Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2319301121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838011

ABSTRACT

Alcohol dehydrogenase 1B (ADH1B) is a primate-specific enzyme which, uniquely among the ADH class 1 family, is highly expressed both in adipose tissue and liver. Its expression in adipose tissue is reduced in obesity and increased by insulin stimulation. Interference with ADH1B expression has also been reported to impair adipocyte function. To better understand the role of ADH1B in adipocytes, we used CRISPR/Cas9 to delete ADH1B in human adipose stem cells (ASC). Cells lacking ADH1B failed to differentiate into mature adipocytes manifested by minimal triglyceride accumulation and a marked reduction in expression of established adipocyte markers. As ADH1B is capable of converting retinol to retinoic acid (RA), we conducted rescue experiments. Incubation of ADH1B-deficient preadipocytes with 9-cis-RA, but not with all-transretinol, significantly rescued their ability to accumulate lipids and express markers of adipocyte differentiation. A homozygous missense variant in ADH1B (p.Arg313Cys) was found in a patient with congenital lipodystrophy of unknown cause. This variant significantly impaired the protein's dimerization, enzymatic activity, and its ability to rescue differentiation in ADH1B-deficient ASC. The allele frequency of this variant in the Middle Eastern population suggests that it is unlikely to be a fully penetrant cause of severe lipodystrophy. In conclusion, ADH1B appears to play an unexpected, crucial and cell-autonomous role in human adipocyte differentiation by serving as a necessary source of endogenous retinoic acid.


Subject(s)
Adipocytes , Adipogenesis , Alcohol Dehydrogenase , Humans , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Adipogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Tretinoin/metabolism , Cell Differentiation , CRISPR-Cas Systems , Mutation, Missense , Adipose Tissue/metabolism
2.
Proc Natl Acad Sci U S A ; 121(33): e2405836121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39116128

ABSTRACT

The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic Methylobacterium extorquens AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La3+ ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca2+-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared K142A- and K142D-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that K142D-PqqT binds tightly (Kd = 0.6 ± 0.2 µM) to La3+ in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or K142A-variants or upon addition of Ca2+ to PQQ ⸦ K142D-PqqT. Addition of benzyl alcohol to La3+-bound PQQ ⸦ K142D-PqqT (but not Ca2+-bound PQQ ⸦ K142D-PqqT, or La3+-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.


Subject(s)
Methylobacterium extorquens , Methylobacterium extorquens/enzymology , Methylobacterium extorquens/metabolism , Metalloproteins/chemistry , Metalloproteins/metabolism , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry , Crystallography, X-Ray , PQQ Cofactor/metabolism , PQQ Cofactor/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Metals, Rare Earth/chemistry , Metals, Rare Earth/metabolism , Models, Molecular , Lanthanum/chemistry , Lanthanum/metabolism
3.
Plant J ; 118(4): 1054-1070, 2024 May.
Article in English | MEDLINE | ID: mdl-38308388

ABSTRACT

Alcohol dehydrogenases (ADHs) are a group of zinc-binding enzymes belonging to the medium-length dehydrogenase/reductase (MDR) protein superfamily. In plants, these enzymes fulfill important functions involving the reduction of toxic aldehydes to the corresponding alcohols (as well as catalyzing the reverse reaction, i.e., alcohol oxidation; ADH1) and the reduction of nitrosoglutathione (GSNO; ADH2/GSNOR). We investigated and compared the structural and biochemical properties of ADH1 and GSNOR from Arabidopsis thaliana. We expressed and purified ADH1 and GSNOR and determined two new structures, NADH-ADH1 and apo-GSNOR, thus completing the structural landscape of Arabidopsis ADHs in both apo- and holo-forms. A structural comparison of these Arabidopsis ADHs revealed a high sequence conservation (59% identity) and a similar fold. In contrast, a striking dissimilarity was observed in the catalytic cavity supporting substrate specificity and accommodation. Consistently, ADH1 and GSNOR showed strict specificity for their substrates (ethanol and GSNO, respectively), although both enzymes had the ability to oxidize long-chain alcohols, with ADH1 performing better than GSNOR. Both enzymes contain a high number of cysteines (12 and 15 out of 379 residues for ADH1 and GSNOR, respectively) and showed a significant and similar responsivity to thiol-oxidizing agents, indicating that redox modifications may constitute a mechanism for controlling enzyme activity under both optimal growth and stress conditions.


Subject(s)
Alcohol Dehydrogenase , Arabidopsis Proteins , Arabidopsis , Oxidation-Reduction , Arabidopsis/enzymology , Arabidopsis/genetics , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Substrate Specificity , S-Nitrosoglutathione/metabolism , Amino Acid Sequence , Ethanol/metabolism
4.
Plant J ; 119(2): 1059-1072, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761127

ABSTRACT

Most of kiwifruit cultivars (e.g. Actinidia chinensis cv. Donghong, "DH") were sensitive to waterlogging, thus, waterlogging resistant rootstocks (e.g. Actinidia valvata Dunn, "Dunn") were widely used for kiwifruit industry. Those different species provided ideal materials to understand the waterlogging responses in kiwifruit. Compared to the weaken growth and root activities in "DH", "Dunn" maintained the relative high root activities under the prolonged waterlogging. Based on comparative analysis, transcript levels of pyruvate decarboxylase (PDCs) and alcohol dehydrogenase (ADHs) showed significantly difference between these two species. Both PDCs and ADHs had been significantly increased by waterlogging in "DH", while they were only limitedly triggered by 2 days stress and subsided during the prolonged waterlogging in "Dunn". Thus, 19 differentially expressed transcript factors (DETFs) had been isolated using weighted gene co-expression network analysis combined with transcriptomics and transcript levels of PDCs and ADHs in waterlogged "DH". Among these DETFs, dual luciferase and electrophoretic mobility shift assays indicated AcMYB68 could bind to and trigger the activity of AcPDC2 promoter. The stable over-expression of AcMYB68 significantly up-regulated the transcript levels of PDCs but inhibited the plant growth, especially the roots. Moreover, the enzyme activities of PDC in 35S::AcMYB68 were significantly enhanced during the waterlogging response than that in wild type plants. Most interestingly, comparative analysis indicated that the expression patterns of AcMYB68 and the previously characterized AcERF74/75 (the direct regulator on ADHs) either showed no responses (AcMYB68 and AcERF74) or very limited response (AcERF75) in "Dunn". Taken together, the restricted responses of AcMYB68 and AcERF74/75 in "Dunn" endow its waterlogging tolerance.


Subject(s)
Actinidia , Gene Expression Regulation, Plant , Plant Proteins , Pyruvate Decarboxylase , Actinidia/genetics , Actinidia/physiology , Actinidia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pyruvate Decarboxylase/genetics , Pyruvate Decarboxylase/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Plant Roots/genetics , Plant Roots/physiology , Water/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological , Promoter Regions, Genetic/genetics
5.
BMC Genomics ; 25(1): 610, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886650

ABSTRACT

Understanding the mechanisms underlying alcohol metabolism and its regulation, including the effect of polymorphisms in alcohol-metabolizing enzymes, is crucial for research on Fetal Alcohol Spectrum Disorders. The aim of this study was to identify specific single nucleotide polymorphisms in key alcohol-metabolizing enzymes in a cohort of 71 children, including children with fetal alcohol syndrome, children prenatally exposed to ethanol but without fetal alcohol spectrum disorder, and controls. We hypothesized that certain genetic variants related to alcohol metabolism may be fixed in these populations, giving them a particular alcohol metabolism profile. In addition, the difference in certain isoforms of these enzymes determines their affinity for alcohol, which also affects the metabolism of retinoic acid, which is key to the proper development of the central nervous system. Our results showed that children prenatally exposed to ethanol without fetal alcohol spectrum disorder traits had a higher frequency of the ADH1B*3 and ADH1C*1 alleles, which are associated with increased alcohol metabolism and therefore a protective factor against circulating alcohol in the fetus after maternal drinking, compared to FAS children who had an allele with a lower affinity for alcohol. This study also revealed the presence of an ADH4 variant in the FAS population that binds weakly to the teratogen, allowing increased circulation of the toxic agent and direct induction of developmental abnormalities in the fetus. However, both groups showed dysregulation in the expression of genes related to the retinoic acid pathway, such as retinoic acid receptor and retinoid X receptor, which are involved in the development, regeneration, and maintenance of the nervous system. These findings highlight the importance of understanding the interplay between alcohol metabolism, the retinoic acid pathway and genetic factors in the development of fetal alcohol syndrome.


Subject(s)
Alcohol Dehydrogenase , Fetal Alcohol Spectrum Disorders , Polymorphism, Single Nucleotide , Receptors, Retinoic Acid , Humans , Fetal Alcohol Spectrum Disorders/genetics , Fetal Alcohol Spectrum Disorders/metabolism , Case-Control Studies , Female , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Male , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Child , Ethanol/metabolism , Pregnancy , Child, Preschool , Alleles
6.
BMC Med ; 22(1): 205, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769537

ABSTRACT

BACKGROUND: It is unclear whether brief interventions using the combined classification of alcohol-metabolizing enzymes aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) together with behavioral changes in alcohol use can reduce excessive alcohol consumption. This study aimed to examine the effects of a brief intervention based on the screening of ALDH2 and ADH1B gene polymorphisms on alcohol consumption in Japanese young adults. METHODS: In this open-label randomized controlled trial, we enrolled adults aged 20-30 years who had excessive drinking behavior (average amount of alcohol consumed: men, ≥ 4 drinks/per day and women, ≥ 2 drinks/per day; 1 drink = 10 g of pure alcohol equivalent). Participants were randomized into intervention or control group using a simple random number table. The intervention group underwent saliva-based genotyping of alcohol-metabolizing enzymes (ALDH2 and ADH1B), which were classified into five types. A 30-min in-person or online educational counseling was conducted approximately 1 month later based on genotyping test results and their own drinking records. The control group received traditional alcohol education. Average daily alcohol consumption was calculated based on the drinking diary, which was recorded at baseline and at 3 and 6 months of follow-up. The primary endpoint was average daily alcohol consumption, and the secondary endpoints were the alcohol-use disorder identification test for consumption (AUDIT-C) score and behavioral modification stages assessed using a transtheoretical model. RESULTS: Participants were allocated to the intervention (n = 100) and control (n = 96) groups using simple randomization. Overall, 28 (29.2%) participants in the control group and 21 (21.0%) in the intervention group did not complete the follow-up. Average alcohol consumption decreased significantly from baseline to 3 and 6 months in the intervention group but not in the control group. The reduction from baseline alcohol consumption values and AUDIT-C score at 3 months were greater in the intervention group than in the control group (p < 0.001). In addition, the behavioral modification stages were significantly changed by the intervention (p < 0.001). CONCLUSIONS: Genetic testing for alcohol-metabolizing enzymes and health guidance on type-specific excessive drinking may be useful for reducing sustained average alcohol consumption associated with behavioral modification. TRIAL REGISTRATION: R000050379, UMIN000044148, Registered on June 1, 2021.


Subject(s)
Alcohol Dehydrogenase , Alcohol Drinking , Aldehyde Dehydrogenase, Mitochondrial , Humans , Male , Female , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Adult , Aldehyde Dehydrogenase, Mitochondrial/genetics , Alcohol Drinking/genetics , Young Adult , Genotype , Ethanol/metabolism , Polymorphism, Genetic , Treatment Outcome , Japan
7.
Chembiochem ; 25(11): e202400108, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38567504

ABSTRACT

Detailed insights into protein structure/function relationships require robust characterization methodologies. Free-solution capillary electrophoresis (CE) is a unique separation technique which is sensitive to the conformation and/or composition of proteins, and therefore provides information on the heterogeneity of these properties. Three unrelated, conformationally/compositionally-altered proteins were separated by CE. An electrophoretic mobility distribution was determined for each protein along with its conformational and/or compositional heterogeneity. The CE results were compared with molar mass distributions obtained from size-exclusion chromatography coupled to light scattering (SEC-MALS). Bovine serum albumin multimers and two monomeric species were separated, highlighting variations in conformational/compositional heterogeneity among the multimers. Analysis of yeast alcohol dehydrogenase resolved two monomeric conformers and various tetrameric species, illustrating the impact of zinc ion removal and disulfide bond reduction on the protein's heterogeneity. The apo (calcium-free) and holo forms of bovine α-lactalbumin were separated and differences in the species' heterogeneity were measured; by contrast, the SEC-MALS profiles were identical. Comparative analysis of these structurally unrelated proteins provided novel insights into the interplay between molar mass and conformational/compositional heterogeneity. Overall, this study expands the utility of CE by demonstrating its capacity to discern protein species and their heterogeneity, properties which are not readily accessible by other analytical techniques.


Subject(s)
Electrophoresis, Capillary , Protein Conformation , Cattle , Animals , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/metabolism , Serum Albumin, Bovine/chemistry , Lactalbumin/chemistry
8.
Chembiochem ; 25(11): e202400142, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38742957

ABSTRACT

The widespread attention towards 1,4-butanediol (BDO) as a key chemical raw material stems from its potential in producing biodegradable plastics. However, the efficiency of its biosynthesis via current bioprocesses is limited. In this study, a dual-pathway approach for 1,4-BDO production from succinic acid was developed. Specifically, a double-enzyme catalytic pathway involving carboxylic acid reductase and ethanol dehydrogenase was proposed. Optimization of the expression levels of the pathway enzymes led to a significant 318 % increase in 1,4-BDO titer. Additionally, the rate-limiting enzyme MmCAR was engineered to enhance the kcat/KM values by 50 % and increase 1,4-BDO titer by 46.7 %. To address cofactor supply limitations, an NADPH and ATP cycling system was established, resulting in a 48.9 % increase in 1,4-BDO production. Ultimately, after 48 hours, 1,4-BDO titers reached 201 mg/L and 1555 mg/L in shake flask and 5 L fermenter, respectively. This work represents a significant advancement in 1,4-BDO synthesis from succinic acid, with potential applications in the organic chemical and food industries.


Subject(s)
Butylene Glycols , Escherichia coli , Succinic Acid , Butylene Glycols/metabolism , Butylene Glycols/chemistry , Succinic Acid/metabolism , Succinic Acid/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , Biocatalysis , Alcohol Dehydrogenase/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Fermentation
9.
Chembiochem ; 25(12): e202400147, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38629211

ABSTRACT

Chiral alcohols are not only important building blocks of various bioactive natural compounds and pharmaceuticals, but can serve as synthetic precursors for other valuable organic chemicals, thus the synthesis of these products is of great importance. Bio-catalysis represents one effective way to obtain these molecules, however, the weak stability and high cost of enzymes often hinder its broad application. In this work, we designed a biological nanoreactor by embedding alcohol dehydrogenase (ADH) and glucose dehydrogenase (GDH) in metal-organic-framework ZIF-8. The biocatalyst ADH&GDH@ZIF-8 could be applied to the asymmetric reduction of a series of ketones to give chiral alcohols in high yields (up to 99 %) and with excellent enantioselectivities (>99 %). In addition, the heterogeneous biocatalyst could be recycled and reused at least four times with slight activity decline. Moreover, E. coli containing ADH and GDH was immobilized by ZIF-8 to form biocatalyst E. coli@ZIF-8, which also exhibits good catalytic behaviours. Finally, the chiral alcohols are further converted to marketed drugs (R)-Fendiline, (S)-Rivastigmine and NPS R-568 respectively.


Subject(s)
Alcohol Dehydrogenase , Biocatalysis , Enzymes, Immobilized , Escherichia coli , Glucose 1-Dehydrogenase , Ketones , Metal-Organic Frameworks , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/metabolism , Ketones/chemistry , Ketones/metabolism , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Escherichia coli/enzymology , Escherichia coli/metabolism , Glucose 1-Dehydrogenase/metabolism , Glucose 1-Dehydrogenase/chemistry , Oxidation-Reduction , Stereoisomerism
10.
Metab Eng ; 82: 100-109, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325640

ABSTRACT

Odd-numbered fatty acids (FAs) have been widely used in nutrition, agriculture, and chemical industries. Recently, some studies showed that they could be produced from bacteria or yeast, but the products are almost exclusively odd-numbered long-chain FAs. Here we report the design and construction of two biosynthetic pathways in Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids (OMFAs) via ricinoleic acid and 10-hydroxystearic acid, respectively. The production of OMFAs was enabled by introducing a hydroxy fatty acid cleavage pathway, including an alcohol dehydrogenase from Micrococcus luteus, a Baeyer-Villiger monooxygenase from Pseudomonas putida, and a lipase from Pseudomonas fluorescens. These OMFA biosynthetic pathways were optimized by eliminating the rate-limiting step, generating heptanoic acid, 11-hydroxyundec-9-enoic acid, nonanoic acid, and 9-hydroxynonanoic acid at 7.83 mg/L, 9.68 mg/L, 9.43 mg/L and 13.48 mg/L, respectively. This work demonstrates the biological production of OMFAs in a sustainable manner in S. cerevisiae.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Fatty Acids , Mixed Function Oxygenases/metabolism , Alcohol Dehydrogenase/metabolism
11.
Appl Environ Microbiol ; 90(7): e0041624, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38837369

ABSTRACT

Ethylene glycol (EG) is a widely used industrial chemical with manifold applications and also generated in the degradation of plastics such as polyethylene terephthalate. Rhodococcus jostii RHA1 (RHA1), a potential biocatalytic chassis, grows on EG. Transcriptomic analyses revealed four clusters of genes potentially involved in EG catabolism: the mad locus, predicted to encode mycofactocin-dependent alcohol degradation, including the catabolism of EG to glycolate; two GCL clusters, predicted to encode glycolate and glyoxylate catabolism; and the mft genes, predicted to specify mycofactocin biosynthesis. Bioinformatic analyses further revealed that the mad and mft genes are widely distributed in mycolic acid-producing bacteria such as RHA1. Neither ΔmadA nor ΔmftC RHA1 mutant strains grew on EG but grew on acetate. In resting cell assays, the ΔmadA mutant depleted glycolaldehyde but not EG from culture media. These results indicate that madA encodes a mycofactocin-dependent alcohol dehydrogenase that initiates EG catabolism. In contrast to some mycobacterial strains, the mad genes did not appear to enable RHA1 to grow on methanol as sole substrate. Finally, a strain of RHA1 adapted to grow ~3× faster on EG contained an overexpressed gene, aldA2, predicted to encode an aldehyde dehydrogenase. When incubated with EG, this strain accumulated lower concentrations of glycolaldehyde than RHA1. Moreover, ecotopically expressed aldA2 increased RHA1's tolerance for EG further suggesting that glycolaldehyde accumulation limits growth of RHA1 on EG. Overall, this study provides insights into the bacterial catabolism of small alcohols and aldehydes and facilitates the engineering of Rhodococcus for the upgrading of plastic waste streams.IMPORTANCEEthylene glycol (EG), a two-carbon (C2) alcohol, is produced in high volumes for use in a wide variety of applications. There is burgeoning interest in understanding and engineering the bacterial catabolism of EG, in part to establish circular economic routes for its use. This study identifies an EG catabolic pathway in Rhodococcus, a genus of bacteria well suited for biocatalysis. This pathway is responsible for the catabolism of methanol, a C1 feedstock, in related bacteria. Finally, we describe strategies to increase the rate of degradation of EG by increasing the transformation of glycolaldehyde, a toxic metabolic intermediate. This work advances the development of biocatalytic strategies to transform C2 feedstocks.


Subject(s)
Bacterial Proteins , Ethylene Glycol , Rhodococcus , Rhodococcus/metabolism , Rhodococcus/genetics , Ethylene Glycol/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Glycolates/metabolism , Glyoxylates/metabolism , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Peptides
12.
Chemistry ; 30(32): e202400454, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38568868

ABSTRACT

Rivastigmine is one of the several pharmaceuticals widely prescribed for the treatment of Alzheimer's disease. However, its practical synthesis still faces many issues, such as the involvement of toxic metals and harsh reaction conditions. Herein, we report a chemo-enzymatic synthesis of Rivastigmine. The key chiral intermediate was synthesized by an engineered alcohol dehydrogenase from Lactobacillus brevis (LbADH). A semi-rational approach was employed to improve its catalytic activity and thermal stability. Several LbADH variants were obtained with a remarkable increase in activity and melting temperature. Exploration of the substrate scope of these variants demonstrated improved activities toward various ketones, especially acetophenone analogs. To further recycle and reuse the biocatalyst, one LbADH variant and glucose dehydrogenase were co-immobilized on nanoparticles. By integrating enzymatic and chemical steps, Rivastigmine was successfully synthesized with an overall yield of 66 %. This study offers an efficient chemo-enzymatic route for Rivastigmine and provides several efficient LbADH variants with a broad range of potential applications.


Subject(s)
Alcohol Dehydrogenase , Enzymes, Immobilized , Levilactobacillus brevis , Rivastigmine , Rivastigmine/chemistry , Levilactobacillus brevis/enzymology , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Biocatalysis , Acetophenones/chemistry , Acetophenones/metabolism , Protein Engineering
13.
BMC Cancer ; 24(1): 927, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090641

ABSTRACT

OBJECTIVE: This study aims to explore ADH4 expression in hepatocellular carcinoma (HCC), its prognostic impact, and its immune correlation to provide novel insights into HCC prognostication and treatment. METHODS: HCC prognostic marker genes were rigorously selected using GEO database, Lasso regression, GEPIA, Kaplan-Meier and pROC analyses. The expression of interested markers (ADH4, DNASE1L3, RDH16, LCAT, HGFAC) in HCC and adjacent tissues was assessed by Immunohistochemistry (IHC). We observed that ADH4 exhibited low expression levels in liver cancer tissues and high expression levels in normal liver tissues. However, the remaining four genes did not manifest any statistically significant differences between hepatocellular carcinoma (HCC) tissue and adjacent non-cancerous tissue. Consequently, ADH4 became the primary focus of our research. ADH4 expression was validated by signed-rank tests and unpaired Wilcoxon rank sum tests across pan-cancer and HCC datasets. Clinical significance and associations with clinicopathological variables were determined using Kaplan-Meier, logistic regression and Cox analyses on TCGA data. The ADH4-related immune responses were explored by Spearman correlation analysis using TIMER2 data. CD68, CD4, and CD19 protein levels were confirmed by IHC in HCC and non-cancerous tissues. RESULTS: ADH4 showed significant downregulation in various cancers, particularly in HCC. Moreover, low ADH4 expression was associated with clinicopathological variables and served as an independent prognostic marker for HCC patients. Additionally, ADH4 affects a variety of biochemical functions and may influence cancer development, prognosis, and treatment by binding to immune cells. Furthermore, at the immune level, the low expression pattern of ADH4 is TME-specific, indicating that ADH4 has the potential to be used as a target for cancer immunotherapy. CONCLUSION: This study highlights the diagnostic, prognostic and immunomodulatory roles of ADH4 in HCC. ADH4 could serve as a valuable biomarker for HCC diagnosis and prognosis, as well as a potential target for immunotherapeutic interventions.


Subject(s)
Alcohol Dehydrogenase , Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Prognosis , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Male , Female , Gene Expression Regulation, Neoplastic , Kaplan-Meier Estimate
14.
Microb Cell Fact ; 23(1): 118, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659044

ABSTRACT

BACKGROUND: Excessive alcohol consumption has been consistently linked to serious adverse health effects, particularly affecting the liver. One natural defense against the detrimental impacts of alcohol is provided by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), which detoxify harmful alcohol metabolites. Recent studies have shown that certain probiotic strains, notably Lactobacillus spp., possess alcohol resistance and can produce these critical enzymes. Incorporating these probiotics into alcoholic beverages represents a pioneering approach that can potentially mitigate the negative health effects of alcohol while meeting evolving consumer preferences for functional and health-centric products. RESULTS: Five lactic acid bacteria (LAB) isolates were identified: Lactobacillus paracasei Alc1, Lacticaseibacillus rhamnosus AA, Pediococcus acidilactici Alc3, Lactobacillus paracasei Alc4, and Pediococcus acidilactici Alc5. Assessment of their alcohol tolerance, safety, adhesion ability, and immunomodulatory effects identified L. rhamnosus AA as the most promising alcohol-tolerant probiotic strain. This strain also showed high production of ADH and ALDH. Whole genome sequencing analysis revealed that the L. rhamnosus AA genome contained both the adh (encoding for ADH) and the adhE (encoding for ALDH) genes. CONCLUSIONS: L. rhamnosus AA, a novel probiotic candidate, showed notable alcohol resistance and the capability to produce enzymes essential for alcohol metabolism. This strain is a highly promising candidate for integration into commercial alcoholic beverages upon completion of comprehensive safety and functionality evaluations.


Subject(s)
Alcohol Dehydrogenase , Ethanol , Probiotics , Humans , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Ethanol/metabolism , Lactobacillus/metabolism , Lactobacillus/genetics , Lactobacillales/genetics , Lactobacillales/metabolism , Lacticaseibacillus rhamnosus/genetics , Lacticaseibacillus rhamnosus/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Pediococcus acidilactici/metabolism
15.
Microb Cell Fact ; 23(1): 132, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711050

ABSTRACT

BACKGROUND: 1,5-pentanediol (1,5-PDO) is a linear diol with an odd number of methylene groups, which is an important raw material for polyurethane production. In recent years, the chemical methods have been predominantly employed for synthesizing 1,5-PDO. However, with the increasing emphasis on environmentally friendly production, it has been a growing interest in the biosynthesis of 1,5-PDO. Due to the limited availability of only three reported feasible biosynthesis pathways, we developed a new biosynthetic pathway to form a cell factory in Escherichia coli to produce 1,5-PDO. RESULTS: In this study, we reported an artificial pathway for the synthesis of 1,5-PDO from lysine with an integrated cofactor and co-substrate recycling and also evaluated its feasibility in E.coli. To get through the pathway, we first screened aminotransferases originated from different organisms to identify the enzyme that could successfully transfer two amines from cadaverine, and thus GabT from E. coli was characterized. It was then cascaded with lysine decarboxylase and alcohol dehydrogenase from E. coli to achieve the whole-cell production of 1,5-PDO from lysine. To improve the whole-cell activity for 1,5-PDO production, we employed a protein scaffold of EutM for GabT assembly and glutamate dehydrogenase was also validated for the recycling of NADPH and α-ketoglutaric acid (α-KG). After optimizing the cultivation and bioconversion conditions, the titer of 1,5-PDO reached 4.03 mM. CONCLUSION: We established a novel pathway for 1,5-PDO production through two consecutive transamination reaction from cadaverine, and also integrated cofactor and co-substrate recycling system, which provided an alternative option for the biosynthesis of 1,5-PDO.


Subject(s)
Biosynthetic Pathways , Escherichia coli , Escherichia coli/metabolism , Escherichia coli/genetics , Metabolic Engineering/methods , Glycols/metabolism , Lysine/metabolism , Lysine/biosynthesis , Alcohol Dehydrogenase/metabolism , Transaminases/metabolism , Transaminases/genetics , Carboxy-Lyases/metabolism
16.
J Org Chem ; 89(15): 11043-11047, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39042018

ABSTRACT

Asymmetric reduction of 2-chloro-1-(6-fluorochroman-2-yl)ethan-1-one (NEB-7) into 2-chloro-1-(6-fluorochroman-2-yl)ethan-1-ol (NEB-8) is the crucial step for synthesis of liposoluble ß1 receptor blocker nebivolol. Four efficient and stereoselective alcohol dehydrogenases were identified, enabling the stereoselective synthesis of all enantiomers of NEB-8 at a substrate loading of 137 g·L-1 with ee values of >99% and high space-time yields. This study provides novel biocatalysts for the efficient synthesis of nebivolol precursors and uncovers the molecular basis for enantioselectivity manipulation by parametrization of Prelog's rule.


Subject(s)
Biocatalysis , Nebivolol , Nebivolol/chemistry , Stereoisomerism , Molecular Structure , Adrenergic beta-1 Receptor Antagonists/chemistry , Adrenergic beta-1 Receptor Antagonists/chemical synthesis , Alcohol Dehydrogenase/antagonists & inhibitors , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry
17.
J Chem Inf Model ; 64(8): 3400-3410, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38537611

ABSTRACT

Lactobacillus kefir alcohol dehydrogenase (LkADH) and ketoreductase from Chryseobacterium sp. CA49 (ChKRED12) exhibit different chemoselectivity and stereoselectivity toward a substrate with both keto and aldehyde carbonyl groups. LkADH selectively reduces the keto carbonyl group while retaining the aldehyde carbonyl group, producing optically pure R-alcohols. In contrast, ChKRED12 selectively reduces the aldehyde group and exhibits low reactivity toward ketone carbonyls. This study investigated the structural basis for these differences and the role of specific residues in the active site. Molecular dynamics (MD) simulations and quantum chemical calculations were used to investigate the interactions between the substrate and the enzymes and the essential cause of this phenomenon. The present study has revealed that LkADH and ChKRED12 exhibit significant differences in the structure of their respective active pockets, which is a crucial determinant of their distinct chemoselectivity toward the same substrate. Moreover, residues N89, N113, and E144 within LkADH as well as Q151 and D190 within ChKRED12 have been identified as key contributors to substrate stabilization within the active pocket through electrostatic interactions and van der Waals forces, followed by hydride transfer utilizing the coenzyme NADPH. Furthermore, the enantioselectivity mechanism of LkADH has been elucidated using quantum chemical methods. Overall, these findings not only provide fundamental insights into the underlying reasons for the observed differences in selectivity but also offer a detailed mechanistic understanding of the catalytic reaction.


Subject(s)
Aldehydes , Ketones , Molecular Dynamics Simulation , Ketones/chemistry , Ketones/metabolism , Aldehydes/chemistry , Aldehydes/metabolism , Substrate Specificity , Quantum Theory , Lactobacillus/enzymology , Lactobacillus/metabolism , Catalytic Domain , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry
18.
Antonie Van Leeuwenhoek ; 117(1): 47, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427176

ABSTRACT

Desulfofundulus kuznetsovii is a thermophilic, spore-forming sulphate-reducing bacterium in the family Peptococcaceae. In this study, we describe a newly isolated strain of D. kuznetsovii, strain TPOSR, and compare its metabolism to the type strain D. kuznetsovii 17T. Both strains grow on a large variety of alcohols, such as methanol, ethanol and propane-diols, coupled to the reduction of sulphate. Strain 17T metabolizes methanol via two routes, one involving a cobalt-dependent methyl transferase and the other using a cobalt-independent alcohol dehydrogenase. However, strain TPOSR, which shares 97% average nucleotide identity with D. kuznetsovii strain 17T, lacks several genes from the methyl transferase operon found in strain 17T. The gene encoding the catalytically active methyl transferase subunit B is missing, indicating that strain TPOSR utilizes the alcohol dehydrogenase pathway exclusively. Both strains grew with methanol during cobalt starvation, but growth was impaired. Strain 17T was more sensitive to cobalt deficiency, due to the repression of its methyl transferase system. Our findings shed light on the metabolic diversity of D. kuznetsovii and their metabolic differences of encoding one or two routes for the conversion of methanol.


Subject(s)
Alcohol Dehydrogenase , Methanol , Peptococcaceae , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Methanol/metabolism , Oxidation-Reduction , Transferases/metabolism , Sulfates/metabolism , Cobalt , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism
19.
Angew Chem Int Ed Engl ; 63(27): e202404024, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38641561

ABSTRACT

Here we demonstrate the preparation of enzyme-metal biohybrids of NAD+ reductase with biocatalytically-synthesised small gold nanoparticles (NPs, <10 nm) and core-shell gold-platinum NPs for tandem catalysis. Despite the variety of methods available for NP synthesis, there remains a need for more sustainable strategies which also give precise control over the shape and size of the metal NPs for applications in catalysis, biomedical devices, and electronics. We demonstrate facile biosynthesis of spherical, highly uniform, gold NPs under mild conditions using an isolated enzyme moiety, an NAD+ reductase, to reduce metal salts while oxidising a nicotinamide-containing cofactor. By subsequently introducing platinum salts, we show that core-shell Au@Pt NPs can then be formed. Catalytic function of these enzyme-Au@Pt NP hybrids was demonstrated for H2-driven NADH recycling to support enantioselective ketone reduction by an NADH-dependent alcohol dehydrogenase.


Subject(s)
Biocatalysis , Gold , Metal Nanoparticles , NAD , Platinum , Metal Nanoparticles/chemistry , NAD/chemistry , NAD/metabolism , Gold/chemistry , Platinum/chemistry , Hydrogen/chemistry , Hydrogen/metabolism , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry , Oxidation-Reduction
20.
Angew Chem Int Ed Engl ; 63(22): e202403539, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38556813

ABSTRACT

The design and orderly layered co-immobilization of multiple enzymes on resin particles remain challenging. In this study, the SpyTag/SpyCatcher binding pair was fused to the N-terminus of an alcohol dehydrogenase (ADH) and an aldo-keto reductase (AKR), respectively. A non-canonical amino acid (ncAA), p-azido-L-phenylalanine (p-AzF), as the anchor for covalent bonding enzymes, was genetically inserted into preselected sites in the AKR and ADH. Employing the two bioorthogonal counterparts of SpyTag/SpyCatcher and azide-alkyne cycloaddition for the immobilization of AKR and ADH enabled sequential dual-enzyme coating on porous microspheres. The ordered dual-enzyme reactor was subsequently used to synthesize (S)-1-(2-chlorophenyl)ethanol asymmetrically from the corresponding prochiral ketone, enabling the in situ regeneration of NADPH. The reactor exhibited a high catalytic conversion of 74 % and good reproducibility, retaining 80 % of its initial activity after six cycles. The product had 99.9 % ee, which that was maintained in each cycle. Additionally, the double-layer immobilization method significantly increased the enzyme loading capacity, which was approximately 1.7 times greater than that of traditional single-layer immobilization. More importantly, it simultaneously enabled both the purification and immobilization of multiple enzymes on carriers, thus providing a convenient approach to facilitate cascade biocatalysis.


Subject(s)
Alcohol Dehydrogenase , Biocatalysis , Enzymes, Immobilized , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/genetics , Protein Engineering , Aldo-Keto Reductases/metabolism , Aldo-Keto Reductases/chemistry , Aldo-Keto Reductases/genetics , Phenylalanine/chemistry , Phenylalanine/metabolism , Phenylalanine/analogs & derivatives , Azides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL