Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 371
Filter
Add more filters

Publication year range
1.
Cell ; 182(3): 537-539, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32763184

ABSTRACT

Oguri and colleagues use single-cell RNA sequencing to identify a beige adipocyte precursor cell that gives rise to thermogenic adipocytes in subcutaneous adipose tissue. These beige fat progenitors are marked by PDGFRα, Sca1, and CD81 and proliferate upon activation of FAK-signaling in response to the cold and irisin.


Subject(s)
Adipocytes, Beige , Adipose Tissue, Beige , Signal Transduction , Stem Cells , Thermogenesis
2.
Nat Rev Mol Cell Biol ; 22(6): 393-409, 2021 06.
Article in English | MEDLINE | ID: mdl-33758402

ABSTRACT

Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.


Subject(s)
Uncoupling Protein 1/metabolism , Adipocytes, Beige/metabolism , Adipocytes, Brown/metabolism , Animals , Energy Metabolism , Humans , Lipid Metabolism , Thermogenesis/genetics , Thermogenesis/physiology , Uncoupling Protein 1/genetics
3.
Nat Immunol ; 18(6): 654-664, 2017 06.
Article in English | MEDLINE | ID: mdl-28414311

ABSTRACT

In obesity, inflammation of white adipose tissue (AT) is associated with diminished generation of beige adipocytes ('beige adipogenesis'), a thermogenic and energy-dissipating function mediated by beige adipocytes that express the uncoupling protein UCP1. Here we delineated an inflammation-driven inhibitory mechanism of beige adipogenesis in obesity that required direct adhesive interactions between macrophages and adipocytes mediated by the integrin α4 and its counter-receptor VCAM-1, respectively; expression of the latter was upregulated in obesity. This adhesive interaction reciprocally and concomitantly modulated inflammatory activation of macrophages and downregulation of UCP1 expression dependent on the kinase Erk in adipocytes. Genetic or pharmacological inactivation of the integrin α4 in mice resulted in elevated expression of UCP1 and beige adipogenesis of subcutaneous AT in obesity. Our findings, established in both mouse systems and human systems, reveal a self-sustained cycle of inflammation-driven impairment of beige adipogenesis in obesity.


Subject(s)
Adipocytes, Beige , Adipogenesis/immunology , Adipose Tissue, White/immunology , Cell Differentiation/immunology , Inflammation/immunology , Macrophages/immunology , Obesity/immunology , 3T3-L1 Cells , Adipocytes/immunology , Adipocytes/metabolism , Adult , Aged , Aged, 80 and over , Animals , Cell Adhesion/immunology , Diet, High-Fat , Down-Regulation , Extracellular Signal-Regulated MAP Kinases/metabolism , Feedback , Female , Gene Knockdown Techniques , Humans , Immunoblotting , Integrin alpha4/genetics , Macrophages/metabolism , Male , Mice , Middle Aged , Monocytes/immunology , Obesity/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Subcutaneous Fat , T-Lymphocytes/immunology , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Young Adult
4.
Genes Dev ; 35(21-22): 1395-1397, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725126

ABSTRACT

Adipose tissue is a complex organ consisting of a mixture of mature adipocytes and stromal vascular cells. It displays a remarkable ability to adapt to environmental and dietary cues by changing its morphology and metabolic capacity. This plasticity is demonstrated by the emergence of interspersed thermogenic beige adipocytes within white depots in response to catecholamines secretion. Coordinated cellular interaction between different cell types within the tissue and a fine-tuned transcriptional program synergistically take place to promote beige remodeling. However, both cell-cell interactions and molecular mechanisms governing beige adipocyte appearance and maintenance are poorly understood. In this and the previous issue of Genes & Development, Shao and colleagues (pp. 1461-1474) and Shan and colleagues (pp. 1333-1338) advance our understanding of these issues and, in doing so, highlight potential therapeutic strategies to combat obesity-associated diseases.


Subject(s)
Adipocytes, Beige , Thermogenesis , Adipocytes, Beige/metabolism , Adipose Tissue , Adipose Tissue, White/metabolism , Thermogenesis/genetics
5.
Genes Dev ; 35(19-20): 1333-1338, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34531316

ABSTRACT

The full array of cold-responsive cell types within white adipose tissue that drive thermogenic beige adipocyte biogenesis remains undefined. We demonstrate that acute cold challenge elicits striking transcriptomic changes specifically within DPP4+ PDGFRß+ adipocyte precursor cells, including a ß-adrenergic receptor CREB-mediated induction in the expression of the prothermogenic cytokine, Il33 Doxycycline-inducible deletion of Il33 in PDGFRß+ cells at the onset of cold exposure attenuates ILC2 accumulation and beige adipocyte accrual. These studies highlight the multifaceted roles for adipocyte progenitors and the ability of select mesenchymal subpopulations to relay neuronal signals to tissue-resident immune cells in order to regulate tissue plasticity.


Subject(s)
Adipocytes, Beige , Adipocytes, Beige/metabolism , Adipose Tissue, White/metabolism , Adrenergic Agents/metabolism , Cold Temperature , Immunity, Innate , Lymphocytes , Thermogenesis/genetics
6.
Nat Rev Mol Cell Biol ; 17(8): 480-95, 2016 08.
Article in English | MEDLINE | ID: mdl-27251423

ABSTRACT

White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes.


Subject(s)
Adipocytes, Beige/cytology , Adipocytes, Brown/cytology , Cell Lineage/genetics , Epigenesis, Genetic , Transcription, Genetic , Adipocytes, Beige/physiology , Adipocytes, Brown/physiology , Animals , Humans
7.
Nature ; 609(7925): 151-158, 2022 09.
Article in English | MEDLINE | ID: mdl-35978186

ABSTRACT

Compelling evidence shows that brown and beige adipose tissue are protective against metabolic diseases1,2. PR domain-containing 16 (PRDM16) is a dominant activator of the biogenesis of beige adipocytes by forming a complex with transcriptional and epigenetic factors and is therefore an attractive target for improving metabolic health3-8. However, a lack of knowledge surrounding the regulation of PRDM16 protein expression hampered us from selectively targeting this transcriptional pathway. Here we identify CUL2-APPBP2 as the ubiquitin E3 ligase that determines PRDM16 protein stability by catalysing its polyubiquitination. Inhibition of CUL2-APPBP2 sufficiently extended the half-life of PRDM16 protein and promoted beige adipocyte biogenesis. By contrast, elevated CUL2-APPBP2 expression was found in aged adipose tissues and repressed adipocyte thermogenesis by degrading PRDM16 protein. Importantly, extended PRDM16 protein stability by adipocyte-specific deletion of CUL2-APPBP2 counteracted diet-induced obesity, glucose intolerance, insulin resistance and dyslipidaemia in mice. These results offer a cell-autonomous route to selectively activate the PRDM16 pathway in adipose tissues.


Subject(s)
Adipose Tissue, Beige , DNA-Binding Proteins , Transcription Factors , Animals , Mice , Adipocytes, Beige/metabolism , Adipose Tissue, Beige/metabolism , Adipose Tissue, Brown/metabolism , Cullin Proteins , DNA-Binding Proteins/metabolism , Dyslipidemias , Glucose Intolerance , Insulin Resistance , Obesity , Protein Stability , Thermogenesis/physiology , Transcription Factors/metabolism , Ubiquitination
8.
Nature ; 599(7884): 296-301, 2021 11.
Article in English | MEDLINE | ID: mdl-34707293

ABSTRACT

Adipocytes increase energy expenditure in response to prolonged sympathetic activation via persistent expression of uncoupling protein 1 (UCP1)1,2. Here we report that the regulation of glycogen metabolism by catecholamines is critical for UCP1 expression. Chronic ß-adrenergic activation leads to increased glycogen accumulation in adipocytes expressing UCP1. Adipocyte-specific deletion of a scaffolding protein, protein targeting to glycogen (PTG), reduces glycogen levels in beige adipocytes, attenuating UCP1 expression and responsiveness to cold or ß-adrenergic receptor-stimulated weight loss in obese mice. Unexpectedly, we observed that glycogen synthesis and degradation are increased in response to catecholamines, and that glycogen turnover is required to produce reactive oxygen species leading to the activation of p38 MAPK, which drives UCP1 expression. Thus, glycogen has a key regulatory role in adipocytes, linking glucose metabolism to thermogenesis.


Subject(s)
Adipocytes/metabolism , Glucose/metabolism , Glycogen/metabolism , Homeostasis , Thermogenesis , Adaptation, Physiological , Adipocytes, Beige/metabolism , Animals , Cold Temperature , Energy Metabolism , Female , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Knockout , Uncoupling Protein 1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Mol Cell ; 76(3): 500-515.e8, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31422874

ABSTRACT

Diet-induced obesity can be caused by impaired thermogenesis of beige adipocytes, the brown-like adipocytes in white adipose tissue (WAT). Promoting brown-like features in WAT has been an attractive therapeutic approach for obesity. However, the mechanism underlying beige adipocyte formation is largely unknown. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and overexpression of human Naa10p is linked to cancer development. Here, we report that both conventional and adipose-specific Naa10p deletions in mice result in increased energy expenditure, thermogenesis, and beige adipocyte differentiation. Mechanistically, Naa10p acetylates the N terminus of Pgc1α, which prevents Pgc1α from interacting with Pparγ to activate key genes, such as Ucp1, involved in beige adipocyte function. Consistently, fat tissues of obese human individuals show higher NAA10 expression. Thus, Naa10p-mediated N-terminal acetylation of Pgc1α downregulates thermogenic gene expression, making inhibition of Naa10p enzymatic activity a potential strategy for treating obesity.


Subject(s)
Adipocytes, Beige/enzymology , Adipose Tissue, Beige/enzymology , N-Terminal Acetyltransferase A/metabolism , N-Terminal Acetyltransferase E/metabolism , Obesity/enzymology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Protein Processing, Post-Translational , Thermogenesis , Acetylation , Adipose Tissue, Beige/physiopathology , Adiposity , Adolescent , Adult , Aged , Animals , Case-Control Studies , Diet, High-Fat , Disease Models, Animal , Energy Metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , N-Terminal Acetyltransferase A/deficiency , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase E/deficiency , N-Terminal Acetyltransferase E/genetics , NIH 3T3 Cells , Obesity/genetics , Obesity/physiopathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Phenotype , Signal Transduction , Young Adult
10.
Genes Dev ; 33(13-14): 747-762, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31123067

ABSTRACT

Prolonged cold exposure stimulates the recruitment of beige adipocytes within white adipose tissue. Beige adipocytes depend on mitochondrial oxidative phosphorylation to drive thermogenesis. The transcriptional mechanisms that promote remodeling in adipose tissue during the cold are not well understood. Here we demonstrate that the transcriptional coregulator transducin-like enhancer of split 3 (TLE3) inhibits mitochondrial gene expression in beige adipocytes. Conditional deletion of TLE3 in adipocytes promotes mitochondrial oxidative metabolism and increases energy expenditure, thereby improving glucose control. Using chromatin immunoprecipitation and deep sequencing, we found that TLE3 occupies distal enhancers in proximity to nuclear-encoded mitochondrial genes and that many of these binding sites are also enriched for early B-cell factor (EBF) transcription factors. TLE3 interacts with EBF2 and blocks its ability to promote the thermogenic transcriptional program. Collectively, these studies demonstrate that TLE3 regulates thermogenic gene expression in beige adipocytes through inhibition of EBF2 transcriptional activity. Inhibition of TLE3 may provide a novel therapeutic approach for obesity and diabetes.


Subject(s)
Adipocytes, Beige/metabolism , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Glucose/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cells, Cultured , Diet, High-Fat , Energy Metabolism/genetics , Gene Deletion , Gene Expression Regulation/genetics , Genome-Wide Association Study , Insulin Resistance/genetics , Male , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/metabolism , Thermogenesis/genetics
11.
RNA ; 30(8): 1011-1024, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38692841

ABSTRACT

Neat1 is an architectural RNA that provides the structural basis for nuclear bodies known as paraspeckles. Although the assembly processes by which Neat1 organizes paraspeckle components are well-documented, the physiological functions of Neat1 are not yet fully understood. This is partly because Neat1 knockout (KO) mice, lacking paraspeckles, do not exhibit overt phenotypes under normal laboratory conditions. During our search for conditions that elicit clear phenotypes in Neat1 KO mice, we discovered that the differentiation of beige adipocytes-inducible thermogenic cells that emerge upon cold exposure-is severely impaired in these mutant mice. Neat1_2, the architectural isoform of Neat1, is transiently upregulated during the early stages of beige adipocyte differentiation, coinciding with increased paraspeckle formation. Genes with altered expression during beige adipocyte differentiation typically cluster at specific chromosomal locations, some of which move closer to paraspeckles upon cold exposure. These observations suggest that paraspeckles might coordinate the regulation of these gene clusters by controlling the activity of certain transcriptional condensates that coregulate multiple genes. We propose that our findings highlight a potential role for Neat1 and paraspeckles in modulating chromosomal organization and gene expression, potentially crucial processes for the differentiation of beige adipocytes.


Subject(s)
Adipocytes, Beige , Cell Differentiation , Cold Temperature , Mice, Knockout , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Cell Differentiation/genetics , Adipocytes, Beige/metabolism , Adipocytes, Beige/cytology , Thermogenesis/genetics
12.
Development ; 149(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35297993

ABSTRACT

Beige adipocytes have a discrete developmental origin and possess notable plasticity in their thermogenic capacity in response to various environmental cues, but the transcriptional machinery controlling beige adipocyte development and thermogenesis remains largely unknown. By analyzing beige adipocyte-specific knockout mice, we identified a transcription factor, forkhead box P4 (FOXP4), that differentially governs beige adipocyte differentiation and activation. Depletion of Foxp4 in progenitor cells impaired beige cell early differentiation. However, we observed that ablation of Foxp4 in differentiated adipocytes profoundly potentiated their thermogenesis capacity upon cold exposure. Of note, the outcome of Foxp4 deficiency on UCP1-mediated thermogenesis was confined to beige adipocytes, rather than to brown adipocytes. Taken together, we suggest that FOXP4 primes beige adipocyte early differentiation, but attenuates their activation by potent transcriptional repression of the thermogenic program.


Subject(s)
Adipocytes, Beige , Adipocytes, Brown , Animals , Cell Differentiation/genetics , Gene Expression Regulation , Mice , Thermogenesis/genetics
13.
Trends Immunol ; 43(9): 718-727, 2022 09.
Article in English | MEDLINE | ID: mdl-35931611

ABSTRACT

Research focusing on adipose immunometabolism has been expanded from inflammation in white fat during obesity development to immune cell function regulating thermogenic fat, energy expenditure, and systemic metabolism. This opinion discusses our current understanding of how resident immune cells within the thermogenic fat niche may regulate whole-body energy homeostasis. Furthermore, various types of immune cells can synthesize acetylcholine (ACh) and regulate important physiological functions. We highlight a unique subset of cholinergic macrophages within subcutaneous adipose tissue, termed cholinergic adipose macrophages (ChAMs); these macrophages interact with beige adipocytes through cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) signaling to induce adaptive thermogenesis. We posit that these newly identified thermoregulatory macrophages may broaden our view of immune system functions for maintaining metabolic homeostasis and potentially treating obesity and metabolic disorders.


Subject(s)
Adipocytes, Beige , Thermogenesis , Adipose Tissue , Cholinergic Agents , Humans , Obesity
14.
FASEB J ; 37(8): e23079, 2023 08.
Article in English | MEDLINE | ID: mdl-37410022

ABSTRACT

Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders.


Subject(s)
Adipocytes, Beige , Mice , Rats , Animals , Transcriptional Activation , Adipocytes, Beige/metabolism , Genistein/pharmacology , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Adipose Tissue, White/metabolism , Thermogenesis/genetics , Response Elements , Adipose Tissue, Brown/metabolism
15.
PLoS Biol ; 19(8): e3001348, 2021 08.
Article in English | MEDLINE | ID: mdl-34351905

ABSTRACT

Beige fat dissipates energy and functions as a defense against cold and obesity, but the mechanism for its development is unclear. We found that interleukin (IL)-25 signaling through its cognate receptor, IL-17 receptor B (IL-17RB), increased in adipose tissue after cold exposure and ß3-adrenoceptor agonist stimulation. IL-25 induced beige fat formation in white adipose tissue (WAT) by releasing IL-4 and IL-13 and promoting alternative activation of macrophages that regulate innervation and up-regulate tyrosine hydroxylase (TH) up-regulation to produce more catecholamine including norepinephrine (NE). Blockade of IL-4Rα or depletion of macrophages with clodronate-loaded liposomes in vivo significantly impaired the beige fat formation in WAT. Mice fed with a high-fat diet (HFD) were protected from obesity and related metabolic disorders when given IL-25 through a process that involved the uncoupling protein 1 (UCP1)-mediated thermogenesis. In conclusion, the activation of IL-25 signaling in WAT may have therapeutic potential for controlling obesity and its associated metabolic disorders.


Subject(s)
Adipocytes, Beige/physiology , Adipose Tissue, Beige/growth & development , Insulin Resistance , Interleukins/metabolism , Macrophages/physiology , Adrenergic beta-3 Receptor Agonists , Animals , Cold Temperature , Homeostasis , Interleukin-4/metabolism , Male , Mice, Inbred C57BL , Obesity/metabolism , Uncoupling Protein 1/physiology
16.
Cell Biochem Funct ; 42(2): e3937, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38329451

ABSTRACT

The antiobesity effect of conjugated linoleic acid (CLA) has been reported. However, the underlying mechanisms have not been fully clarified. Thus, this study aimed to investigate the effects of CLA on thermogenesis of interscapular brown adipose tissue (iBAT) and browning of inguinal subcutaneous white adipose tissue (iWAT) and explore the possible signaling pathway. The in vivo results showed that CLA enhanced the O2 consumption and heat production in HFD (high-fat diet)-fed female mice by roughly 38%. Meanwhile, CLA increased the average iBAT temperature by 2°C at the room temperature and cold exposure, respectively. Correspondingly, CLA caused 1.6- and 2.4-fold increases in the expression of UCP1 (uncoupling protein 1) of BAT and iWAT, respectively, suggesting the activated iBAT thermogenesis and iWAT browning in HFD-fed female mice. Meanwhile, CLA could promote the formation of brown and beige adipocytes in differentiated stromal vascular cells (SVCs) isolated from iBAT and iWAT (the expressions of UCP1 were promoted by about twofold changes). In possible mechanisms, CLA stimulated the expression of CD36 and the activation of the AMPK pathway in mice iBAT and iWAT as well as the differentiated SVCs. However, inhibition of CD36 and AMPK (adenosine 5'-monophosphate-activated protein kinase) abolished the promotive effects of CLA on brown and beige adipocytes formation. Hence, we showed that CLA reduced HFD-induced obesity through enhancing iBAT thermogenesis and iWAT browning via the  CD36-AMPK pathway.


Subject(s)
Adipocytes, Beige , Linoleic Acids, Conjugated , Female , Animals , Mice , Linoleic Acids, Conjugated/pharmacology , AMP-Activated Protein Kinases , Obesity/drug therapy , Thermogenesis
17.
Adv Exp Med Biol ; 1461: 161-175, 2024.
Article in English | MEDLINE | ID: mdl-39289280

ABSTRACT

Brown and beige adipocytes produce heat from substrates such as fatty acids and glucose. Such heat productions occur in response to various stimuli and are called adaptive non-shivering thermogenesis. This review introduces mechanisms known to regulate brown and beige adipocyte thermogenesis. Leptin and fibroblast growth factor 21 (FGF21) are examples of periphery-derived humoral factors that act on the central nervous system (CNS) and increase brown adipose tissue (BAT) thermogenesis. Additionally, neuronal signals such as those induced by intestinal cholecystokinin and hepatic peroxisome proliferator-activated receptor γ travel through vagal afferent-CNS-sympathetic efferent-BAT pathways and increase BAT thermogenesis. By contrast, some periphery-derived humoral factors (ghrelin, adiponectin, plasminogen activator inhibitor-1, and soluble leptin receptor) act also on CNS but inhibit BAT thermogenesis. Neuronal signals also reduce BAT sympathetic activities and BAT thermogenesis, one such example being signals derived by hepatic glucokinase activation. Beige adipocytes can be induced by myokines (interleukin 6, irisin, and ß-aminoisobutyric acid), hepatokines (FGF21), and cardiac-secreted factors (brain natriuretic peptide). Cold temperature and leptin also stimulate beige adipocytes via sympathetic activation. Further investigation on inter-organ communication involving adipocyte thermogenesis may lead to the elucidation of how body temperature is regulated and, moreover, to the development of novel strategies to treat metabolic disorders.


Subject(s)
Adipose Tissue, Brown , Fibroblast Growth Factors , Thermogenesis , Thermogenesis/physiology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/physiology , Humans , Animals , Fibroblast Growth Factors/metabolism , Leptin/metabolism , Signal Transduction/physiology , Central Nervous System/physiology , Central Nervous System/metabolism , Adipocytes, Beige/metabolism , Adipocytes, Beige/physiology
18.
Adv Exp Med Biol ; 1461: 229-243, 2024.
Article in English | MEDLINE | ID: mdl-39289285

ABSTRACT

There are at least two types of adipose tissues in the body, defined as brown adipose tissues (BATs) and white adipose tissues (WATs). These tissues comprise brown and white adipocytes, respectively. The adipocytes are commonly endowed with mitochondria, but they have diverse characteristics and roles. Brown adipocytes have abundant mitochondria that contribute to the ß-oxidation of fatty acids to produce chemical energy and the production of heat via uncoupling of the mitochondrial membrane potential from ATP synthesis. Alternatively, white adipocytes have fewer mitochondria that contribute to the generation of free fatty acids via lipogenesis by providing key intermediates. Besides the described types of adipocytes, brown-like adipocytes, termed beige adipocytes, are developed in WAT depots during cold exposure. Beige adipocytes also contribute to thermogenesis. Notably, beige adipocytes may transform into white-like adipocytes after the withdrawal of cold exposure. This process is marked by the elimination of mitochondria through the activation of mitochondria autophagy (mitophagy). This review aims to describe the mitophagy that occurs during the beige-to-white transition and discuss recent insights into the molecular mechanisms of this transformation. Additionally, we describe the mitophagy monitoring strategy in adipose tissues using three independent reporter systems and discuss the availabilities and limitations of the method.


Subject(s)
Mitochondria , Mitophagy , Thermogenesis , Mitophagy/physiology , Animals , Humans , Mitochondria/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/cytology , Adipocytes, Beige/metabolism , Adipocytes, Beige/cytology , Temperature , Adipose Tissue/metabolism , Adipocytes, White/metabolism , Adipocytes, White/cytology
19.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34593646

ABSTRACT

Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a ß3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein-mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hepcidins/metabolism , Iron/metabolism , Thermogenesis/physiology , Adipocytes/metabolism , Adipocytes, Beige/metabolism , Adipogenesis/physiology , Adipose Tissue, Beige/metabolism , Animals , Down-Regulation/physiology , Erythropoietin/metabolism , Homeostasis/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Signal Transduction/physiology
20.
Aesthetic Plast Surg ; 48(3): 519-529, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38148357

ABSTRACT

BACKGROUND: The fat retention rate is associated with postoperative inflammation. However, fat survival is still unpredictable even when supplemented with adipose-derived stem cells (ADSCs). Beige adipocytes play a role in regulating pathological inflammation. Thus, we assumed that exosomes may promote macrophage polarization to regulate inflammation when we simulated postgrafted inflammation by lipopolysaccharide (LPS) induction. METHODS: 3T3-L1 preadipocytes were used to differentiate into beige adipocytes, which were stimulated by special culture media, and then, exosomes were isolated from the supernatant. We identified them by morphology, protein and gene expression, or size distribution. Next, we utilized exosomes to stimulate LPS-induced macrophages and evaluated the changes in inflammatory cytokines and macrophage polarization. RESULTS: The induced cells contained multilocular lipid droplets and expressed uncoupling protein 1 (UCP1) and beige adipocyte-specific gene. The exosomes, which were approximately 111.5 nm and cup-like, were positive for surface markers. Additionally, the levels of proinflammatory-related indicators in the LPS+exosomes (LPS+Exos) group were increased after inflammation was activated for 6 h. When inflammation lasted 16 h, exosomes decreased the expression of proinflammatory-related indicators and increased the expression of anti-inflammatory-related indicators compared with the group without exosomes. CONCLUSION: The method described in this article can successfully obtain beige adipocytes and exosomes. The results suggest that beige adipocyte exosomes can promote inflammatory infiltration and polarize more macrophages to the M1 type in the early period of inflammation, accelerating the occurrence of the inflammation endpoint and the progression of macrophage switching from M1 to M2, while inflammation develops continuously. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Adipocytes, Beige , Exosomes , Animals , Lipopolysaccharides/pharmacology , Macrophages , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL