ABSTRACT
Bacterial chemotaxis, the directed movement of cells along gradients of chemoattractants, is among the best-characterized subjects in molecular biology1-10, but much less is known about its physiological roles11. It is commonly seen as a starvation response when nutrients run out, or as an escape response from harmful situations12-16. Here we identify an alternative role of chemotaxis by systematically examining the spatiotemporal dynamics of Escherichia coli in soft agar12,17,18. Chemotaxis in nutrient-replete conditions promotes the expansion of bacterial populations into unoccupied territories well before nutrients run out in the current environment. Low levels of chemoattractants act as aroma-like cues in this process, establishing the direction and enhancing the speed of population movement along the self-generated attractant gradients. This process of navigated range expansion spreads faster and yields larger population gains than unguided expansion following the canonical Fisher-Kolmogorov dynamics19,20 and is therefore a general strategy to promote population growth in spatially extended, nutrient-replete environments.
Subject(s)
Chemotaxis/physiology , Escherichia coli/physiology , Models, Biological , Agar , Nutrients/metabolism , Population GrowthABSTRACT
The bacterial chemotaxis system is a well-understood signaling pathway that promotes bacterial success. Chemotaxis systems comprise chemoreceptors and the CheA kinase, linked by CheW or CheV scaffold proteins. Scaffold proteins provide connections between chemoreceptors and CheA and also between chemoreceptors to create macromolecular arrays. Chemotaxis is required for host colonization by many microbes, including the stomach pathogen Helicobacter pylori. This bacterium builds chemoreceptor-CheA contacts with two distinct scaffold proteins, CheW and CheV1. H. pylori cheW or cheV1 deletion mutants both lose chemoreceptor array formation, but show differing semisolid agar chemotaxis assay behaviors: ∆cheW mutants exhibit total migration failure, whereas ∆cheV1::cat mutants display a 50% reduction. On investigating these varied responses, we found that both mutants initially struggle with migration. However, over time, ∆cheV1::cat mutants develop a stable, enhanced migration capability, termed "migration-able" (Mig+). Whole-genome sequencing analysis of four distinct ∆cheV1::cat Mig+ strains identified single-nucleotide polymorphisms (SNPs) in hpg27_252 (hp0273) that were predicted to truncate the encoded protein. Computational analysis of the hpg27_252-encoded protein revealed it encoded a hypothetical protein that was a remote homolog of the PilO Type IV filament membrane alignment complex protein. Although H. pylori lacks Type IV filaments, our analysis showed it retains an operon of genes for homologs of PilO, PilN, and PilM. Deleting hpg27_252 in the ∆cheV1::cat or wild type strain resulted in enhanced migration in semisolid agar. Our study thus reveals that while cheV1 mutants initially have significant migration defects, they can recover the migration ability through genetic suppressors, highlighting a complex regulatory mechanism in bacterial migration. IMPORTANCE: Chemotactic motility, present in over half of bacteria, depends on chemotaxis signaling systems comprising receptors, kinases, and scaffold proteins. In Helicobacter pylori, a stomach pathogen, chemotaxis is crucial for colonization, with CheV1 and CheW as key scaffold proteins. While both scaffolds are essential for building chemoreceptor complexes, their roles vary in other assays. Our research reexamines cheV1 mutants' behavior in semisolid agar, a standard chemotaxis test. Initially, cheV1 mutants exhibited defects similar to those of cheW mutants, but they evolved genetic suppressors that enhanced migration. These suppressors involve mutations in a previously uncharacterized gene, unknown in motility behavior. Our findings highlight the significant chemotaxis defects in cheV1 mutants and identify new elements influencing bacterial motility.
Subject(s)
Escherichia coli Proteins , Helicobacter pylori , Bacterial Proteins/genetics , Helicobacter pylori/genetics , Agar , Chemotaxis/physiology , Chemoreceptor Cells , Membrane Proteins/genetics , Methyl-Accepting Chemotaxis Proteins/metabolism , Histidine KinaseABSTRACT
Antifungal susceptibility testing (AST) is crucial in clinical settings to guide appropriate therapy. Nevertheless, discrepancies between treatment response and some results still persist, particularly in detecting resistance to amphotericin B (AMB) in Clavispora (Candida) lusitaniae. This study aimed to assess the susceptibility patterns of 48 recent isolates of C. lusitaniae to 9 antifungal agents and explore the feasibility of using a CLSI reference-based method to identify AMB resistance. Microdilution techniques revealed a wide range of minimal inhibitory concentration (MIC) values for azole antifungals, while echinocandins and AMB exhibited a narrow range of MIC values, with all strains considered wild-type for the tested polyene and echinocandins. However, when agar diffusion (ellipsometry) was employed for AST, certain strains displayed colonies within the inhibition ellipse, indicating potential resistance. Interestingly, these strains did not respond to AMB treatment and were isolated during AMB treatment (breakthrough). Moreover, the evaluation of AMB minimum fungicidal concentrations (MFCs) indicated that only the strains with colonies inside the ellipse had MFC/MIC ratios ≥ 4, suggesting reduced fungicidal activity. In conclusion, this study confirms the effectiveness of ellipsometry with RPMI-1640 2% glucose agar for detecting AMB resistance in C. lusitaniae. Additionally, the proposed approach of culturing "clear" wells in the microdilution method can aid in uncovering resistant strains. The findings highlight the importance of appropriate AST methods to guide effective treatment strategies for deep-seated candidiasis caused by C. lusitaniae. Further collaborative studies are warranted to validate these findings and improve the detection of AMB clinical resistance.
Subject(s)
Amphotericin B , Antifungal Agents , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Agar/pharmacology , Echinocandins/pharmacology , Microbial Sensitivity TestsABSTRACT
Non-clinical antibiotic development relies on in vitro susceptibility and infection model studies. Validating the achievement of the targeted drug concentrations is essential to avoid under-estimation of drug effects and over-estimation of resistance emergence. While certain ß-lactams (e.g., imipenem) and ß-lactamase inhibitors (BLIs; clavulanic acid) are believed to be relatively unstable, limited tangible data on their stability in commonly used in vitro media are known. We aimed to determine the thermal stability of 10 ß-lactams and 3 BLIs via LC-MS/MS in cation-adjusted Mueller Hinton broth at 25 and 36°C as well as agar at 4 and 37°C, and in water at -20, 4, and 25°C. Supplement dosing algorithms were developed to achieve broth concentrations close to their target over 24 h. During incubation in broth (pH 7.25)/agar, degradation half-lives were 16.9/21.8 h for imipenem, 20.7/31.6 h for biapenem, 29.0 h for clavulanic acid (studied in broth only), 23.1/71.6 h for cefsulodin, 40.6/57.9 h for doripenem, 46.5/64.6 h for meropenem, 50.8/97.7 h for cefepime, 61.5/99.5 h for piperacillin, and >120 h for all other compounds. Broth stability decreased at higher pH. All drugs were ≥90% stable for 72 h in agar at 4°C. Degradation half-lives in water at 25°C were >200 h for all drugs except imipenem (14.7 h, at 1,000 mg/L) and doripenem (59.5 h). One imipenem supplement dose allowed concentrations to stay within ±31% of their target concentration. This study provides comprehensive stability data on ß-lactams and BLIs in relevant in vitro media using LC-MS/MS. Future studies are warranted applying these data to antimicrobial susceptibility testing and assessing the impact of ß-lactamase-related degradation.
Subject(s)
beta-Lactamase Inhibitors , beta-Lactams , beta-Lactamase Inhibitors/pharmacology , beta-Lactams/pharmacology , Doripenem , Agar , Chromatography, Liquid , Tandem Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Penicillins , Clavulanic Acid/pharmacology , Imipenem/pharmacology , Water , Microbial Sensitivity TestsABSTRACT
BACKGROUND& AIMS: Despite accelerated research in small intestinal bacterial overgrowth (SIBO), questions remain regarding optimal diagnostic approaches and definitions. Here, we aim to define SIBO using small bowel culture and sequencing, identifying specific contributory microbes, in the context of gastrointestinal symptoms. METHODS: Subjects undergoing esophagogastroduodenoscopy (without colonoscopy) were recruited and completed symptom severity questionnaires. Duodenal aspirates were plated on MacConkey and blood agar. Aspirate DNA was analyzed by 16S ribosomal RNA and shotgun sequencing. Microbial network connectivity for different SIBO thresholds and predicted microbial metabolic functions were also assessed. RESULTS: A total of 385 subjects with <103 colony forming units (CFU)/mL on MacConkey agar and 98 subjects with ≥103 CFU/mL, including ≥103 to <105 CFU/mL (N = 66) and ≥105 CFU/mL (N = 32), were identified. Duodenal microbial α-diversity progressively decreased, and relative abundance of Escherichia/Shigella and Klebsiella increased, in subjects with ≥103 to <105 CFU/mL and ≥105 CFU/mL. Microbial network connectivity also progressively decreased in these subjects, driven by the increased relative abundance of Escherichia (P < .0001) and Klebsiella (P = .0018). Microbial metabolic pathways for carbohydrate fermentation, hydrogen production, and hydrogen sulfide production were enhanced in subjects with ≥103 CFU/mL and correlated with symptoms. Shotgun sequencing (N = 38) identified 2 main Escherichia coli strains and 2 Klebsiella species representing 40.24% of all duodenal bacteria in subjects with ≥103 CFU/mL. CONCLUSIONS: Our findings confirm ≥103 CFU/mL is the optimal SIBO threshold, associated with gastrointestinal symptoms, significantly decreased microbial diversity, and network disruption. Microbial hydrogen- and hydrogen sulfide-related pathways were enhanced in SIBO subjects, supporting past studies. Remarkably few specific E coli and Klebsiella strains/species appear to dominate the microbiome in SIBO, and correlate with abdominal pain, diarrhea, and bloating severities.
Subject(s)
Gastrointestinal Diseases , Hydrogen Sulfide , Humans , Agar , Escherichia coli , High-Throughput Nucleotide Sequencing , Hydrogen , Breath TestsABSTRACT
A feedback inhibition effect of high autoinducer levels on metabolite secretion in Chromobacterium subtsugae (C. subtsugae) was evidenced by in situ spatiotemporal surface-enhanced Raman spectroscopy (SERS) profiling. The hierarchical hydrophobic plasmonic array in agar medium is structured by oil/water/oil (OL/W/OH) triphasic interfacial self-assembly. The hydrophobic layer acts as a "door curtain" to selectively permit adsorption of a quorum sensing (QS)-regulated fat-soluble metabolite, i.e., violacein (Vio), and significantly blocks nonspecific adsorption of water-soluble proteins, etc. The SERS profiling clearly evidences that the diffusion of N-hexanoyl-l-homoserine lactone (C6-HSL) in agar medium quickly triggers the initial synthesis of Vio in C. subtsugae CV026 but surprisingly inhibits the intrinsic synthesis of Vio in C. subtsugae ATCC31532. The latter negative response might be related to the VioS repressor of ATCC31532, which negatively controls violacein production without influencing the expression of the CviI/R QS system. Moreover, two sender-receiver systems are constructed by separately coculturing CV026 or ATCC31532 with Hafnia alvei H4 that secretes large amounts of C6-HSL. Expectedly, the cocultivation similarly triggers the initial synthesis of Vio in CV026 but seems to have a quite weak negative effect on the intrinsic synthesis in ATCC31532. In fact, the negative regulation in ATCC31532 might be affected by a diffusion-dependent concentration effect. The H4 growth and its secretion of C6-HSL are a slow and continuous process, thereby avoiding the gathering of local high concentrations. Overall, our study put forward an in situ SERS strategy as an alternative to traditional bioluminescent tools for highly sensitively analyzing the spatiotemporal communication and cooperation in live microbial colonies.
Subject(s)
Bacteria , Quorum Sensing , Agar , Chromobacterium/physiologyABSTRACT
BACKGROUND: The production of Pleurotus ostreatus mycelium as a promising object for use in food and other industries is hampered by a lack of information about the strain-specificity of this fungus mycelium growth and its acquisition of various biological activities. Therefore, this research aimed to investigate mycelial growth of different P. ostreatus strains on varies solid and liquid media as well as to evaluate strains antagonistic, antibacterial, antiradical scavenging activities, and total phenolic content. RESULTS: Potato Dextrose Agar medium was suitable for all strains except P. ostreatus strain 2460. The best growth rate of P. ostreatus 2462 strain on solid culture media was 15.0 ± 0.8 mm/day, and mycelia best growth on liquid culture media-36.5 ± 0.2 g/l. P. ostreatus strains 551 and 1685 were more susceptible to positive effect of plant growth regulators Ivin, Methyur and Kamethur. Using of nutrient media based on combination of natural waste (amaranth flour cake and wheat germ, wheat bran, broken vermicelli and crumbs) has been increased the yield of P. ostreatus strains mycelium by 2.2-2.9 times compared to the control. All used P. ostreatus strains displayed strong antagonistic activity in co-cultivation with Aspergillus niger, Candida albicans, Issatchenkia orientalis, Fusarium poae, Microdochium nivale in dual-culture assay. P. ostreatus 2462 EtOAc mycelial extract good inhibited growth of Escherichia coli (17.0 ± 0.9 mm) while P. ostreatus 2460 suppressed Staphylococcus aureus growth (21.5 ± 0.5 mm) by agar well diffusion method. The highest radical scavenging effect displayed both mycelial extracts (EtOH and EtOAc) of P. ostreatus 1685 (61 and 56%) by DPPH assay as well as high phenolic content (7.17 and 6.73 mg GAE/g) by the Folin-Ciocalteu's method. The maximal total phenol content (7.52 mg GAE/g) demonstrated of P. ostreatus 2461 EtOH extract. CONCLUSIONS: It is found that the growth, antibacterial, antiradical scavenging activity as well as total phenolic content were dependent on studied P. ostreatus strains in contrast to antagonistic activity. The proposed culture mediums of natural waste could be an alternative to commercial mediums for the production mycelial biomass of P. ostreatus strains.
Subject(s)
Pleurotus , Agar/analysis , Agar/pharmacology , Anti-Bacterial Agents/pharmacology , Culture Media/chemistry , Plant Extracts/pharmacology , MyceliumABSTRACT
Resistance in dermatophytes is an emerging global public health issue. We, therefore, developed an agar-based method for screening Trichophyton spp. susceptibility to terbinafine (TRB), itraconazole (ITC), and amorolfine (AMF) and validated it using molecularly characterized isolates. Α total of 40 Trichophyton spp. isolates, 28 TRB wild type (WT) (13 T. rubrum, 10 T. mentagrophytes, 5 T. interdigitale) and 12 TRB non-WT (7 T. rubrum, 5 T. indotineae) with different alterations in the squalene epoxidase (SQLE) gene, were used. The optimal test conditions (inoculum and drug concentrations, incubation time, and temperature) and stability over time were evaluated. The method was then applied for 86 WT Trichophyton spp. clinical isolates (68 T. rubrum, 7 T. interdigitale, 6 T. tonsurans, 5 T. mentagrophytes) and 4 non-WT T. indotineae. Optimal growth of drug-free controls was observed using an inoculum of 20 µL 0.5 McFarland after 5-7 days of incubation at 30°C. The optimal concentrations that prevented the growth of WT isolates were 0.016 mg/L of TRB, 1 mg/L of ITC, and 0.25 mg/L of AMF, whereas 0.125 mg/L of TRB was used for the detection of Trichophyton strong SQLE mutants (MIC ≥0.25 mg/L). The agar plates were stable up to 4 months. Inter-observer and inter-experimental agreement were 100%, and the method successfully detected TRB non-WT Trichophyton spp. strains showing 100% agreement with the reference EUCAST methodology. An agar-based method was developed for screening Trichophyton spp. in order to detect TRB non-WT weak and strong mutant isolates facilitating their detection in non-expert routine diagnostic laboratories.
Subject(s)
Arthrodermataceae , Itraconazole , Morpholines , Humans , Terbinafine/pharmacology , Itraconazole/pharmacology , Trichophyton/genetics , Antifungal Agents/pharmacology , Agar , Microbial Sensitivity Tests , Squalene Monooxygenase/genetics , Drug Resistance, Fungal/genetics , Arthrodermataceae/geneticsABSTRACT
Campylobacter fetus is known to cause human disease, particularly in elderly and immunocompromised hosts. There are limited published data for antimicrobial susceptibility patterns with this organism, and no interpretive criteria are available. We reviewed antimicrobial susceptibilities of C. fetus isolates tested at a tertiary care center and reference laboratory over an 11-year period. C. fetus isolates from patients treated at Mayo Clinic and those sent as referrals for identification and susceptibility were included. Antimicrobial susceptibility testing was performed using agar dilution for ciprofloxacin, doxycycline, erythromycin, gentamicin, meropenem, and tetracycline. Geographic distribution, culture source, organism minimal inhibitory concentration (MIC) distributions, and MIC50 and MIC90 were examined. Excluding duplicates, 105 unique isolates were identified from 110 positive cultures. Blood cultures represented the most common source, followed by body fluids, skin and soft tissue, and central nervous system. Gentamicin and meropenem had favorable MIC50 and MIC90 of 1 µg/mL. Ciprofloxacin demonstrated an MIC50 of 1 µg/mL; however, the MIC90 was >2 µg/mL. Erythromycin demonstrated MIC50 and MIC90 of 2 µg/mL. Tetracycline and doxycycline were tested on a limited number of isolates and showed a wide range of MICs. Gentamicin and meropenem demonstrated favorable MICs in C. fetus isolates. These may represent therapeutic options for consideration in serious C. fetus infections, pending susceptibility results. Ciprofloxacin, which showed variable results, may be more appropriate for use only after susceptibility testing. C. fetus interpretive criteria are needed to aid clinicians in selection of both empiric and definitive therapies. IMPORTANCE: Our findings contribute to the scant literature on Campylobacter fetus antimicrobial susceptibility test results. We used a reference test method of agar dilution and provide MICs for a large number of organisms and antimicrobial agents.
Subject(s)
Anti-Infective Agents , Campylobacter , Humans , Aged , Campylobacter fetus , Doxycycline/pharmacology , Meropenem , Agar , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Erythromycin/pharmacology , Tetracycline , Gentamicins/pharmacology , Microbial Sensitivity TestsABSTRACT
Azole resistance screening in Aspergillus fumigatus sensu stricto can be routinely carried out by using azole-containing agar plates (E.Def 10.2 procedure); however, conidial suspension filtering and inoculum adjustment before inoculum preparation are time-consuming. We evaluated whether skipping the filtration and inoculum adjustment steps negatively influenced the performance of the E.Def 10.2 procedure. A. fumigatus sensu stricto isolates (n = 98), previously classified as azole susceptible or azole resistant (E.Def 9.4 method), were studied. Azole-resistant isolates had either the wild-type cyp51A gene sequence (n = 1) or the following cyp51A gene substitutions: TR34-L98H (n = 41), G54R (n = 5), TR46-Y121F-T289A (n = 1), or G448S (n = 1). In-house azole-containing agar plates were prepared according to the EUCAST E.Def 10.2 procedure. Conidial suspensions obtained by adding distilled water (Tween 20 0.1%) were either filtered and the inocula adjusted to 0.5 McFarland or left unfiltered and unadjusted. Agreements between the agar screening methods using inocula prepared by each procedure were high for itraconazole (99%), voriconazole (100%), and posaconazole (94.9%). Sensitivity and specificity (considering the susceptibility category as per the microdilution E.Def 9.4 method as the gold standard) of E.Def 10.2 were 100% to rule in or rule out resistance when unfiltered and unadjusted suspensions were used; the resistance phenotype of isolates harboring the TR34-L98H, G54R, or TR46-Y121F-T289A substitutions was correctly detected. Unfiltered and unadjusted conidial suspensions do not negatively influence the performance of the E.Def 10.2 method when screening for azole resistance in A. fumigatus sensu stricto. IMPORTANCE: Azole resistance screening in Aspergillus fumigatus sensu stricto can be routinely carried out by using azole-containing plates (E.Def 10.2 procedure); however, conidial suspension filtering and inoculum adjustment before inoculation of plates are time-consuming. We, here, showed that unfiltered and unadjusted conidial suspensions do not negatively influence the performance of the E.Def 10.2 method when screening for azole resistance in A. fumigatus sensu stricto.
Subject(s)
Antifungal Agents , Aspergillus fumigatus , Azoles , Drug Resistance, Fungal , Microbial Sensitivity Tests , Spores, Fungal , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/genetics , Aspergillus fumigatus/isolation & purification , Azoles/pharmacology , Antifungal Agents/pharmacology , Microbial Sensitivity Tests/methods , Humans , Spores, Fungal/drug effects , Spores, Fungal/genetics , Culture Media/chemistry , Fungal Proteins/genetics , Agar , Cytochrome P-450 Enzyme System/geneticsABSTRACT
PURPOSE: To validate single reference variable flip angle (SR-VFA) dynamic T1 mapping with and without T2 * correction against inversion recovery (IR) T1 measurements. METHODS: A custom cylindrical phantom with three concentric compartments was filled with variably doped agar to produce a smooth spatial gradient of the T1 relaxation rate as a function of angle across each compartment. IR T1 , VFA T1 , and B1 + measurements were made on the phantom before rotation, and multi-echo stack-of-radial dynamic images were acquired during rotation via an MRI-compatible motor. B1 + -corrected SR-VFA and SR-VFA-T2 * T1 maps were computed from the sliding window reconstructed images and compared against rotationally registered IR and VFA T1 maps to determine the percentage error. RESULTS: Both VFA and SR-VFA-T2 * T1 maps fell within 10% of IR T1 measurements for a low rotational speed, with a mean accuracy of 2.3% ± 2.6% and 2.8% ± 2.6%, respectively. Increasing rotational speed was found to decrease the accuracy due to increasing temporal smoothing over ranges where the T1 change had a nonconstant slope. SR-VFA T1 mapping was found to have similar accuracy as the SR-VFA-T2 * and VFA methods at low TEs (Ë<2 ms), whereas accuracy degraded strongly with later TEs. T2 * correction of the SR-VFA T1 maps was found to consistently improve accuracy and precision, especially at later TEs. CONCLUSION: SR-VFA-T2 * dynamic T1 mapping was found to be accurate against reference IR T1 measurements within 10% in an agar phantom. Further validation is needed in mixed fat-water phantoms and in vivo.
Subject(s)
Magnetic Resonance Imaging , Water , Agar , Reproducibility of Results , Magnetic Resonance Imaging/methods , Phantoms, ImagingABSTRACT
Root system architecture (RSA) influences the acquisition of heterogeneously dispersed soil nutrients. Cytokinin and C-TERMINALLY ENCODED PEPTIDE (CEP) hormones affect RSA, in part by controlling the angle of lateral root (LR) growth. Both hormone pathways converge on CEP DOWNSTREAM 1 (CEPD1) and CEPD2 to control primary root growth; however, a role for CEPDs in controlling the growth angle of LRs is unknown. Using phenotyping combined with genetic and grafting approaches, we show that CEP hormone-mediated shallower LR growth requires cytokinin biosynthesis and perception in roots via ARABIDOPSIS HISTIDINE KINASE 2 (AHK2) and AHK3. Consistently, cytokinin biosynthesis and ahk2,3 mutants phenocopied the steeper root phenotype of cep receptor 1 (cepr1) mutants on agar plates, and CEPR1 was required for trans-Zeatin (tZ)-type cytokinin-mediated shallower LR growth. In addition, the cepd1,2 mutant was less sensitive to CEP and tZ, and showed basally steeper LRs on agar plates. Cytokinin and CEP pathway mutants were grown in rhizoboxes to define the role of these pathways in controlling RSA. Only cytokinin receptor mutants and cepd1,2 partially phenocopied the steeper-rooted phenotype of cepr1 mutants. These results show that CEP and cytokinin signaling intersect to promote shallower LR growth, but additional components contribute to the cepr1 phenotype in soil.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Agar/metabolism , Plant Roots/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytokinins/metabolism , Hormones/metabolism , Peptides/genetics , Peptides/metabolism , Soil , Gene Expression Regulation, Plant , Receptors, Peptide/geneticsABSTRACT
In hospital environments, droplets generated by urination within shared toilets may represent a route of dissemination for bacteria such as vancomycin-resistant Enterococcus faecium (VREfm), which contributes significantly to the burden of hospital-acquired infections. We investigated the potential activity of a foam in preventing the generation of droplets containing Enterococcus spp. during urination. A uniform layer of foam was deposited in the inner walls and at the bottom of an experimental toilet contaminated with suspensions of Enterococcus strains (including a VREfm strain). Human urination was simulated, and colonies of Enterococcus were recovered through a toilet lid where agar plates had been placed. Results showed that the foam was able to suppress production of droplets containing Enterococcus spp. generated by a liquid hitting inner toilet walls. Conversely, Enterococcus colonies were recovered in absence of foam. Moreover, the foam did not show antibacterial activity. We propose a new non-antimicrobial approach aimed at limiting transmission of multidrug-resistant bacteria, particularly in healthcare settings.
Subject(s)
Bathroom Equipment , Enterococcus faecium , Vancomycin-Resistant Enterococci , Humans , Vancomycin/pharmacology , AgarABSTRACT
Gelling agents are necessary for the preparation of solid or semisolid media. For more than a hundred years, agar has been the primary gelling agent. However, a substantial body of evidence has accumulated suggesting that agar-based media inhibit the growth of many microbial species through the generation of reactive oxygen species (ROS), toxic organic contaminants, or competitive exclusion effects. In this review we have compiled the largest amount of data to date on the use of various gelling agents in microbial isolation and cultivation, with the particular emphasis on rare microbe isolation cases. Our analysis suggested that microbial-derived compounds (especially gellan gum), as gelling agents, are superior to agar in their ability to isolate and maintain either new or known microbial species. We analyzed the reasons behind this success and concluded that there are phylum-level differences in microbial responses to the changes in conditions from natural to the laboratory conditions (with respect to gelling agent usage). Consequently, we hypothesize that at least partial success of microbial-derived gelling agents lies in the recreation of the natural microenvironment conditions (which we address as the "familiarity of conditions" hypothesis). Finally, we present a list of recommendations and suggestions for further microbial ecology studies.
Subject(s)
Agar , Bacteria , Culture Media , Polysaccharides, Bacterial , Agar/chemistry , Culture Media/chemistry , Polysaccharides, Bacterial/metabolism , Bacteria/growth & development , Bacteria/metabolism , Bacteria/drug effects , Gels/chemistryABSTRACT
This study investigates the rheological behavior of two plant-based polysaccharides, with different degrees of hydrophilicity, agar (highly hydrophilic) and guar gum (hydrophilic), in water and 1-ethyl-3-methylimidazolium acetate (EMImAc). The rheological response of these polymers is highly dependent on the solvent's ability to disrupt intermolecular associations. In water, agar forms hydrogels, while guar gum behaves as a viscoelastic liquid with slow modes. The plateau modulus (GN0) scales with polymer concentration (c) as GN0 â¼ c3, consistent with other natural polymers. In EMImAc, both polysaccharides form viscoelastic liquids, exhibiting GN0 â¼ c2.3, as expected for semiflexible polymer solutions. However, the terminal relaxation time, τD, and the specific viscosity, ηsp, scale as τD â¼ c5.3 and ηsp â¼ c7.6, indicative of intermolecular chain-chain associations. Despite the solvent or polysaccharide, the fractional viscosity overshoot and the shear strain at the maximum stress show a terminal Weissenberg number dependence similar to other synthetic polymers.
Subject(s)
Galactans , Ionic Liquids , Mannans , Plant Gums , Rheology , Water , Ionic Liquids/chemistry , Plant Gums/chemistry , Mannans/chemistry , Water/chemistry , Viscosity , Galactans/chemistry , Agar/chemistry , Polysaccharides/chemistry , Imidazoles/chemistry , Hydrophobic and Hydrophilic InteractionsABSTRACT
Five isolates of a xerophilic Talaromyces species were obtained from honey in Japan. Molecular phylogenetic analysis based on a combined dataset for four regions (rRNA internal transcribed spacer, ß-tubulin, calmodulin and RNA polymerase II second largest subunit) revealed that the strains formed an independent clade in section Trachyspermi, which is sister to Talaromyces affinitatimellis, Talaromyces basipetosporus and Talaromyces speluncarum. The strains and their relatives have different growth on creatine agar, yeast extract sucrose agar and dichloran 18â% glycerol agar, different branching patterns (mostly monoverticillate or biverticillate, less frequently divaricate or terverticillate), and different sizes and surface structures of conidia. Xerotolerance tests were also conducted using media adjusted to five different sucrose concentrations (0, 20, 40, 60 and 80â%). The colony diameters of the strains were larger than those of T. affinitatimellis, T. basipetosporus and T. speluncarum at each sucrose concentration. Altogether, the obtained morphological, molecular and physiological data allowed the proposal of Talaromyces mellisjaponici sp. nov. for this novel species, with NBRC 116048T as the type strain.
Subject(s)
Honey , Talaromyces , Japan , Agar , Phylogeny , Talaromyces/genetics , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry , SucroseABSTRACT
To avoid the potential toxicity of monomer residues in synthetic polymer based organohydrogels, natural polysaccharide-based organohydrogels are expected to be used in multi-functional wearable sensory systems, but most of them have unsatisfactory stiffness, strength and fracture toughness. Herein, a cooking and soaking strategy is proposed to prepare novel natural polysaccharide-based organohydrogels possessing outstanding stiffness, strength, toughness, freezing resistance, heating resistance and long-term durability. The agar organohydrogel exhibits a fracture stress of 3.3 MPa, a Young's modulus of 2.26 MPa and a fracture toughness of 14.8 kJ m-2, the κ-carrageenan organohydrogel exhibits a fracture stress of 3.3 MPa, a Young's modulus of 4.34 MPa and a fracture toughness of 11.0 kJ m-2, and the gellan organohydrogel exhibits a fracture stress of 1.2 MPa, a Young's modulus of 2.81 MPa and a fracture toughness of 5.4 kJ m-2. Furthermore, the agar organohydrogels are assembled into multi-functional wearable sensors by introducing NaCl as a conducting agent exhibiting responses to strain (5-150%), temperature (-15 to 60 °C) and humidity (11-97%), and possessing exceptional multi-sensory capabilities. Therefore, the developed strategy has shown a new pathway towards strengthening polysaccharide-based organohydrogels with potential for application in wearable sensory systems.
Subject(s)
Polysaccharides , Materials Testing , Humidity , Temperature , AgarABSTRACT
INTRODUCTION: Burkholderia cepacia complex (BCC) are non-fermenting Gram-negative bacteria that can chronically colonize the lungs of people with cystic fibrosis (pwCF), causing a severe and progressive respiratory failure, post-transplant complications and epidemic outbreaks. Therefore, rapid and accurate identification of these bacteria is relevant for pwCF, in order to facilitate early eradication and prevent chronic colonization. However, BCCs are often quite difficult to detect on culture media as they have a slow growth rate and can be hidden by other fast-growing microorganisms, including Pseudomonas aeruginosa and filamentous fungi. MATERIAL AND METHODS: We evaluated the sensitivity of CHROMagar™ B. cepacia agar using 11 isolates from a well-characterized BCC collection, using BCA agar (Oxoid, UK) as a gold standard. We also studied 180 clinical sputum samples to calculate positive (PPV) and negative (NPV) predictive values. Furthermore, we used three of the well-characterized BCC isolates to determine the limit of detection (LOD). RESULTS: Eleven isolates grew on CHROMagar™ B. cepacia at 37ºC after 48 h. The NPV and PPV of CHROMagar™ B. cepacia were 100% and 87.5%, respectively. The LOD of CHROMagar™ B. cepacia was around 1 × 103 CFU/ml, requiring a ten-fold dilution lower bacterial load than BCA for BCC detection. CONCLUSION: CHROMagar™ B. cepacia agar proved to have a very good sensitivity and specificity for the detection of clinical BCCs. Moreover, the chromogenic nature of the medium allowed us to clearly differentiate BCC from other Gram-negative species, filamentous fungi and yeasts, thereby facilitating the identification of contaminants.
Subject(s)
Agar , Bacteriological Techniques , Burkholderia Infections , Burkholderia cepacia complex , Culture Media , Cystic Fibrosis , Sensitivity and Specificity , Sputum , Humans , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Burkholderia cepacia complex/isolation & purification , Burkholderia cepacia complex/classification , Sputum/microbiology , Burkholderia Infections/microbiology , Burkholderia Infections/diagnosis , Culture Media/chemistry , Bacteriological Techniques/methodsABSTRACT
In plant tissue culture, callus formation serves as a crucial mechanism for regenerating entire plants, enabling the differentiation of diverse tissues. Researchers have extensively studied the influence of media composition, particularly plant growth regulators, on callus behavior. However, the impact of the physical properties of the media, a well-established factor in mammalian cell studies, has received limited attention in the context of plant tissue culture. Previous research has highlighted the significance of gelling agents in affecting callus growth and differentiation, with Agar, Phytagel, and Gelrite being the most used options. Despite their widespread use, a comprehensive comparison of their physical properties and their subsequent effects on callus behavior remains lacking. Our study provides insights into optimizing plant tissue culture media by analyzing the physical properties of gelling agents and their impact on callus induction and differentiation. We compared the phenotypes of calli grown on media composed of these different gelling agents and correlated them to the physical properties of these media. We tested water retention, examined pore size using cryo-SEM, measured the media mechanical properties, and studied diffusion characteristics. We found that the mechanical properties of the media are the only quality correlated with callus phenotype.
Subject(s)
Culture Media , Culture Media/chemistry , Gels , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Tissue Culture Techniques/methods , Agar/chemistry , Cell Differentiation/drug effectsABSTRACT
The abuse of antibiotics leads to an increasing emergence of drug-resistant bacteria, which not only causes a waste of medical resources but also seriously endangers people's health and life safety. Therefore, it is highly desirable to develop an efficient antibacterial strategy to reduce the reliance on traditional antibiotics. Antibacterial photodynamic therapy (aPDT) is regarded as an intriguing antimicrobial method that is less likely to generate drug resistance, but its efficiency still needs to be further improved. Herein, a robust titanium-based metal-organic framework ACM-1 was adopted to support Ag nanoparticles (NPs) to obtain Ag NPs@ACM-1 for boosting antibacterial efficiency via synergistic chemical-photodynamic therapy. Apart from the intrinsic antibacterial nature, Ag NPs largely boost ROS production and thus improve aPDT efficacy. As a consequence, Ag NPs@ACM-1 shows excellent antibacterial activity under visible light illumination, and its minimum bactericidal concentrations (MBCs) against E. coli, S. aureus, and MRSA are as low as 39.1, 39.1, and 62.5 µg mL-1, respectively. Moreover, to expand the practicability of Ag NPs@ACM-1, two (a dense and a loose) Ag NPs@ACM-1 films were readily fabricated by simply dispersing Ag NPs@ACM-1 into heated aqueous solutions of edible agar and sequentially cooling through heating or freeze-drying, respectively. Notably, these two films are mechanically flexible and exhibit excellent antibacterial activities, and their antimicrobial performances can be well retained in their recyclable and remade films. As agar is nontoxic, degradable, inexpensive, and ecosustainable, the dense and loose Ag NPs@ACM-1 films are potent to serve as recyclable and degradable antibacterial plastics and antibacterial dressings, respectively.