation of dental plaque urease activity was tested in supragingival 1 µl plaque samples collected from 4 interproximal sites of front teeth and molars in 18 adult volunteers. The color reaction was read after 1 h in room temperature and scored as in the in vitro test. RESULTS: The strongest activity was registered for Staphylococcus epidermidis, Helicobacter pylori, Campylobacter ureolyticus and some strains of Haemophilus parainfluenzae, while known ureolytic species such as Streptococcus salivarius and Actinomyces naeslundii showed a weaker, variable and strain-dependent activity. Temperature had minor influence on the RUT reaction. The interproximal supragingival dental plaque between the lower central incisors (site 31/41) showed significantly higher scores compared to between the upper central incisors (site 11/21), between the upper left first molar and second premolar (site 26/25) and between the lower right second premolar and molar (site 45/46). CONCLUSION: The rapid urease test (RUT) in a micro-plate format can be used as a simple and rapid method to test urease activity in bacterial strains in vitro and as a chair-side method for testing urease activity in site-specific supragingival plaque samples ex vivo.


Subject(s)
Bacteria/enzymology , Bacteriological Techniques/methods , Dental Plaque/microbiology , Urease/analysis , Actinomyces/enzymology , Campylobacter/enzymology , Haemophilus parainfluenzae/enzymology , Helicobacter pylori/enzymology , Humans , Staphylococcus epidermidis/enzymology , Streptococcus salivarius/enzymology
3.
J Bacteriol ; 199(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28289087

ABSTRACT

Posttranslocational protein folding in the Gram-positive biofilm-forming actinobacterium Actinomyces oris is mediated by a membrane-bound thiol-disulfide oxidoreductase named MdbA, which catalyzes oxidative folding of nascent polypeptides transported by the Sec translocon. Reoxidation of MdbA involves a bacterial vitamin K epoxide reductase (VKOR)-like protein that contains four cysteine residues, C93/C101 and C175/C178, with the latter forming a canonical CXXC thioredoxin-like motif; however, the mechanism of VKOR-mediated reoxidation of MdbA is not known. We present here a topological view of the A. oris membrane-spanning protein VKOR with these four exoplasmic cysteine residues that participate in MdbA reoxidation. Like deletion of the VKOR gene, alanine replacement of individual cysteine residues abrogated polymicrobial interactions and biofilm formation, concomitant with the failure to form adhesive pili on the bacterial surface. Intriguingly, the mutation of the cysteine at position 101 to alanine (C101A mutation) resulted in a high-molecular-weight complex that was positive for MdbA and VKOR by immunoblotting and was absent in other alanine substitution mutants and the C93A C101A double mutation and after treatment with the reducing agent ß-mercaptoethanol. Consistent with this observation, affinity purification followed by immunoblotting confirmed this MdbA-VKOR complex in the C101A mutant. Furthermore, ectopic expression of the Mycobacterium tuberculosis VKOR analog in the A. oris VKOR deletion (ΔVKOR) mutant rescued its defects, in contrast to the expression of M. tuberculosis VKOR variants known to be nonfunctional in the disulfide relay that mediates reoxidation of the disulfide bond-forming catalyst DsbA in Escherichia coli Altogether, the results support a model of a disulfide relay, from its start with the pair C93/C101 to the C175-X-X-C178 motif, that is required for MdbA reoxidation and appears to be conserved in members of the class ActinobacteriaIMPORTANCE It has recently been shown in the high-GC Gram-positive bacteria (or Actinobacteria) Actinomyces oris and Corynebacterium diphtheriae that oxidative folding of nascent polypeptides transported by the Sec machinery is catalyzed by a membrane-anchored oxidoreductase named MdbA. In A. oris, reoxidation of MdbA requires a bacterial VKOR-like protein, and yet, how VKOR mediates MdbA reoxidation is unknown. We show here that the A. oris membrane-spanning protein VKOR employs two pairs of exoplasmic cysteine residues, including the canonical CXXC thioredoxinlike motif, to oxidize MdbA via a disulfide relay mechanism. This mechanism of disulfide relay is essential for pilus assembly, polymicrobial interactions, and biofilm formation and appears to be conserved in members of the class Actinobacteria, including Mycobacterium tuberculosis.


Subject(s)
Actinomyces/enzymology , Actinomyces/metabolism , Biofilms/growth & development , Protein Disulfide Reductase (Glutathione)/metabolism , Vitamin K Epoxide Reductases/metabolism , Actinomyces/genetics , Actinomyces/physiology , Alanine/genetics , Alanine/metabolism , Amino Acid Substitution , Cysteine/genetics , Cysteine/metabolism , DNA Mutational Analysis , Fimbriae, Bacterial/metabolism , Microscopy, Electron, Transmission , Models, Biological , Models, Molecular , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Organelle Biogenesis , Oxidation-Reduction , Vitamin K Epoxide Reductases/genetics
4.
J Bacteriol ; 198(15): 2064-73, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27215787

ABSTRACT

UNLABELLED: The Gram-positive bacterium Actinomyces oris, a key colonizer in the development of oral biofilms, contains 18 LPXTG motif-containing proteins, including fimbrillins that constitute two fimbrial types critical for adherence, biofilm formation, and polymicrobial interactions. Export of these protein precursors, which harbor a signal peptide, is thought to be mediated by the Sec machine and require cleavage of the signal peptide by type I signal peptidases (SPases). Like many Gram-positive bacteria, A. oris expresses two SPases, named LepB1 and LepB2. The latter has been linked to suppression of lethal "glyco-stress," caused by membrane accumulation of the LPXTG motif-containing glycoprotein GspA when the housekeeping sortase srtA is genetically disrupted. Consistent with this finding, we show here that a mutant lacking lepB2 and srtA was unable to produce high levels of glycosylated GspA and hence was viable. However, deletion of neither lepB1 nor lepB2 abrogated the signal peptide cleavage and glycosylation of GspA, indicating redundancy of SPases for GspA. In contrast, the lepB2 deletion mutant failed to assemble the wild-type levels of type 1 and 2 fimbriae, which are built by the shaft fimbrillins FimP and FimA, respectively; this phenotype was attributed to aberrant cleavage of the fimbrillin signal peptides. Furthermore, the lepB2 mutants, including the catalytically inactive S101A and K169A variants, exhibited significant defects in polymicrobial interactions and biofilm formation. Conversely, lepB1 was dispensable for the aforementioned processes. These results support the idea that LepB2 is specifically utilized for processing of fimbrial proteins, thus providing an experimental model with which to study the basis of type I SPase specificity. IMPORTANCE: Sec-mediated translocation of bacterial protein precursors across the cytoplasmic membrane involves cleavage of their signal peptide by a signal peptidase (SPase). Like many Gram-positive bacteria, A. oris expresses two SPases, LepB1 and LepB2. The latter is a genetic suppressor of lethal "glyco-stress" caused by membrane accumulation of glycosylated GspA when the housekeeping sortase srtA is genetically disrupted. We show here that LepB1 and LepB2 are capable of processing GspA, whereas only LepB2 is required for cleavage of fimbrial signal peptides. This is the first example of a type I SPase dedicated to LPXTG motif-containing fimbrial proteins. Thus, A. oris provides an experimental model with which to investigate the specificity mechanism of type I SPases.


Subject(s)
Actinomyces/enzymology , Bacterial Proteins/metabolism , Fimbriae, Bacterial/physiology , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Actinomyces/genetics , Actinomyces/physiology , Bacterial Proteins/genetics , Biofilms , Down-Regulation , Membrane Proteins/genetics , Serine Endopeptidases/genetics
5.
Appl Microbiol Biotechnol ; 100(4): 1777-1787, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26497017

ABSTRACT

Ferulic acid esterases (FAE, EC. 3.1.1.73) hydrolyse the linkage between hemicellulose and lignin and thus have potential for use in mild enzymatic pretreatment of biomass as an alternative to thermochemical approaches. Here, we report the characterization of a novel FAE (ActOFaeI) obtained from the bacterium, Actinomyces sp. oral which was recombinantly expressed in Escherichia coli BL21 in two forms: with and without its putative signal peptide. The truncated form was found to have <10 % relative activity compared to the full length and was more prone to aggregation after purification. The enzyme with retained peptide demonstrated 2 to 4-fold higher activity against methyl caffeate and methyl p-coumarate, with specific activities of 477.6 and 174.4 U mg(-1) respectively, than the equivalent activities of the benchmark FAE from Aspergillus niger A and B. ActOFaeI retained activity over a broad pH range with a maximum at 9 but >90 % relative activity at pH 6.5 and an optimum reaction temperature of 30 °C. ActOFaeI increased activity by 15% in high salt conditions (1000 mMNaCl) and its thermal unfolding temperature improved from 41.5 °C in standard buffer to 74 °C in the presence of 2500 mM sodium malonate. ActOFaeI also released ferulic acid from destarched wheat bran when combined with a xylanase preparation. After treatment above the thermal denaturation temperature followed by cooling to room temperature, ActOFaeI demonstrated spontaneous refolding into an active state. ActOFaeI displays many useful characteristics for enzymatic pretreatment of lignocellulose and contributes to our understanding of this important family.


Subject(s)
Actinomyces/enzymology , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Protein Folding , Actinomyces/genetics , Caffeic Acids/metabolism , Carboxylic Ester Hydrolases/genetics , Cloning, Molecular , Coumaric Acids/metabolism , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrogen-Ion Concentration , Kinetics , Protein Denaturation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Temperature
6.
Mol Microbiol ; 94(6): 1227-41, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25230351

ABSTRACT

Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harbouring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalysed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens.


Subject(s)
Actinomyces/growth & development , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Heat-Shock Proteins/metabolism , Actinomyces/classification , Actinomyces/enzymology , Actinomyces/genetics , Cell Wall/metabolism , Gene Deletion , Genes, Essential , Genes, Lethal , Glycosylation , Heat-Shock Proteins/genetics , Mutagenesis, Insertional , Signal Transduction
7.
Lett Appl Microbiol ; 61(1): 69-76, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25880615

ABSTRACT

UNLABELLED: In the light of important detrimental role of aberrant histone deacetylases (HDAC) production during various clinical complications, development of therapeutically effective and specific inhibitors of HDAC is critically important. This study deals with the screening for HDAC inhibitors from marine Actinomycetes. The isolation of Actinomycetes from 22 sediment samples along the Southern Coast of India yielded 186 strains including Streptomyces, Nocardipsis, evaluated for HDAC inhibition using HeLa cells. Among the 186 isolates, 10 strains have shown moderate to strong inhibition. The maximum inhibition (61%) was seen with strain VITKSM06 and least inhibition (31%) was seen with strain VITSJT03. The MTT cell proliferation assay using HeLa cell line showed significant cytotoxicity with an IC50 of 5·9 µg ml(-1) by VITKSM06-derived metabolite and 26·2 µg ml(-1) by VITSJT03. The compound treated HeLa cells displayed an altered morphology and condensed chromatin which may be due to HDAC inhibition. Based on the phylogenetic analysis, the potential strains were identified as Nocardiopsis sp VITKSM06, Streptomyces sp VITAKS1 and Streptomyces sp VITRSM02. This study reveals the importance of screening marine Actinomycetes for the discovery of potential novel HDAC inhibitors of therapeutic importance. SIGNIFICANCE AND IMPACT OF THE STUDY: Histone deacetylases (HDAC) are epigenetic enzymes that regulate the deacetylation in lysine group on a histone, and thus regulate the gene expression. The HDAC inhibitors are reported to promote apoptosis on tumour cells, thus become clinically important drug target. Several studies have addressed the identification of putative HDAC inhibitors as therapeutic agents for cancer and until now those cleared phase III human trials are very limited. This study attempts to investigate the chemical diversity found in marine Actinomycetes towards negative HDAC modulation, which could be used individually or in combination as anti-cancerous and other therapeutic measure.


Subject(s)
Actinomyces/enzymology , Antineoplastic Agents/isolation & purification , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/isolation & purification , Histone Deacetylases/metabolism , Actinomyces/chemistry , Actinomyces/classification , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , HeLa Cells , Histone Deacetylase Inhibitors/pharmacology , Humans , India , Molecular Sequence Data , Phylogeny
8.
mBio ; 15(9): e0148424, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39092925

ABSTRACT

During pilus assembly within the Gram-positive bacterial envelope, membrane-bound sortase enzymes sequentially crosslink specific pilus protein monomers through their cell wall sorting signals (CWSS), starting with a designated tip pilin, followed by the shaft made of another pilin, ultimately anchoring the fiber base pilin to the cell wall. To date, the molecular determinants that govern pilus tip assembly and the underlying mechanism remain unknown. Here, we addressed this in the model organism Actinomyces oris. This oral microbe assembles a pathogenically important pilus (known as type 2 fimbria) whose shafts, made of FimA pilins, display one of two alternate tip pilins-FimB or the coaggregation factor CafA-that share a markedly similar CWSS. We demonstrate that swapping the CWSS of CafA with that of FimB produces a functional hybrid, which localizes at the pilus tip and mediates polymicrobial coaggregation, whereas alanine-substitution of the conserved FLIAG motif within the CWSS hampers these processes. Remarkably, swapping the CWSS of the normal cell wall-anchored glycoprotein GspA with that of CafA promotes the assembly of hybrid GspA at the FimA pilus tip. Finally, exchanging the CWSS of the Corynebacterium diphtheriae shaft pilin SpaA with that of CafA leads to the FLIAG motif-dependent localization of the heterologous pilus protein SpaA at the FimA pilus tip in A. oris. Evidently, the CWSS and the FLIAG motif of CafA are both necessary and sufficient for its destination to the cognate pilus tip specifically assembled by a designated sortase in the organism. IMPORTANCE: Gram-positive pili, whose precursors harbor a cell wall sorting signal (CWSS) needed for sortase-mediated pilus assembly, typically comprise a pilus shaft and a tip adhesin. How a pilin becomes a pilus tip, nevertheless, remains undetermined. We demonstrate here in Actinomyces oris that the CWSS of the tip pilin CafA is necessary and sufficient to promote pilus tip assembly, and this functional assembly involves a conserved FLIAG motif within the CWSS. This is evidenced by the fact that an A. oris cell-wall anchored glycoprotein, GspA, or a heterologous shaft pilin from Corynebacterium diphtheriae, SpaA, engineered to have the CWSS of CafA in place of their CWSS, localizes at the pilus tip in a process that requires the FLIAG motif. Our findings provide the molecular basis for sortase-catalyzed pilus tip assembly that is very likely employed by other Gram-positive bacteria and potential bioengineering applications to display antigens at controlled surface distance.


Subject(s)
Actinomyces , Bacterial Proteins , Cysteine Endopeptidases , Fimbriae Proteins , Fimbriae, Bacterial , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Fimbriae Proteins/metabolism , Fimbriae Proteins/genetics , Fimbriae Proteins/chemistry , Actinomyces/genetics , Actinomyces/enzymology , Actinomyces/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Cell Wall/metabolism , Protein Sorting Signals
10.
Nitric Oxide ; 27(4): 193-200, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22842223

ABSTRACT

The salivary glands of adults concentrate nitrate from plasma into saliva where it is converted to nitrite by bacterial nitrate reductases. Nitrite can play a beneficial role in adult gastrointestinal and cardiovascular physiology. When nitrite is swallowed, some of it is converted to nitric oxide (NO) in the stomach and may then exert protective effects in the gastrointestinal tract and throughout the body. It has yet to be determined either when newborn infants acquire oral nitrate reducing bacteria or what the effects of antimicrobial therapy or premature birth may be on the bacterial processing of nitrate to nitrite. We measured nitrate and nitrite levels in the saliva of adults and both preterm and term human infants in the early weeks of life. We also measured oral bacterial reductase activity in the saliva of both infants and adults, and characterized the species of nitrate reducing bacteria present. Oral bacterial conversion of nitrate to nitrite in infants was either undetectable or markedly lower than the conversion rates of adults. No measurable reductase activity was found in infants within the first two weeks of life, despite the presence of oral nitrate reducing bacteria such as Actinomyces odontolyticus, Veillonella atypica, and Rothia mucilaginosa. We conclude that relatively little nitrite reaches the infant gastrointestinal tract due to the lack of oral bacterial nitrate reductase activity. Given the importance of the nitrate-nitrite-NO axis in adults, the lack of oral nitrate-reducing bacteria in infants may be relevant to the vulnerability of newborns to hypoxic stress and gastrointestinal tract pathologies.


Subject(s)
Actinomyces/enzymology , Bacteria/enzymology , Bacterial Proteins/metabolism , Infant, Premature/metabolism , Nitrate Reductase/metabolism , Saliva/microbiology , Adult , Aged , Female , Humans , Infant, Newborn , Male , Middle Aged , Mouth/microbiology , Nitrates/metabolism , Nitric Oxide/metabolism , Nitrites/metabolism , Saliva/chemistry
11.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 3): 212-7, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21358052

ABSTRACT

The crystal structure of the sortase AcSrtC-1 from the oral microorganism Actinomyces oris has been determined to 2.4 Šresolution. AcSrtC-1 is a cysteine transpeptidase that is responsible for the formation of fimbriae by the polymerization of a shaft protein. Similar to other pili-associated sortases, the AcSrtC-1 active site is protected by a flexible lid. The asymmetric unit contains five AcSrtC-1 molecules and their catalytic Cys-His-Arg triads are trapped in two different conformations. It is also shown that the thermostability of the enzyme is increased by the presence of calcium.


Subject(s)
Actinomyces/enzymology , Aminoacyltransferases/chemistry , Bacterial Proteins/chemistry , Cysteine Endopeptidases/chemistry , Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Calcium/chemistry , Calcium/metabolism , Crystallography, X-Ray , Cysteine Endopeptidases/metabolism , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Structural Homology, Protein
12.
Anal Bioanal Chem ; 401(1): 221-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21573725

ABSTRACT

Aberrant expression of miRNAs often correlates with various human diseases. Therefore, miRNAs have been focused as disease biomarkers. Here, a novel application of a bioluminescence (BL) assay for small RNA quantification is described. The assay is based on detecting pyrophosphate (PPi) molecules released during branched rolling circle amplification (BRCA) with a second primer in the presence of target RNA molecules. The number of released PPi molecules is correlated with the target RNA copy number. This assay was capable of detecting at least 20 amol of target RNA molecules, and the dynamic range extended over at least three orders of magnitude. Appropriate use of a second primer allowed for sensitive detection of RNA molecules with a high S/N ratio in less time. Moreover, the assay could specifically detect as low as 0.1 fmol of a target small RNA within a total RNA extract with high reproducibility. These data suggest that our assay has the potential to become a simple, rapid, and highly sensitive method to detect miRNA. Furthermore, this method combined with a BL assay, which utilizes a widely used inexpensive luminometer, could be used for a wider, versatile range of applications.


Subject(s)
Diphosphates/analysis , Luminescent Measurements/methods , MicroRNAs/analysis , Nucleic Acid Amplification Techniques/methods , Actinomyces/enzymology , Animals , Diphosphates/metabolism , Fireflies/enzymology , HeLa Cells , Humans , Luciferases, Firefly/metabolism , MicroRNAs/metabolism , Pyruvate, Orthophosphate Dikinase/metabolism , Sensitivity and Specificity
13.
Sci Rep ; 10(1): 8520, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444661

ABSTRACT

Sortase enzymes are attractive antivirulence drug targets that attach virulence factors to the surface of Staphylococcus aureus and other medically significant bacterial pathogens. Prior efforts to discover a useful sortase inhibitor have relied upon an in vitro activity assay in which the enzyme is removed from its native site on the bacterial surface and truncated to improve solubility. To discover inhibitors that are effective in inactivating sortases in vivo, we developed and implemented a novel cell-based screen using Actinomyces oris, a key colonizer in the development of oral biofilms. A. oris is unique because it exhibits sortase-dependent growth in cell culture, providing a robust phenotype for high throughput screening (HTS). Three molecules representing two unique scaffolds were discovered by HTS and disrupt surface protein display in intact cells and inhibit enzyme activity in vitro. This represents the first HTS for sortase inhibitors that relies on the simple metric of cellular growth and suggests that A. oris may be a useful platform for discovery efforts targeting sortase.


Subject(s)
Actinomyces/growth & development , Aminoacyltransferases/antagonists & inhibitors , Bacterial Proteins/antagonists & inhibitors , Biofilms/growth & development , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Actinomyces/drug effects , Actinomyces/enzymology , Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Biofilms/drug effects , Cells, Cultured
14.
Oral Microbiol Immunol ; 24(2): 89-95, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19239634

ABSTRACT

BACKGROUND/AIM: Alkali generation by oral bacteria plays a key role in plaque pH homeostasis and may be a major impediment to the development of dental caries. To determine if the capacity of oral samples to produce ammonia from arginine or urea was related to caries experience, the arginine deiminase system (ADS) and urease activity in saliva and dental plaque samples were measured in 45 adult subjects. METHODS: The subjects were divided into three groups according to caries status; 13 caries-free (CF) individuals (decayed, missing, and filled teeth = 0); 21 caries-active (CA) individuals (decayed teeth >or= 4); and 11 caries-experienced (CE) individuals (decayed teeth = 0; missing and filled teeth > 0). Real-time polymerase chain reaction was used to quantify the proportion of certain acid- or alkali-producing organisms in the samples. RESULTS: The amount of ammonia generated from the test substrates by plaque samples was generally higher than that produced by salivary samples in all groups. Significantly higher levels of salivary ADS activity and plaque urease activity were observed in CF subjects compared to CA subjects (P = 0.0004 and P = 0.014, respectively). The proportions of Streptococcus mutans from saliva and dental plaque of CA subjects were significantly higher than those from the CF group (P = 0.0153 and P = 0.0009, respectively). In the CA group, there was an inverse relationship between urease activity and the levels of S. mutans (P < 0.0001). CONCLUSION: This study supports the theory that increased caries risk is associated with reduced alkali-generating capacity of the bacteria colonizing the oral cavity; providing compelling evidence to further our understanding of oral alkali-generation in health and disease.


Subject(s)
Ammonia/metabolism , Arginine/metabolism , Dental Caries/microbiology , Dental Plaque/microbiology , Urea/metabolism , Actinomyces/enzymology , Adult , Case-Control Studies , Dental Caries/enzymology , Dental Plaque/enzymology , Female , Humans , Hydrogen-Ion Concentration , Hydrolases/metabolism , Hydrolysis , Male , Reverse Transcriptase Polymerase Chain Reaction , Saliva/enzymology , Saliva/microbiology , Streptococcus gordonii/enzymology , Streptococcus mutans/enzymology , Streptococcus sanguis/enzymology , Urease/metabolism
15.
mBio ; 10(1)2019 02 19.
Article in English | MEDLINE | ID: mdl-30782654

ABSTRACT

The widely conserved LytR-CpsA-Psr (LCP) family of enzymes in Gram-positive bacteria is known to attach glycopolymers, including wall teichoic acid, to the cell envelope. However, it is undetermined if these enzymes are capable of catalyzing glycan attachment to surface proteins. In the actinobacterium Actinomyces oris, an LCP homolog here named LcpA is genetically linked to GspA, a glycoprotein that is covalently attached to the bacterial peptidoglycan by the housekeeping sortase SrtA. Here we show by X-ray crystallography that LcpA adopts an α-ß-α structural fold, akin to the conserved LCP domain, which harbors characteristic catalytic arginine residues. Consistently, alanine substitution for these residues, R149 and R266, abrogates GspA glycosylation, leading to accumulation of an intermediate form termed GspALMM, which is also observed in the lcpA mutant. Unlike other LCP proteins characterized to date, LcpA contains a stabilizing disulfide bond, mutations of which severely affect LcpA stability. In line with the established role of disulfide bond formation in oxidative protein folding in A. oris, deletion of vkor, coding for the thiol-disulfide oxidoreductase VKOR, also significantly reduces LcpA stability. Biochemical studies demonstrated that the recombinant LcpA enzyme possesses pyrophosphatase activity, enabling hydrolysis of diphosphate bonds. Furthermore, this recombinant enzyme, which weakly interacts with GspA in solution, catalyzes phosphotransfer to GspALMM Altogether, the findings support that A. oris LcpA is an archetypal LCP enzyme that glycosylates a cell wall-anchored protein, a process that may be conserved in Actinobacteria, given the conservation of LcpA and GspA in these high-GC-content organisms.IMPORTANCE In Gram-positive bacteria, the conserved LCP family enzymes studied to date are known to attach glycopolymers, including wall teichoic acid, to the cell envelope. It is unknown if these enzymes catalyze glycosylation of surface proteins. We show here in the actinobacterium Actinomyces oris by X-ray crystallography and biochemical analyses that A. oris LcpA is an LCP homolog, possessing pyrophosphatase and phosphotransferase activities known to belong to LCP enzymes that require conserved catalytic Arg residues, while harboring a unique disulfide bond critical for protein stability. Importantly, LcpA mediates glycosylation of the surface protein GspA via phosphotransferase activity. Our studies provide the first experimental evidence of an archetypal LCP enzyme that promotes glycosylation of a cell wall-anchored protein in Gram-positive bacteria.


Subject(s)
Actinomyces/enzymology , Bacterial Proteins/metabolism , Heat-Shock Proteins/metabolism , Phosphotransferases/chemistry , Phosphotransferases/metabolism , Amino Acid Substitution , Catalytic Domain , Crystallography, X-Ray , DNA Mutational Analysis , Glycosylation , Models, Molecular , Phosphotransferases/genetics , Protein Conformation
16.
FEMS Microbiol Lett ; 288(2): 156-62, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18823396

ABSTRACT

Actinomyces spp., predominant members of human oral biofilms, may use extracellular sialidase to promote adhesion, deglycosylate immunoglobulins and liberation of nutrients. Partial nanH gene sequences (1,077 bp) from Actinomyces oris (n=74), Actinomyces naeslundii (n=30), Actinomyces viscosus (n=1) and Actinomyces johnsonii (n=2) which included the active-site region and the bacterial neuraminidase repeats (BNRs) were compared. The sequences were aligned and each species formed a distinct cluster with five isolates having intermediate positions. These five isolates (two A. oris and three A. naeslundii) exhibited interspecies recombination. The nonsynonymous/synonymous ratio was <1 for both A. oris and A. naeslundii indicating that nanH in both species is under stabilizing selective pressure; nonsynonymous mutations are not selected. However, for A. oris significant negative values in tests for neutral selection suggested the rate of mutation in A. oris was greater than in A. naeslundii but with selection against nonsynonymous mutations. This was supported by the observation that the frequency of polymorphic sites in A. oris, which were monomorphic in A. naeslundii was significantly greater than the frequency of polymorphic sites in A. naeslundii which were monomorphic in A. oris (chi(2)=7.011; P=0.00081). The higher proportions of A. oris in the oral biofilm might be explained by the higher mutation rate facilitating an increased ability to respond successfully to environmental stress.


Subject(s)
Actinomyces/enzymology , Actinomyces/genetics , Neuraminidase/genetics , Recombination, Genetic , Actinomyces/isolation & purification , Actinomycosis/microbiology , Bacterial Proteins/genetics , Dental Plaque/microbiology , Humans , Molecular Sequence Data , Mouth/microbiology , Sequence Analysis, DNA , Species Specificity
17.
FEMS Microbiol Lett ; 278(2): 157-63, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18034831

ABSTRACT

The metabolism of urea by urease enzymes of oral bacteria has a profound influence on oral biofilm pH homeostasis and oral microbial ecology, and Actinomyces naeslundii is an important ureolytic organism in the oral cavity. To gain an insight into the regulation of urease gene expression in cells of A. naeslundii growing in biofilms under different environmental conditions, the behavior of A. naeslundii ATCC12104 was examined in in vitro biofilms. The strain was grown in a chemostat biofilm reactor, and at a quasi-steady state, the urease activity of biofilm cells was measured and transcription of ureC gene was detected with Taqman quantitative PCR. The effect of environmental changes on urease expression was examined by varying the environmental pH, dilution rate, carbohydrate and nitrogen availability of the fluid phase of the culture. The results showed that the conditions of neutral pH, fast dilution rate, increased carbohydrate supply or low nitrogen supply in the medium all resulted in enhancement of urease activity in biofilm cells. But only low nitrogen availability and a fast dilution rate were observed to lead to an increase in ureC mRNA levels. This suggests that nitrogen availability and dilution rate can influence the urease activity of A. naeslundii by modulating ureC gene transcription.


Subject(s)
Actinomyces/genetics , Bacterial Proteins/genetics , Biofilms/growth & development , Urease/genetics , Urease/metabolism , Actinomyces/enzymology , Actinomyces/growth & development , Bacterial Proteins/metabolism , Biofilms/drug effects , Gene Expression Regulation, Bacterial/drug effects , Glucose/pharmacology , Hydrogen-Ion Concentration , Nitrogen/pharmacology , Polymerase Chain Reaction/methods
18.
Oral Microbiol Immunol ; 23(4): 315-9, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18582331

ABSTRACT

INTRODUCTION: The hydrolysis of urea by the urease enzymes of oral bacteria is believed to have a major impact on oral microbial ecology and to be intimately involved in oral health and diseases. Actinomyces naeslundii is a ureolytic bacterium that is adapted to tolerate the rapid and dramatic fluctuations in nutrient availability, carbohydrate source, and pH in dental biofilms. Our research objectives were to better understand the regulation of the expression of urease under environmental conditions that closely mimic those in dental biofilms. METHODS: A. naeslundii ATCC12104 were grown in a chemostat biofilm reactor with carbohydrate-limited medium for 3 days followed by a carbohydrate pulse, at pH 7.0 and at pH 5.5. Urease activities and ureC gene messenger RNA levels of cells in the biofilm were measured before and after the carbohydrate pulse. RESULTS: We found that the neutral pH environments and excess carbohydrate availability could both result in enhancement of urease activity in biofilm cells. The ureC messenger RNA level of A. naeslundii biofilm cells cultivated at pH 7.0 was approximately 10-fold higher than that of cells grown at pH 5.5, but no changes in ureC gene expression were detected after the carbohydrate pulse. CONCLUSIONS: Neutral pH environments and excess carbohydrate availability could promote urease expression of A. naeslundii in biofilms, but only neutral pH environments could up-regulate the ureC gene expression and the pH regulates ureC gene expression at a transcriptional level.


Subject(s)
Actinomyces/enzymology , Biofilms , Sucrose/pharmacology , Urease/analysis , Actinomyces/physiology , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Bacteriological Techniques , Biomass , Bioreactors , Colony Count, Microbial , Culture Media , Gene Expression Regulation, Enzymologic/genetics , Glucose/analysis , Glucose/pharmacology , Humans , Hydrogen-Ion Concentration , Microscopy, Confocal , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Sucrose/metabolism , Temperature , Time Factors , Transcription, Genetic/genetics , Up-Regulation , Urease/genetics
19.
Int J Biol Macromol ; 114: 181-186, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29572144

ABSTRACT

Locust bean gum (LBG) galactomannan has been claimed to have applications in the biopharmaceutical field. However, the effects of LBG galactomannan on immunomodulatory aspects are not yet clear. The purpose of this study was to over-express thermostable ß-d-mannanase from the thermophilic actinomycete Thermobifida fusca BCRC 19214 using a Pichia pastoris expression system. The maximum intracellular ß-d-mannanase activity obtained from the cell-free extract was approximately 40.0U/mL after 72h of cultivating a P. pastoris transformant (pPICZ-man) induced with methanol. Hydrolysis of native LBG galactomannan with 8U/mL ß-d-mannanase for 24h significantly decreased the weight-average molecular weight of LBG galactomannan from 5,580,010 to 3188. Native and hydrolyzed LBG galactomannan in a range of 0-0.2% did not trigger significant cytotoxicity after 24h of treatment compared with the control. The native LBG galactomannan stimulated RAW 264.7 cells to produce cytokine TNF-α dose-dependently, but there was no significant IL-1ß or nitric oxide production. The native LBG galactomannan also stimulated ß-hexosaminidase secretion in RBL-2H3 cells. After the native LBG galactomannan was hydrolyzed with ß-d-mannanase, all of the immunological properties disappeared. These results suggest the possible immunomodulatory effects of native LBG galactomannan.


Subject(s)
Actinomyces/enzymology , Fungal Proteins/chemistry , Galactans/chemistry , Interleukin-1beta/metabolism , Mannans/chemistry , Nitric Oxide/metabolism , Plant Gums/chemistry , Tumor Necrosis Factor-alpha/metabolism , beta-Mannosidase/chemistry , Actinomyces/genetics , Animals , Fungal Proteins/genetics , Galactose/analogs & derivatives , Hydrolysis , Mannans/pharmacology , Mice , RAW 264.7 Cells , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , beta-Mannosidase/genetics
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 38(4): 675-7, 2007 Jul.
Article in Zh | MEDLINE | ID: mdl-17718439

ABSTRACT

OBJECTIVES: To investigate the effects of multiple factors that could influence the urease activity of Actinomyces naeslundii. METHODS: The various biochemical methods were used to investigate the changes of urease activity in Actinomyces naeslundii which was under different environmental conditions. RESULTS: It was observed that under conditions of nitrogen-limited, glucose-excess and sub-acid environment, the activity of the A. naeslundii urease got the different extent increase extend. With cultured under conditions of pH 6.0, limited nitrogen and excess glucose, Actinomyces naeslundii was able to make the urease activity increase up to 149.7 nmol/min x mg cell protein. CONCLUSION: The nitrogen, glucose source and environmental pH are such factors that could influence the activity of the A. naeslundii urease; with the dental plaque cariogenicity enhanced, the A. naeslundii urease activity may increase too.


Subject(s)
Actinomyces/enzymology , Urease/metabolism , Actinomyces/drug effects , Dental Plaque/microbiology , Glucose/pharmacology , Hydrogen-Ion Concentration , Nitrogen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL